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Nonaxisymmetric wave propagation in an inviscid fluidwith a pipeline shear flow is investigated.Mathematical equation is deduced
from the conservations of mass and momentum, leading to a second-order differential equation in terms of the acoustic pressure.
Meanwhile a general boundary condition is formulated to cover different types of wall configurations. A semianalytical method
based on the Fourier-Bessel theory is provided to transform the differential equation to algebraic equations. Numerical analysis of
phase velocity andwave attenuation inwater is addressed in the laminar and turbulent flow.Meanwhile comparison among different
kinds of boundary condition is given. In the end, the measurement performance of an ultrasonic flow meter is demonstrated.

1. Introduction

Wave propagation in an inviscid fluid with a shear mean
flowhas been studiedmostly by numerical and semianalytical
methods [1, 2] which is of considerable interest in industrial
applications such as noise damping [3, 4] and ultrasonic
flow meter [5, 6], to mention a few. On the neglect of the
fluid viscosity and thermal conductivity, Pridmore-Brown [7]
firstly established the governing equation of the transverse
modes in a shear mean flow confined by a rectangular
duct. Mungur and Plumblee [8] derived the corresponding
convected wave equation in the case of a circular pipeline.

Following the contribution of Mungur and Plumblee
[8], various aspects of wave propagation in the circular
pipeline containing the shear flow were studied by many
researchers, such as Gogate and Munjal [9], Ko [10], Evers-
man [11], Agarwal and Bull [12], and Pagneux and Froelich
[13]. Boucheron et al. [2] made a comprehensive review of
axisymmetric acoustic wave propagating in the rigid-walled
pipeline. In the case of a lined-walled pipelinewhere the effect
of acoustic impedance of the wall was considered, theoretical
and numerical contributions were made by Rienstra and
Darau [3], Rienstra [14], Smith et al. [15], Brambley et al. [16],

and Buske et al. [17]. Some experiment data can be found in
the work of Marx et al. [18].

In the application of an ultrasonic flow measurement,
particular considerations are given to improve the measure-
ment performance. Due to the complexity of wave propa-
gation in the pipeline flow, various compensation methods
in the engineering aspect have been provided, which was
comprehensively summarized by Chen et al. [5]. On the
other hand, theoretical analysis based on the wave equation
was conducted by Lechner [19], Willatzen [20–24], and
Chen et al. [6]. Based on the axisymmetric acoustic wave,
the performance for the low Mach flow measurement was
analyzed in the abovementioned paper. Although the effect
of the acoustic impedance at the wall on the measurement
performance was analyzed by Willatzen [23], the features of
wave absorption at the wall were not addressed.

The present paper concentrates on the nonaxisymmet-
ric acoustic wave propagating in the inviscid fluid with
the presence of a shear mean flow confined by a circular
pipeline. Particular attention is given to the influence of the
acoustic impedance on the wave propagation and measure-
ment performance. Mathematical formulation starts from
the conservations of mass and momentum which leads to a
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Figure 1: (Color online) Configuration of the cylindrical coordinate
system (the flow profile is assumed to be sheared).

second-order differential equation in terms of the acoustic
pressure. The boundary condition is then discussed under
the assumptions of rigid wall, free-boundary wall (pressure-
release wall) [25, 26], and lined wall. In the previous research,
the authors introduced a general solution based on the
Fourier-Bessel theory [27, 28] to study the axisymmetric
acoustic wave propagating along the rigid-walled pipeline
[29] and heating pipeline [6, 30]. Such method was extended
to handle the nonaxisymmetric wave propagation.Numerical
analysis of phase velocity and wave attenuation is addressed
in the laminar and turbulent flow. Furthermore, themeasure-
ment performance of an ultrasonic flow meter based on the
wave propagation is demonstrated.

2. Mathematical Formulation

In this section, the convected equation of the nonaxisymmet-
ric acoustic wave propagating in the inviscid fluid flowing
through a circular pipeline is mathematically deduced as
shown in Figure 1. The flow profile is assumed to be shear
and denoted by V

0
(𝑟). The radial, circumferential, and axial

coordinates are expressed by 𝑟, 𝜃, and 𝑧, respectively.Thefluid
density, velocity, and pressure are denoted by 𝜌, k, and 𝑝,
respectively. 𝑅 represents the pipeline inner radius. In what
follows, the thermoviscous effect is not taken into account,
and then the entropy perturbation during wave propagation
can be taken to be zero.

2.1. Governing Equation. In the presence of wave propaga-
tion, acoustic disturbances impose small fluctuating terms on
the fluid’s ambient variables which can be expressed by 𝜌󸀠,
k󸀠(= [V󸀠

𝑟
, V󸀠
𝜃
, V󸀠
𝑧
]), and 𝑝󸀠. If these fluctuations are assumed to

be linear, according to the work of Mungur and Plumblee [8]
and Chen et al. [31], the governing equation of the acoustic
wave can be expressed by

∇
2
𝑝
󸀠
−
1

𝑐2
0

𝜕2𝑝󸀠

𝜕𝑡2
− 2

𝑀

𝑐
0

𝜕2𝑝󸀠

𝜕𝑡𝜕𝑧

−𝑀
2 𝜕
2𝑝󸀠

𝜕𝑧2
+ 2𝜌
0
𝑐
0

d𝑀
𝑅d𝑥

𝜕V󸀠
𝑟

𝜕𝑧
= 0,

(1)

where 𝑐
0
and𝑀(𝑥) = V

0
(𝑥)/𝑐
0
represent the adiabatic sound

speed and the local Mach number, respectively. 𝑥 is the
normalized radial coordinate through 𝑥 = 𝑟/𝑅.

The fluctuating quantities can be taken in the form of
exp[𝑖(𝜔𝑡 − 𝑘

0
𝐾𝑧 + 𝑚𝜃)], where 𝜔(= 2𝜋𝑓) is the angular

frequency,𝐾 the dimensionless axial wavenumber, 𝑘
0
= 𝜔/𝑐
0

the free-space wavenumber, and 𝑚 is the circumferential
mode which is constrained to be integral due to the periodic
wave propagation. The radial component of the acoustic
velocity may be expressed by
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Through expressing the acoustic pressure as 𝜑
𝑝
(𝑥) exp[𝑖(𝜔𝑡 −
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𝐾𝑧 + 𝑚𝜃)], where 𝜑
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(𝑥) is the radial component of the

acoustic pressure, (1) can be simplified to
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(3)

while the radial acoustic velocity is

V󸀠
𝑟
=

𝑖

𝜌
0
𝜔𝑅 (1 − 𝐾𝑀)

d𝜑
𝑝

d𝑥
exp [𝑖 (𝜔𝑡 − 𝑘

0
𝐾𝑧 + 𝑚𝜃)] . (4)

Obviously, the nonaxisymmetric acoustic wave propagat-
ing in the inviscid fluidwith the existence of the pipeline shear
flow can be governed by a second-order differential equation
with respect to the acoustic pressure. To solve the deduced
equation, the boundary condition should be discussed.

2.2. Boundary Condition. On the ignorance of the fluid
viscosity and thermal conductivity, the boundary condition
can be expressed by the standard Ingard-Myers condition
[3, 16]:

𝜕V
𝑟

𝜕𝑡
= (

𝜕

𝜕𝑡
+ 𝑐
0
𝑀

𝜕

𝜕𝑧
)
𝑃
󸀠

𝑍
, (5)

where 𝑍 denotes the acoustic impedance at the wall and is
assumed constant in this paper. Due to the vanishing of the
shear flow velocity at the wall, one obtains V

𝑟
= 𝑝󸀠/𝑍. Then

substituting (4) into the boundary condition yields

d𝜑
𝑝

d𝑥
+ 𝑖
𝜌
0
𝜔𝑅

𝑍
𝜑
𝑝
= 0. (6)

According to the work of Rienstra and Darau [3], Bram-
bley et al. [16], and Marx et al. [18], the constant acoustic
impedance can be modeled as an enhanced Helmholtz
resonator

𝑍 (𝜔) = 𝑍
0
+ 𝑖𝜔𝑚̃ − 𝑖𝜌

0
𝑐
0
cot(𝜔𝐷

𝑐
0

) , (7)

where𝐷 is the lining depth,𝑍
0
is the damping resistance, and

𝑚̃ is the inertance. In the case of a rigid wall (𝑍(𝜔) = ∞), (6)
is simplified to

d𝜑
𝑝
(𝑥)

d𝑥
= 0, at 𝑥 = 1. (8)
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In the situation of a free-boundary wall (𝑍(𝜔) = 0), (6) is
transformed to

𝜑
𝑝 (𝑥) = 0, at 𝑥 = 1. (9)

As a result, the boundary condition can be generally
expressed by

d𝜑
𝑝
(𝑥)

d𝑥
+ 𝛾𝜑
𝑝 (𝑥) = 0, at 𝑥 = 1, (10)

where 𝛾 is independent of the radial coordinate. Specifically
𝛾 = 0, 𝛾 = ∞, and 0 < |𝛾| < ∞ represent the rigid wall,
free-boundary wall, and lined wall, respectively.

3. Solution Based on Fourier-Bessel Theory

In this section, a solution based on the Fourier-Bessel theory,
which is mathematically complete and orthogonal in the
Lebesgue spaceL2

𝑥
(0, 1) [27, 28], is proposed to solve (3) with

the boundary condition (10).
Mathematically, the bounded continuous function 𝜑

𝑝
(𝑥)

in the domain 𝑥 ∈ [0, 1] may be expressed in terms of a
Fourier-Bessel sequence
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𝑗
𝑥) denotes the 𝑚th-order Bessel function of the

first kind and 𝑚 corresponds to the circumferential mode.
Substitution into (10) leads to
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which can determine the coefficients 𝜆𝑝
𝑗
. Meanwhile, the

orthogonality [27, 28] of the Fourier-Bessel sequence may be
represented by
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(13)
where 𝛿

𝑖𝑗
is the Kronecker delta function. If the acoustic

pressure 𝜑
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(𝑥) is given, the corresponding coefficients𝐶
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which shows that 𝐶
𝑗
is independent of the radial coordinate.

Obviously, the Bessel functions 𝐽
𝑚
(𝜆
𝑝

𝑗
𝑥) are solutions of

cylindrical waves without flow, which are not the eigenfunc-
tions with shear flow. While the eigenfunctions without flow
(𝐽
𝑚
(𝜆
𝑝

𝑗
𝑥)) are orthogonal and complete, the eigenfunctions

with shear flowmay be not. As a result, (11) is a valid orthogo-
nal representation but is not an eigenfunction decomposition.
It specifies pseudo-modes that are the approximate represen-
tation of the acoustic waves with shear in terms of acoustic
waveswithout shear.The calculation of the coefficients𝐶

𝑗
and

pseudo-eigenvalues 𝜆𝑝
𝑗
minimizes the mean square error of

the representation. As a result, substituting (11) into (3) yields
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In the above equation, the properties of Bessel function are
used [27, 28]. Similar deductions can be found by the authors’
previous papers [6, 29, 30]. Multiplying 𝐽

𝑚
(𝜆
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𝑖
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where
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Obviously, given specific local Mach profile𝑀(𝑥), acous-
tic angular frequency 𝜔, pipeline radius 𝑅, fluid density
𝜌
0
, and the orthogonal Bessel sequence 𝐽

𝑚
(𝜆
𝑝

𝑗
𝑥) with the

corresponding eigenvalues 𝜆𝑝
𝑗
, 𝑛 = 1, 2, . . . , 𝑁 being the

roots of (12), expanding (16) gives a set of homogeneous
algebraic equations with the unknown parameters𝐶

𝑗
and the

dimensionless axial wavenumber 𝐾. It is obvious that if the
number of equations expanded from (16) is𝑁, the number of
coefficients is 𝑁 + 1. Clearly, the problem is homogeneous
and the wave amplitude can be multiplied by an arbitrary
constant.

While the specific coefficients 𝐶
𝑗
cannot be solved from

(16), the dimensionless axial wavenumber𝐾 can be obtained.
Furthermore, the ratio of all 𝐶

𝑗
to one of them such as 𝐶

𝑗
/𝐶
1

(if 𝐶
1
̸= 0) can be calculated. As we are interested in the

wavenumber 𝐾, by taking the coefficients 𝐶
𝑗
as unknown

variables with X = [𝐶
1
, . . . , 𝐶

𝑁
]
T (the subscript “T” means

the operation of matrix transpose), (16) can be written as

G (𝐾)X = 0, (18)

where G(𝐾) is a 𝑁 × 𝑁 matrix whose element is a function
of the dimensionless axial wavenumber. From (14), it can be
learned that the coefficients do not vanish simultaneously,
leading to the condition of X ̸= 0. The existence condition of
a nontrivial solution to (16) is then the vanishment of the
corresponding determinant

det (G (𝐾)) = 0, (19)

which can be solved by various numerical methods. A
Newton-related method can be found in the authors’ papers
[6, 29, 30].

4. Numerical Analysis of Wave Propagation

In this section, wave propagation in water is numerically
studied. The corresponding constant parameters are 𝜌

0
=

1000 kg/m3, 𝑐
0
= 1500m/s, 𝑓 = 1 MHz, and 𝑅 = 4mm.

Following the work of Rienstra andDarau [3], the parameters
of acoustic impedance are assumed to be 𝑍

0
= 2𝜌
0
𝑐
0
, 𝐷 =

2 mm, and 𝑚̃ = 0.02𝜌
0
+ (1/3)𝜌

0
𝐷. The laminar flow profile

can be described by a Poisson’s equation

𝑀(𝑥) = 2𝑀(1 − 𝑥
2
) , (20)

while the turbulent flow profile can be represented as the
seventh-root law

𝑀(𝑥) =
60

49
𝑀(1 − 𝑥)

1/7
, (21)

where𝑀 is the cross-section average Mach number. Due to
the acoustic impedance of the lined wall, the acoustic energy
is absorbed at the wall. The following analysis focuses on the
phase velocity (𝑐

𝑝
) and attenuation coefficient (𝐴)

𝑐
𝑝
=
𝑐
0

𝐾R
, 𝐴 =

󵄨󵄨󵄨󵄨8.686𝑘0𝐾I
󵄨󵄨󵄨󵄨 , (22)

where the subscripts “R” and “I” denote the real and imagi-
nary components of the axial wavenumber, respectively. To
get a dimensionless description of the phase velocity, the
relative phase velocity 𝑐

𝑝
/𝑐
0
= 1/𝐾R is used in the following

discussion. Furthermore, the number of Bessel functions is
set to 𝑁 = 30 and a convincible calculation convergence
of the axial wavenumber 𝐾 can be reached [6, 29, 30]. In
what follows, the mean Mach number is assumed to be in
the interval 0 < 𝑀 < 0.2. Readers may calculate the axial
wavenumber for any value of the mean Mach number using
presented method.

4.1. Phase Velocity

4.1.1. Comparison among Different Kinds of Boundary Condi-
tion. Figure 2 represents the relative phase velocity under the
three different wall configurations (explained in Section 2.2)
in the laminar flow, while Figure 3 shows the correspond-
ing relative phase velocity in the turbulent flow. Numeri-
cal comparison is imposed on the relative phase velocity
of the first four axisymmetric (𝑚 = 0) radial pseudo-
modes as a function of the average Mach number. In the
legends, “down/up” means wave propagation in the down-
stream/upstream direction while “free/gen/rigid” represents
the free-boundary/lined/rigid wall configuration. The first
four axisymmetric radial pseudo-modes are denoted by “1,”
“2,” “3,” and “4,” respectively.

When the fluid is at rest, the relative phase velocity of each
axisymmetric acoustic mode in the rigid wall turns out to be
the largest among the three types of the boundary condition.
The relative phase velocity in the lined-walled pipeline shows
the smallest. In the case of the high modes, the difference of
the relative phase velocity among the three boundary types
becomes more distinct. Physically speaking, the complicated
refraction and reflection at the wall lead to the existence of
the high modes (“2,” “3,” and “4”). With a higher mode, the
corresponding wave confronts more complex reflections and
refractions. The wall has influence on the acoustic wave and
then becomes more obvious, leading to a slower propagation
speed in the lined wall. However, the wall influence on the
fundamental mode (“1”) is slight.

In the case of a moving fluid, the relative phase velocity
increases with the average Mach number in the downstream
propagation but decreases in the upstream propagation.
In the turbulent flow, the relative phase velocity in the
downstream propagation is semisymmetric to that in the
upstream propagation with respect to the case of the static
fluid. However, the symmetric relationship is altered in the
laminar flow due to the shear effect. Such phenomenon is
more obvious in the fundamental mode wave than the other
higher acoustic modes.

Physically speaking, with the increase of the average flow
Mach number, the convective flow (uniform flow) accelerates
the downstream propagation as the propagation direction
is along the flow direction but decelerates the upstream
propagation. The consequence is that the relative phase
velocity in the downstream and upstream propagation due
to the flow convection shows to be symmetric with respect
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Figure 2: (Color online) Comparison of the relative phase velocity of the first four axisymmetric pseudo-modes with three different types of
boundary condition in the laminar flow.

to the static fluid case. Such symmetric relationship can be
found in Figure 3 as the turbulent flow profile is similar to
the convective flow profile.

In the laminar flow, the phenomenon becomes more
complicated as the shear effect alters the abovementioned
symmetric relationship. From Figure 2(a), it can be inferred
that the shear effect channels the fundamentalmode (“1”) into
a narrow layer near the wall in the downstream propagation.
In the upstream propagation, the acoustic wave is channeled
into a narrow layer near the pipeline center [7]. As the
local Mach number near the wall is smaller than that near

the pipeline center, the contribution of the flow profile on the
propagation speed is slight in the downstream propagation.
In the upstream propagation, the increased local Mach
number near the center heavily decelerates the propagation
speed. For the high acoustic modes (“2,” “3,” and “4”), the
shear effect channels the acoustic wave into a narrow layer
next to the centerline. As a result, the localMach number near
the pipeline center accelerates the downstream propagation
but decelerates the upstream propagation. Such phenomenon
can be seen by comparing the relative phase velocity between
Figures 2 and 3. It should be noticed that the shear effect
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Figure 3: (Color online) Comparison of the relative phase velocity of the first four axisymmetric pseudo-modes with three different types of
boundary condition in the turbulent flow. See Figure 2 for legend’s interpretation.

exists in both the laminar and turbulent flow. However, such
influence is more significant in the laminar flow as the fluid
vorticity is larger for the parabolic velocity profile (20) than
for the logarithmic (21) flow profile.

It should be noticed that the shear effect on wave prop-
agation confined by the free-boundary wall is less obvious.
On the other hand, the existence of acoustic impedance at
the wall prefers to regulate the wave propagation to a narrow
layer near the pipeline wall. As a result, in the downstream
propagation, the local Mach number near the pipeline wall
slightly accelerates the propagation speed comparedwith that

near the pipeline center. In the upstream propagation, the
local flow profile near the wall weakens the decreasing rate
of the relative phase velocity due to the flow convection. Such
phenomenon can be found in both the laminar and turbulent
flow as shown in Figures 2 and 3.

4.1.2. Comparison among Different Circumferential Modes.
Figure 4 compares the relative phase velocity of the first four
axial pseudo-modes (“1,” “2,” “3,” and “4”) among the three
different circumferential modes (𝑚 = 0, 𝑚 = 1, and 𝑚 = 2)
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Figure 4: (Color online) Comparison of the relative phase velocity of the first four axial pseudo-modes among the three circumferential
modes (𝑚 = 0,𝑚 = 1, and𝑚 = 2) in the laminar flow confined by the lined-walled pipeline.

in the laminar flow confined by the lined-walled pipeline,
while Figure 5 shows the corresponding comparisons in the
turbulent flow.

In the static fluid (𝑀 = 0), the relative phase velocity of a
higher circumferential mode is larger. In the case of a higher
axialmode, the difference of the relative phase velocity among
the three circumferential modes becomesmore visible. In the
presence of a flow, the flow convection speeds up the phase
velocity of the acoustic wave propagating in the downstream
direction but slows down the relative phase velocity in the
upstream propagation. The influence of flow convection on

each acoustic mode can be explicitly found in the case of
turbulent flow in Figure 5 as the core profile of the turbulent
flow is nearly the same with the uniform flow profile.

In the laminar flow (Figure 4), the tendency becomes
more complicated compared with that in the turbulent
flow as shown in Figure 5. For the first axial pseudo-mode
(Figure 4(a)), the shear effect regulates each circumferential
mode into a narrow layer next to the wall in the downstream
propagation; meanwhile, it channels each circumferential
mode into a narrow layer next to the pipeline center in
the upstream propagation. By comparing the tendencies of
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Figure 5: (Color online) Comparison of the relative phase velocity of the first four axial acoustic modes among the three circumferential
modes in the turbulent flow confined by the lined-walled pipeline.

the three circumferential modes as functions of the aver-
age Mach number, it can be learned that the shear effect
shows the most significant influence on the axisymmetric
mode (𝑚 = 0). In the case of higher axial modes (Fig-
ures 4, 5(b), 5(c), and 5(d)), the influence of shear flow
behaves similarly as shown in Figure 2. Comparison among
the three higher axial modes reveals that the influence of
wall impedance tends to channel the wave mode prop-
agate near the wall. Such tendency is more obvious for
a higher axial mode wave as shown in Figures 4(d) and
5(d).

4.2. Acoustic Attenuation

4.2.1. Comparison between Laminar and Turbulent Flow. In
this subsection, the attenuation coefficient due to the acoustic
impedance at the wall is investigated. Specifically, Figure 6
compares the attenuation coefficient of the first four axial
modes between the laminar (“lam”) and turbulent (“tur”) flow
profiles in both the downstream (Figure 6(a)) and upstream
(Figure 6(b)) propagations. The circumferential wave mode
is assumed to be𝑚 = 0; then the feature of the axisymmetric
acoustic wave is addressed.
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Figure 6: (Color online) Comparison of the attenuation coefficient of the first four axisymmetric modes (“1st,” “2nd,” “3rd,” and “4th”)
propagating in the downstream (a) and upstream (b) directions in the laminar (“lam”) and turbulent (“tur”) velocity profiles.

In the absence of a moving fluid (𝑀 = 0 in Figures 6(a)
and 6(b)), a higher axial mode leads to a larger attenuation
coefficient. As shown in Section 4.1.1, the relative phase
velocity of a higher axial mode is larger which corresponds
to shorter wavelength, steeper waveform, and larger attenu-
ation. In the presence of a flow, the behavior of attenuation
coefficient shows significant differences between the first
axial mode and the other three axial modes.

For the first axial mode propagating in the downstream
direction (Figure 6(a)), the attenuation coefficient becomes
large in both the laminar and turbulent flows with the ascent
of the average Mach number. Meanwhile, the ascending rate
of attenuation coefficient in the laminar flow is quicker than
that in the turbulent flow. As described in Figure 3, the shear
effect regulates the first axial mode to a narrow layer near
the wall in the downstream propagation. Then, the wave
damping due to the acoustic impedance becomes larger in the
presence of a higher Mach number. As the shear effect in the
laminar flow is more noticeable, the wave attenuation in the
laminar flow behaves severer. In the upstream propagation
(Figure 6(b)), the attenuation coefficient slows down against
the average Mach number in the laminar and turbulent
flow. The attenuation descent is quicker in the laminar flow
than that in turbulent flow. As the shear effect channels the
acoustic wave in the upstream propagation into a narrow
layer next to the pipeline center, the wave damping at the wall
becomes slight. As the shear effect in the laminar flow ismore
significant than that in the turbulent flow, the decrease ratio
of wave attenuation becomes quicker in the laminar flow.

Comparison of attenuation coefficients among the three
high modes propagating in the downstream direction
(Figure 6(a)) shows that the flow convection eases the wave
attenuation, but the shear flow complicates the tendency of
attenuation coefficients. In the upstream propagation, the
flow convection slows down the propagation speed; then
the occurrence probability of the wave damping at the
wall increases, leading to an ascending of the attenuation
coefficient. On the other hand, the shear effect regulates the
high acoustic wave in the upstream propagation to a narrow
layer near the pipeline center, leading to a decreasing of
the wave damping at the wall. As the shear effect in the
laminar flow is stronger than that in the turbulent flow,
the average Mach number corresponding to the decrease of
wave attenuation is smaller in the laminar flow. It should be
noticed that the shear influence on a higher acoustic mode is
less significant as the higher acoustic mode leads to a more
complex propagation path.

4.2.2. Comparison among Different Circumferential Modes.
Figure 7 compares the attenuation coefficients of the first
four axial wave modes among the first three circumferential
modes (𝑚 = 0, 𝑚 = 1, and 𝑚 = 2) in the laminar flow
while Figure 8 displays the corresponding comparison in the
turbulent flow.

In the absence of a shear flow, the attenuation coefficient
of a higher circumferentialmode is larger for each axialmode.
The difference of the attenuation coefficients among the three
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Figure 7: (Color online) Comparison of the attenuation coefficients of the first four axial pseudo-modes among the three circumferential
modes in the laminar flow confined by a lined-walled pipeline.

circumferential modes becomes more visible in the case of a
higher axial mode. However, such tendency is not suitable for
the first axial mode.

In the presence of a shear flow, the attenuation coefficient
changes due to the existence of the shear and convective
effects. Specifically, the influences of shear and convective
actions on the other two circumferential modes (𝑚 = 1 and
𝑚 = 2) are similar to the case of the axisymmetric mode
(𝑚 = 0). It should be noticed that the shear effect on the
attenuation coefficient of the axisymmetric acoustic mode

shows more sensitivity compared with the case of the other
two circumferential modes.

5. Performance of Ultrasonic
Flow Measurement

In this section, the measurement performance of an ultra-
sonic flow meter based on the wave propagation is analyzed
theoretically. To describe the measurement performance
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Figure 8: (Color online) Comparison of the attenuation coefficients of the first four axial pseudo-modes among the three circumferential
modes in the turbulent flow confined by a lined-walled pipeline.

explicitly, the measurement error is firstly defined [5, 19, 22].
Specifically, when a plane wave propagates in an inviscid fluid
with a uniform flow (𝑐

0
𝑀), travelling a distance 𝐿 in the

downstream direction requires

𝑡down =
𝐿

𝑐
0
(1 +𝑀)

, (23)

while the consumed time in the upstream direction is

𝑡up =
𝐿

𝑐
0
(1 −𝑀)

. (24)

Subtracting (23) from (24) gives

𝑡up − 𝑡down =
𝐿

𝑐
0
(1 −𝑀)

−
𝐿

𝑐
0
(1 +𝑀)

=
2𝑀𝐿

𝑐
0
(1 −𝑀

2

)
.

(25)
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Figure 9: (Color online) Comparison of the measurement errors of the first four axial modes among the three different boundary
configurations in the laminar flow. See Figure 2 for legend interpretation.

Under the assumption of𝑀2 ≪ 1, one obtains

𝑡up − 𝑡down =
2𝐿

𝑐
0

𝑀, (26)

and the volume flow (𝑄
𝑉
) then can be obtained by

𝑄
𝑉
= 𝐴
𝑃
𝑀 =

𝐴
𝑃
𝑐
0

2𝐿
(𝑡up − 𝑡down) . (27)

For a specific wave mode (𝑛), from (4), traveling a
distance 𝐿 requires

𝑡
𝑛

down =
𝑘
0
(𝐾down

R )
𝑛

𝐿

𝜔
, 𝑡

𝑛

up =
𝑘
0
(𝐾

up
R )
𝑛

𝐿

𝜔
. (28)

Then we have

𝑡
𝑛

up − 𝑡
𝑛

down =
𝑘
0
𝐿

𝜔
((𝐾

up
R )
𝑛

− (𝐾
down
R )
𝑛

)

=
𝐿

𝑐
0

((𝐾
up
R )
𝑛

− (𝐾
down
R )
𝑛

) ,

(29)
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Figure 10: (Color online) Comparison of the measurement errors of the first four axial modes among the three different boundary
configurations in the turbulent flow. See Figure 2 for legend interpretation.

and the corresponding measured volume flow is

𝑄
𝑛

𝑉
=
𝐴
𝑃
𝑐
0

2𝐿
(𝑡
𝑛

up − 𝑡
𝑛

down)

=
𝐴
𝑃

2
((𝐾

up
R )
𝑛

− (𝐾
down
R )
𝑛

) .

(30)

Thus, the measurement error of a specific wave mode can be
expressed by

𝐸
𝑛
=
𝑄𝑛
𝑉
− 𝑄
𝑉

𝑄
𝑉

=
(𝐾

up
R )
𝑛

− (𝐾down
R )
𝑛

2𝑀
− 1. (31)

It can be inferred that the measurement error represents
the symmetric characteristics of the real component of the
axial wavenumber in the downstream and upstream propa-
gations with respect to the case of the static fluid.

5.1. Comparison among Different Kinds of Boundary
Condition. Figure 9 presents the difference of the
measurement errors of the first four axial pseudo-modes
among the three different boundary configurations (free-
boundary/lined/rigid wall) in the laminar flow, while
Figure 10 details the corresponding comparison in the
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Figure 11: (Color online) Comparison of themeasurement errors of the first four axial modes among the three circumferential modes (𝑚 = 0,
𝑚 = 1, and𝑚 = 2) in the laminar flow confined by the lined-walled pipeline.

turbulent flow. The circumferential mode is assumed to
be 𝑚 = 0; thus the feature of the axisymmetric acoustic
wave is analyzed. Obviously, the measurement error in the
lined-walled pipeline is the smallest in the laminar and
turbulent flow. Furthermore, the measurement error of each
acoustic mode is higher in the laminar flow than that in the
turbulent flow.

In the turbulent flow (Figure 10), the measurement error
of each axial mode grows up semilinearly with the mean
Mach number whatever the boundary condition is. As the
influence of flow convection on the relative phase velocity

in the downstream and upstream wave propagations is
semisymmetric with respect to the case of the static fluid
(Figure 3), the linearity of the measurement error in terms
of the average Mach number is maintained. For a higher
axial mode, the variation range of the measurement error
with respect to the average Mach number becomes shorter.
A possible interpretation may be that the complex reflec-
tion and refraction at the fluid-wall interface for the high
acoustic mode result in a complicated propagation path in
the pipeline. Then, the inconsistent effect of flow profile on
the acoustic wave propagating in downstream and upstream
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Figure 12: (Color online) Comparison of the measurement errors of the first four axial modes among the three circumferential modes in the
turbulent flow confined by a lined-walled pipeline.

directions is compensated. Such tendency becomes more
obvious in the laminar flow as shown in Figure 9.

Figure 9 reveals that a higher axial mode has a slower
variation of the measurement error. Comparing with the
measurement error in the turbulent flow shows that the
shear effect sharply enlarges the measurement error. The
complex propagation path of a higher axial mode due to
the reflection and refraction compensates the shear effect
on the measurement error. The mechanism of the acoustic
impedance decreases the measurement error compared with
the cases of the rigid and free-boundary configurations.

With the increase of the mean Mach number, the shear
effect on the measurement error begins to play the dominant
role which worsens the measurement performance. As a
result, the measurement error in a lined-walled pipeline
firstly decreases against the average Mach number but finally
increases. The complex reflection and refraction ease the
shear effect and then postpone the increase ratio of the mea-
surement error. In the literature, Lechner [19] and Willatzen
[20–24] did similar work in the case of very small Mach
number.Their work reveals that themeasurement error turns
to be insensitive to the Mach number. From Figure 9, it can
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be learned that their contributions are consistent with the
present study.

5.2. Comparison among Different Circumferential Modes.
Figure 11 compares the measurement errors of the first
four axial modes among the three circumferential modes
in the laminar flow confined by the lined-walled pipeline
and Figure 12 reveals the corresponding comparison in the
turbulent flow.

Clearly, the shear and convective effects on the measure-
ment performance of the two nonaxisymmetric modes (𝑚 =

1 and𝑚 = 2) are similar to the case of the axisymmetricmode
(𝑚 = 0). Comparison among the three circumferentialmodes
reveals that themeasurement error of the axisymmetricmode
is the most sensitive. For each axial mode, the measurement
error of a lower circumferentialmode is larger. However, such
tendency is not suitable when the Mach number is large.

In the end, it can be learned that the effect of flow
convection on the phase velocity in the downstream and
upstream propagations keeps a symmetric way which can be
inferred from Figures 3 and 5. In the presence of a shear flow,
the inconsistency of phase velocity between the downstream
and upstream propagations is obvious as shown by Figures
2 and 4. The shear effect severely alters the influence of flow
convection. It should be pointed out that in many industrial
applications, the actual flow Mach number may be small.
Then the measurement error of each mode in the laminar
and turbulent flow changes semilinearly with respect to the
average Mach number. Furthermore, with the increase of the
flow Mach number, the turbulent flow profile seems to be
a better candidate to describe the actual condition than the
laminar flow.

6. Conclusion

In this paper, the nonaxisymmetric wave propagation in the
inviscid fluid with a shear mean flow confined by a circular
pipeline is studied while the acoustic wave is assumed to
be isentropic and linear. The mathematical formulation is
deduced into the form of a second-order differential equation
with respect to the acoustic pressure. A general boundary
condition is presented to handle three different configura-
tions with free-boundary, rigid, and lined walls respectively.
Using the Fourier-Bessel theory, a method is provided to
numerically calculate the axial wavenumber, which describes
the phase velocity and wave attenuation. Numerical analysis
reveals the following.

(1) The phase velocity of wave propagation in the rigid-
walled pipeline turns out to be the largest among the
three types of boundary condition while the phase
velocity in the lined-walled pipeline is the smallest.

(2) Wave propagation with a higher circumferential
mode has a larger phase velocity. In the case of
a higher axial mode, the distinction of the phase
velocity among the circumferential modes is more
explicit.

(3) The effect of flow convection accelerates the wave
propagation in the downstream direction and decel-
erates the wave propagation in the upstream direc-
tion. Meanwhile, the corresponding attenuation coef-
ficient increases in the upstream propagation and
decreases in the downstream propagation. However,
the shear effect greatly alters the influence of flow
convection on both phase velocity and attenuation
coefficient.

(4) Acoustic wave with a higher circumferential mode
results in severer wave attenuation. Furthermore, a
high circumferential mode postpones the shear effect
on the wave attenuation.

In the end, the measurement performance of an ultra-
sonic flow meter is numerically investigated. The effects of
circumferential mode, boundary condition, and shear profile
are parametrically demonstrated.
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