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Cyclostationarity has been widely used as a useful signal processing technique to extract the hidden periodicity of the energy
flow of the mechanical vibration signature. However, the conventional cyclostationarity is restricted to analyzing the real-valued
signal, which is incapable of processing the constructed complex-valued signal obtained from the journal bearing supported rotor
system operating with oil film instability. In this work, the directional cyclostationary parameters, such as directional cyclic mean,
directional cyclic autocorrelation, and directional spectral correlation density, are defined based on the principle of directional
Wigner distribution. Practical experiment has demonstrated the effectiveness and superiority of the proposed method in the
investigation of the instantaneous planar motion of the journal bearing supported rotor system.

1. Introduction

Journal bearings are one of the most widely used elements
in high speed rotary machines and their performance is of
great necessity to the normal operation of the rotor systems
supported by oil film bearings. As such, plenty of research on
journal bearing malfunction analysis has been conducted.

Oil whirl and oil whip are common failure modes of
journal bearings induced by oil film instability when the
rotating speed of the shaft exceeds the critical speed of
the rotor system. Based on the mathematical model of a
symmetric rotor supported by one rigid journal bearing and
one oil film journal bearing,Muszynska [1, 2] mathematically
interpreted the dynamic phenomena related to synchronous
vibration and self-excited vibration. Relying on a pair of
orthogonally installed proximity sensors, the orbit of the
shaft centerline is usually monitored to help in analyzing the
system operating condition. In addition, Moosavian et al. [3]
compared K-nearest neighbor (KNN) and artificial neural
network (ANN) for the power spectral density technique
based fault diagnosis of main journal bearings of internal
combustion (IC) engine under different conditions. Ying
et al. [4] studied the system dynamics characteristics of
tilting pad journal bearing rotor system operating around
natural frequency or on high-speed range by considering

the influence of the pad moment of inertia. Dimond et
al. [5] reviewed strengths and weaknesses of identification
methods for fluid film journal bearing static and dynamic
characteristics, particularly the bearing stiffness, damping,
and mass coefficients based on measured data of different
measurement systems. The developments and trends in
improving bearing measurements were also documented.
Moreover, Zanarini and Cavallini [6] illustrated detailed
experimental results corresponding to oil whirl and oil whip
mixed with misalignment, unbalance, and resonance.

In statistics on random processes, cyclostationary pro-
cesses belonging to the classes of nonstationary processes
are defined to represent the correlation features of peri-
odic phenomenon. As such, it is necessary to analyze the
cyclostationarity of the modulated vibration radiated by
the journal bearing supported system with its components
operating periodically. Gardner firstly defined the concept
of cyclostationarity and foresaw the application of it. Then
Gardner et al. [7] presented a concise review of the literature
on cyclostationarity based on the investigation of an extensive
bibliography. In addition, Serpedin et al. [8] attempted to
provide a detailed classification group which represented a
comprehensive list of references on cyclostationarity and its
applications. Mccormick and Nandi [9] compared second
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order cyclostationarity with conventional spectral analysis
and synchronous averaging in the condition monitoring
of rolling element bearing. They found that the former
can reveal significant fault features while the latter failed.
Antoni [10] presented a tutorial on cyclostationarity, which
introduced key concepts on actual mechanical signals and
proved the superiority of cyclostationarity applied inmachine
diagnostics, identification ofmechanical systems, and separa-
tion of mechanical sources.

Conditionmonitoring of journal bearing supported rotor
systemsusually relies on twoorthogonally installed proximity
sensors. The orbit signature of the center of the journal is
then qualitatively analyzed to investigate system operating
condition. Southwick [11, 12] applied the full spectrumplot, as
compared to the half-spectrum, to diagnose diverse rotating
machinery malfunctions. They found that using the full
spectrum the orbit ellipticity and vibration precession can
be determined without being affected by probe orientation.
In order to investigate the complex-valued signal of the
instantaneous lateral vibration of the mechanical structure,
Lee et al. [13] proposed the two-sided directional power
spectra complex-valued vibration signals for the diagnosis of
cylinder power faults of four-cylinder compression and spark
ignition engines. Furthermore, Lee andHan [14, 15] proposed
the directional Wigner distribution to effectively determine
the procession parameters of the planar motion both in time-
frequency domain and in order-frequency domain.

Based on the previous introduction, in this work the
concept of directional cyclostationarity of complex-valued
signal is defined and used to investigate the vibration of a
journal bearing supported rotor system which is influenced
by oil film instability. The structure of the paper is organized
as follows. In Section 2, the theory responding to the first
and the second order cyclostationarity of real-valued signal
is reviewed. Furthermore, the directionalWigner distribution
is introduced. Subsequently, the proposed directional cyclo-
stationarity is represented. In Section 3, the experiments con-
ducted on a test bench are described and the results obtained
from analysis compared and discussed using directional
cyclostationarity, directional time frequency distribution,
and conventional cyclostationarity, respectively. In Section 4,
summary discussions and the conclusions are given.

2. Directional Cyclostationarity

2.1. Cyclostationarity of Real-Valued Signals. Since cyclosta-
tionarity can indicate itself in statistics of any orders deter-
mined by the degree of nonlinear operation, there are various
statistic parameters illustrated in the time, the frequency,
and the cyclic frequency domains [10]. The first and second
order of cyclostationarity are firstly reviewed for simplicity
but without losing accuracy.

The mean value of a cyclostationary signal (cyclic mean,
CM) is defined as

CM (𝛼) = ∑

𝛼∈
̃
𝐴

𝐸 [𝑥 (𝑡) ⋅ 𝑒
−2𝜋𝛼𝑡

] , (1)

where 𝛼 is the cyclic frequency of the signal and the set 𝐴

contains all cyclic frequencies. 𝐸[⋅] = lim
𝑇→∞

∫
𝑇

(⋅) 𝑑𝑡/𝑇 is
the mean operator.

Then the cyclic autocorrelation (CR) representing the
energy of the signal can be defined in as

CR (𝛼, 𝜏) = ∑

𝛼∈
̃
𝐴

𝐸 [𝑥(𝑡 −
𝜏

2
) 𝑥 (𝑡 +

𝜏

2
) ⋅ 𝑒
−2𝜋𝛼𝑡

] . (2)

By taking the Fourier transform of CR with respect to
time lag 𝜏, the spectral correlation density (SCD) is given by

SCD (𝛼, 𝑓) = ∫
∞

−∞

CR (𝛼, 𝜏) ⋅ 𝑒
−2𝜋𝑓𝜏

𝑑𝜏. (3)

Finally by transforming the cyclic frequency 𝛼 back to
the time domain, the Wigner-Ville spectrum (WV) can be
obtained in

WV (𝑡, 𝑓) = ∑

𝛼∈
̃
𝐴

SCD (𝛼, 𝑓) ⋅ 𝑒
𝑗2𝜋𝛼𝑡

. (4)

2.2. Directional Wigner Distribution. Lee and Han [14, 15]
developed a directional Wigner distribution (DWD) by sub-
stituting complex-valued signals for the real-valued signals,
which could describe the instantaneous planar motion of
the system. In their work, the signals 𝑥(𝑡) and 𝑦(𝑡) obtained
from the horizontal and the vertical proximity probes were
combined in:

𝑝 (𝑡) = 𝑥 (𝑡) + 𝑗𝑦 (𝑡) = 𝑝
𝑓

(𝑡) + 𝑝
𝑏

(𝑡)

=
󵄨󵄨󵄨󵄨󵄨
𝑟
𝑓
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗(𝜔𝑡+𝜑

𝑓
)

+
󵄨󵄨󵄨󵄨󵄨
𝑟
𝑏
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗(𝜔𝑡+𝜑

𝑏
)

,

(5)

where 𝑝𝑓(𝑡) and 𝑝𝑏(𝑡) denote the forward and backward,
respectively, procession of the rotor centerline.

The 𝑝
𝑓

(𝑡) and 𝑝
𝑏

(𝑡) are given by

𝑝
𝑓

(𝑡) =
{𝑝 (𝑡) + 𝑗𝑝 (𝑡)}

2
,

𝑝
𝑏

(𝑡) =
{𝑝 (𝑡) − 𝑗𝑝 (𝑡)}

2
,

(6)

where 𝑝(𝑡) is the Hilbert transform of 𝑝(𝑡).
Then the auto-DWD is defined in

𝑊
𝑑

𝑝
(𝑡, 𝜔)

= {
𝑊
𝑝
𝑓 (𝑡, 𝜔)

𝑊
𝑝
𝑏 (𝑡, 𝜔)

=

{{{{

{{{{

{

∫
∞

−∞

𝑒−𝑗𝜔𝜏𝑝𝑓
∗

(𝑡 −
𝜏

2
)𝑝𝑓 (𝑡 +

𝜏

2
) 𝑑𝜏, for 𝜔 > 0

∫
∞

−∞

𝑒−𝑗𝜔𝜏𝑝𝑏
∗

(𝑡 −
𝜏

2
)𝑝𝑏 (𝑡 +

𝜏

2
) 𝑑𝜏, for 𝜔 < 0,

(7)

where 𝑊
𝑝
𝑓(𝑡, 𝜔) and 𝑊

𝑝
𝑏(𝑡, 𝜔) are, respectively, the forward

and the backward terms and 𝜔 is the circular rotating
frequency.
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The overall test apparatus
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Figure 1: Test bench and its main components.
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Figure 2: Vibration signal of journal bearing supported system during startup.
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Rotor horizontal displacement at 5500 rpm
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Figure 3: The lateral vibration of the shaft and its power spectrum at 5500 rpm.
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Figure 4: The lateral vibration of the pedestal and its power spectrum at 5500 rpm.
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Figure 5: The lateral vibration of the shaft and its power spectrum at 6200 rpm.
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Figure 6: The lateral vibration of the pedestal and its power spectrum at 6200 rpm.
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Figure 7: Directional cyclic mean of the lateral vibration of the shaft and pedestal.

DCR of rotor vibration at 5500 rpm

Cyclic frequency (Hz)

Ti
m

e l
ag

s (
s)

−600 −400 −200 0 200 400 600

20

40

60

80

100

120

5

4

3

2

1

0

×10−3

1X1− 1X1+1X1− + 0.475X1−

(a)

DCR of pedestal vibration at 5500 rpm
12

10

8

6

4

2

×10−8

Cyclic frequency (Hz)

Ti
m

e l
ag

s (
s)

−600 −400 −200 0 200 400 600

20

40

60

80

100

120

2X1+
2X1−

2X1− + 0.475X1−

2X1+ + 0.475X1+

(b)

Cyclic frequency (Hz)

Ti
m

e l
ag

s (
s)

−600 −400 −200 0 200 400 600

20

40

60

80

100

120

1X2+1X2−

DCR of rotor vibration at 6200 rpm
0.1

0.08

0.06

0.04

0.02

0

(c)

Cyclic frequency (Hz)

Ti
m

e l
ag

s (
s)

−600 −400 −200 0 200 400 600

20

40

60

80

100

120

DCR of pedestal vibration at 6200 rpm
10

8

6

4

2

×10−6

4X2− + fowp− 4X2+ + fowp+

(d)

Figure 8: Directional cyclic autocorrelation of the lateral vibration of the shaft and pedestal.
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DSCD of rotor vibration at 5500 rpm
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Figure 9: Directional spectral correlation density of the lateral vibration of the shaft and pedestal.

The cross-DWD is given by

𝑊
𝑑

𝑝
∗
,𝑝

(𝑡, 𝜔) = 𝑊
𝑝
𝑏∗
,𝑝
𝑓 (𝑡, 𝜔)

= ∫
∞

−∞

𝑒
−𝑗𝜔𝜏

𝑝
𝑏

(𝑡 −
𝜏

2
)𝑝
𝑓

(𝑡 +
𝜏

2
) 𝑑𝜏, ∀𝜔.

(8)

In addition, the full spectrum (FS), another approach for
shaft orbit signal analysis, is developed by Southwick [11, 12],
defined in

FS (𝑡, 𝜔)

= {
FS
𝑝
𝑓 (𝑡, 𝜔)

FS
𝑝
𝑏 (𝑡, 𝜔)

=

{{{{

{{{{

{

∫
∞

−∞

𝑒−𝑗𝜔𝑡𝑝𝑓 (𝑡) 𝑑𝑡, for 𝜔 > 0

∫
∞

−∞

𝑒−𝑗𝜔𝑡𝑝𝑏 (𝑡) 𝑑𝑡, for 𝜔 < 0.

(9)

2.3. Proposed Directional Cyclostationarity of Complex-Valued
Signals. Originated from the cyclostationarity for real-valued

signal, in this work the directional cyclostationarity for
complex-valued vibration signal is developed according to
the principle of the previously introduced directionalWigner
distribution. The proposed method can be applied not only
to characterize the hidden periodicities of the vibration
radiated by the journal bearing supported system but also to
determine the procession directivity of the planar motion in
time-frequency domain by analyzing the combined complex-
valued vibration signal.

The directional cyclic mean (DCM) can be defined in (10)
according to (1) and (7):

DCM (𝛼)

=
{

{

{

DCM
𝑓
(𝛼)

DCM
𝑏
(𝛼)

=

{{{{

{{{{

{

∑

𝛼∈
̃
𝐴

𝐸 [𝑝𝑓 (𝑡) ⋅ 𝑒
−2𝜋𝛼𝑡] , for 𝛼 > 0

∑

𝛼∈
̃
𝐴

𝐸 [𝑝𝑏 (𝑡) ⋅ 𝑒
−2𝜋𝛼𝑡] , for 𝛼 < 0,

(10)
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DWD of rotor vibration at 5500 rpm
0

0.5

1

1.5

2

2.5

3

3.5

15

10

5

1X1− + 0.475X1− 1X1− 1X1+

Circular frequency (Hz)

Ti
m

e l
ag

s (
s)

−600 −400 −200 0 200 400 600

(a)

DWD of rotor vibration at 6200 rpm
1200

1000

800

600

400

200

1X2− 1X2+

0

0.5

1

1.5

2

2.5

3

3.5

Ti
m

e l
ag

s (
s)

−600 −400 −200 0 200 400 600

Circular frequency (Hz)

(b)

DWD of pedestal vibration at 5500 rpm

12

10

8

6

4

2

×10−5

1X1− + 0.475X1−
1X1+ + 0.475X1+

2X1+

2X1−

0

0.5

1

1.5

2

2.5

3

3.5

Ti
m

e l
ag

s (
s)

−600 −400 −200 0 200 400 600

Circular frequency (Hz)

(c)

DWD of pedestal vibration at 6200 rpm
12

10

8

6

4

2

×10−3

2X2− + fowp
2X2+ + fowp

3X2+

3X2−

0

0.5

1

1.5

2

2.5

3

3.5
Ti

m
e l

ag
s (

s)
−600 −400 −200 0 200 400 600

Circular frequency (Hz)

(d)

Figure 10: Directional Wigner distribution of the lateral vibration of the shaft and pedestal.
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Figure 11: Full spectrum of the lateral vibration of the shaft and pedestal.
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Figure 14: The cyclic autocorrelation of the lateral vibration of the shaft and pedestal at 5500 rpm.
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Figure 15: The cyclic autocorrelation of the lateral vibration of the shaft and pedestal at 6200 rpm.
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where DCM
𝑓
(𝛼, 𝑡) and DCM

𝑏
(𝛼, 𝑡) are, respectively, the

forward and backward terms. DCM is able to identify the
periodic components induced by the mean behavior of the
signal.

The autodirectional cyclic autocorrelation (DCR) is
defined in (11) according to (2) and (7):

DCR
𝑝𝑝
∗ (𝛼, 𝜏)

= {
DCR
𝑝
𝑓
𝑝
𝑓∗ (𝛼, 𝜏)

DCR
𝑝
𝑏
𝑝
𝑏∗ (𝛼, 𝜏)

=

{{{{{

{{{{{

{

∑

𝛼∈
̃
𝐴

𝐸 [𝑝𝑓 (𝑡 −
𝜏

2
)𝑝𝑓
∗

(𝑡 +
𝜏

2
) ⋅ 𝑒−2𝜋𝛼𝑡] , for 𝛼 > 0

∑

𝛼∈
̃
𝐴

𝐸 [𝑝𝑏 (𝑡 −
𝜏

2
)𝑝𝑏
∗

(𝑡 +
𝜏

2
) ⋅ 𝑒−2𝜋𝛼𝑡] , for 𝛼 < 0,

(11)

where DCR
𝑝
𝑓
𝑝
𝑓∗(𝛼, 𝜏) and DCR

𝑝
𝑏
𝑝
𝑏∗(𝛼, 𝜏) are, respectively,

the forward and backward terms.
The cross-directional cyclic autocorrelation is given in

(12) according to (2) and (8):

DCR
𝑝
𝑏∗
𝑝
𝑓 (𝛼, 𝜏)

= ∑

𝛼∈
̃
𝐴

𝐸 [𝑝
𝑏

(𝑡 −
𝜏

2
)𝑝
𝑓

(𝑡 +
𝜏

2
) ⋅ 𝑒
−2𝜋𝛼𝑡

] , ∀𝛼.
(12)

Both the auto- and the cross-directional cyclic autocorre-
lation coefficients can indicate the energy of the signal.

Subsequently, taking the Fourier transform of the autodi-
rectional cyclic autocorrelation with respect to the lag 𝜏

produces the auto directional spectral correlation density
function (DSCD), given by (13) according to (3) and (7):

DSCD
𝑝𝑝
∗ (𝛼, 𝑓)

= {
DSCD

𝑝
𝑓
𝑝
𝑓∗ (𝛼, 𝑓)

DSCD
𝑝
𝑏
𝑝
𝑏∗ (𝛼, 𝑓)

=

{{{{{

{{{{{

{

∫
∞

−∞

DCR
𝑝
𝑓
𝑝
𝑓∗ (𝛼, 𝜏) ⋅ 𝑒

−2𝜋𝑓𝜏𝑑𝜏, for 𝛼 > 0

∫
∞

−∞

DCR
𝑝
𝑏
𝑝
𝑏∗ (𝛼, 𝜏) ⋅ 𝑒

−2𝜋𝑓𝜏𝑑𝜏, for 𝛼 < 0.

(13)

In the particular case when the cyclic frequency 𝛼 = 0, (13)
becomes the power spectrum of the signal 𝑝(𝑡).

The cross-directional spectral correlation density func-
tion is given by (14) according to (3) and (8):

DSCD
𝑝
𝑏∗
𝑝
𝑓 (𝛼, 𝑓) = ∫

∞

−∞

DCR
𝑝
𝑏∗
𝑝
𝑓 (𝛼, 𝜏) ⋅ 𝑒

−2𝜋𝑓𝜏

𝑑𝜏, ∀𝛼.

(14)

Both the auto- and the cross-directional spectral corre-
lation density functions actually describe the density of the
correlation of two spectral components spaced apart by 𝛼

around the central frequency 𝑓.

Table 1: System operating states at different rotating speeds.

Experiment Operating speed Observed state of
operation

1 5500 rpm Oil whirl
2 6200 rpm Oil whip

As the frequency 𝑓 in the conventional Wigner-Ville
spectrum does not represent the periodicity of the vibration
response as the cyclic frequency 𝛼 does, the negative compo-
nent of the frequency 𝑓 will be of no meaning. Therefore, by
transforming the cyclic frequency variable 𝛼 back to the time
domain, no variable with physical meaning can be obtained,
whichmeans that the directionalWigner-Ville spectrumdoes
not exist.

It is noted that all the significant symbols in the equations
are listed in the Nomenclature section.

3. Experiment

3.1. Experimental Setup and Data Description. In this work,
the experiment is conducted to investigate the dynamics of
the asymmetric journal bearing supported rotor system on a
test rig illustrated in Figure 1. The experiment setup consists
of a rigid cylindrical shaft supported by two cylindrical
journal bearings, with the supporting journal bearing on the
right end near the driving motor and an oil film journal
bearing at the left end for simulating oil film instability faults.
Two discs are mounted on the shaft, with one at the midplane
between the two bearings and the other near the left oil film
bearing. Two pairs of accelerometers are used for measuring
pedestal translational vibrations, with one pair mounted on
the outboard of each of the two bearing pedestals. In addition,
two proximity sensors aremounted just to the right-hand side
of the center disc, to record the lateral vibrations of the rotor
at that position.

In order to simulate the oil whirl and oil whip phe-
nomenon, the rotor rotating in fluid lubricated cylindrical
journal bearings is lightly loaded with an unbalanced mass.
When the shaft rotates with a slow rotating speed, the stable
synchronous vibration with low amplitude is observed. With
the increasing rotation speed, the system reaches the first
resonance with significant vibration amplitude at the first
natural frequency. Then the vibration returns to normal
after the resonance. At higher speed, the oil whirl appears
along with higher vibration. In addition, the characteristic
frequency of oil whirl (around half of the rotating frequency)
can be observed. When the rotating speed approaches the
double resonance speed, the oil whirl pattern becomes the
oil whip with the characteristic frequency remaining to
the first natural frequency of the system. Furthermore, the
amplitude of the rotor under oil whip becomes higher than
that of oil whirl. The vibration signals of journal bearing
supported system during startup procedure are listed in
Figure 2. Results obtained under different rotational speeds
with various artificially simulated defects are listed in Table 1.
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SCD of rotor horizontal vibration at 5500 rpm
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Figure 16: The spectral correlation density of the lateral vibration of the shaft and pedestal at 5500 rpm.

3.2. Vibration Signal Analysis. The vibration response of
the shaft and the pedestal when the system operated at
a rotational speed of 5500 rpm and 6200 rpm was inves-
tigated using directional cyclostationarity, directional time
frequency distribution, and conventional cyclostationarity,
respectively. In order to facilitate calculation, the first 8192
samples of the original signal and their power spectrum
derived with sampling frequency 𝑓

𝑠
= 2048Hz were selected

and shown in Figures 3, 4, 5, and 6.

3.2.1. Directional Cyclostationarity of the Complex-Valued
Signal. Firstly, in this work, the directional cyclostationary
parameters of the complex-valued vibration signal of the
rotor-bearing system were derived to help extract the hidden
periodicity of nonstationary signature, as well as investigating
the instantaneous planar motion.

In Figure 7, the positive (negative) horizontal axes rep-
resent the first order cyclostationarity, namely, the cyclic
mean, of the forward (backward) vectors of the rotor lateral
vibration. In Figure 7(a) derived from the rotor vibration at
5500 rpm, the oil whirl frequency 0.475𝑋

1
and the rotating

frequency 1𝑋
1
and its value modulated by the oil whirl

frequency 1𝑋
1
−0.475𝑋

1
can be clearly identified. Figure 7(b)

characterizing the rotor vibration at 6200 rpm only displays
the oil whip frequency 𝑓owp = 49.34Hz but misses the
rotating frequency. However, Figures 7(c) and 7(d) derived
from pedestal vibration provide more abundant frequency
information. The harmonics ±2𝑋

2
of rotating frequency

dominates the horizontal axes in Figure 7(d) of pedestal
vibration at 6200 rpm. Furthermore, the harmonics of rotat-
ing frequency𝑋

2
modulated by the oil whip frequency is also

clear. In addition, the developed directional cyclic mean can
help determine the instantaneous procession orientation of
the rotor centerline. With 𝑅

1𝑋1−
> 𝑅
1𝑋1+

or 𝑅
1𝑋2−

> 𝑅
1𝑋2+

,
the direction will be backward or opposite to the direction of
rotor rotation.

In Figure 8, the positive (negative) horizontal axes give
the second order cyclostationarity, namely, the cyclic auto-
correlation, of the forward (backward) vectors of the shaft
and pedestal lateral vibration. It can be seen that the rotat-
ing frequency modulated by oil whirl frequency (oil whip
frequency) appears periodically in the DCR plot derived
from rotor or pedestal vibration when system operates at
5500 rpm (6200 rpm), while the harmonics of the single
rotating frequency keeps all the same. In addition, the
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Figure 17: The spectral correlation density of the lateral vibration of the shaft and pedestal at 6200 rpm.

instantaneous procession orientation of the rotor centerline
can be determined by comparing the color of the positive and
negative value which represents the radii of the orbit.

As defined in [10], the SCD plots comprised of countable
nonzero points show the first order cyclostationarity, while
the SCD plots comprised of parallel lines exhibit the second
order cyclostationarity. In Figure 9, the SCD plots of the
pedestal vibration signal clearly represent that the density of
the correlation continuously changes along several straight
lines in the frequency cyclic frequency plane.Therefore, it can
be inferred that the case of vibrations induced by oil whirl or
oil whip is more suitable to be interpreted as the second order
cyclostationarity. In addition, the DSCD plots of the pedestal
vibration aremore suitable to interpret the case induced by oil
whirl or oil whip than that of the rotor vibration. Besides, the
DSCD plots also can help determine the procession direction
by comparing the amplitudes of the density of the correlation
at positive and negative cyclic rotating frequency.

3.2.2. Directional Wigner Distribution. Subsequently, direc-
tional time-frequency distributions of the complex-valued
signal derived from the lateral vibration of the journal bearing
supported rotor system are given in Figure 10 for comparison.

As seen in Figure 10(a) derived from rotor displacement
when system operates at 5500 rpm, the orbit radius when 𝜔 =

1𝑋
1
is much larger than that when 𝜔 = −1𝑋

1
. With 𝑅

1𝑋1−
>

𝑅
1𝑋1+

, the instantaneous precession orientation of the rotor
centerline will be backward. As the oil whip frequency com-
ponent dominates the whole frequency band in Figure 10(b)
of the rotor vibration, the rotating frequency component
cannot be clearly seen. However, in Figures 10(c) and 10(d)
derived from pedestal vibration, the rotating frequency ±𝑋

2
,

the oil whip frequency ±𝑓owp, and the modulating frequency
harmonics comprised of 𝑋

2
and 𝑓owp can be clearly seen.

In addition, it also can be seen that the rotating frequency
modulated by oil whirl or oil whip appears periodically versus
time while the harmonics of single rotating frequency exists
all the time as the time changes.

By further comparing the directionalWigner distribution
defined by (7) to (8) with the directional cyclic autocorrela-
tion defined by (11) to (12), it is interesting to find that actually
the directional Wigner distribution can be interpreted as the
second order directional cyclostationarity (directional cyclic
autocorrelation) characterizing the random behavior of the
system. Furthermore, it is found that the full spectrum can
be interpreted as the first order directional cyclostationarity
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Figure 18: TheWigner-Ville spectrum of the lateral vibration of the shaft and pedestal at 5500 rpm.
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Figure 19: TheWigner-Ville spectrum of the lateral vibration of the shaft and pedestal at 6200 rpm.
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(directional cyclicmean) by comparing (9) and (10), as shown
in Figures 11 and 7.

3.2.3. Cyclostationarity of the Real-Valued Signal. For com-
pleteness, the statistical parameters characterizing cyclosta-
tionarity of real-valued signal of the journal bearing sup-
ported system are also illustrated from Figures 12, 13, 14,
15, 16, 17, 18, and 19. Similar conclusions to the directional
cyclostationarity plots can be found except for information
on the procession directivity of the planar motion.

Compared with conventional Wigner-Ville distribution,
the Wigner-Ville spectrum reduces the influence of the
interference terms on exhibiting how the signal energy flows
in the time and frequency domain [10]. In Figure 18, only
the WV Figures 18(a) and 18(b) derived from the rotor
vibration are able to clearly describe the periodicity induced
by oil whirl fault. In Figure 19, both the WV plots of the
rotor vibration and the pedestal vibration obviously show the
periodic phenomenon responding to oil whip fault.

4. Discussions and Conclusions

In thework presented here, the characteristics of the vibration
signals obtained both from the rotor and the pedestal of a
rotor system supported by journal bearing were investigated.
The experiments were conducted on a test bench to simulate
the operation status of the rotor system suffering from oil
whirl and oil whip.

The directional cyclostationary parameters, such as direc-
tional cyclic mean, directional cyclic autocorrelation, and
directional spectral correlation density, were defined and
utilized to analyze the complex-valued lateral vibration signal
of the rotor system. The proposed method is able to identify
the oil whirl or oil whip fault. In addition, the information
on the procession directivity of the planar motion can also
be obtained. Furthermore, it is found that actually the full
spectrum can be interpreted as the first order directional
cyclostationarity and the directional Wigner distribution
as the second order directional cyclostationarity. Therefore
the developed directional cyclostationarity integrates both
the advantages of conventional cyclostationarity and the
directional Wigner distribution.

Nomenclature

CM(𝛼): Cyclic mean at 𝛼
CR(𝛼, 𝜏): Cyclic autocorrelation at (𝛼, 𝜏)
SCD(𝛼, 𝑓): The spectral correlation density at (𝛼, 𝑓)

WV(𝑡, 𝑓): The Wigner-Ville spectrum at (𝑡, 𝑓)

𝛼: Cyclic frequency
𝜏: Time lag
𝑝(𝑡): Complex-valued vibration signal
𝑥(𝑡): Real-valued vibration signal in 𝑥

direction
𝑦(𝑡): Real-valued vibration signal in 𝑦

direction
𝑝
𝑓(𝑡): Forward complex-valued vibration

signal

𝑝
𝑏(𝑡): Backward complex-valued vibration sig-

nal
𝑊𝑑
𝑝
(𝑡, 𝜔): Autodirectional Wigner distribution at

(𝑡, 𝜔)

𝑊𝑑
𝑝
∗
,𝑝
(𝑡, 𝜔): Cross-directionalWigner distribution at

(𝑡, 𝜔)

FS(𝑡, 𝜔): Full spectrum at (𝑡, 𝜔)

DCM(𝛼): Directional cyclic mean at 𝛼
DCR
𝑝𝑝
∗(𝛼, 𝜏): Autodirectional cyclic autocorrelation at

(𝛼, 𝜏)

DCR
𝑝
𝑏∗
𝑝
𝑓(𝛼, 𝜏): Cross-directional cyclic autocorrelation

at (𝛼, 𝜏)
DSCD

𝑝𝑝
∗(𝛼, 𝑓): Autodirectional spectral correlation

density function at (𝛼, 𝑓)

DSCD
𝑝
𝑏∗
𝑝
𝑓(𝛼, 𝑓): Cross-directional spectral correlation

density function at (𝛼, 𝑓).
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