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The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is
to use artificial neural network (ANN) computational modelling to correlate spur gear data from acoustic emissions, lubricant
temperature, and specific film thickness (𝜆). The approach is using an algorithm to monitor the oil film thickness and to detect
which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can
aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN
models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm
was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes.
The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to
the Elman neural network.

1. Introduction

Predicting the performance of a gear system is a serious
function, as it is a crucial component inmachinery. Danger to
human life and potentially large-scale economic consequ-
ences can result from failures that cannot be predicted. Peri-
odic inspection is essential in gear teeth or bearings, so that
crack propagation or the other damage can be identified
beforehand. Typical failures in gears are generally associated
to bending, fatigue, contact fatigue, wear, and scuffing, all of
which can bemonitored by testing vibration and acoustic sig-
nals, temperature, torque, and lubrication film thickness.This
can be carried out through continuous or online monitoring.
Damage to gear teeth alters the parameters originating in the
gear shaft. Damage also affects the oil film thickness and the
type of wear that occurs [1].

The consequences of lost production and decreased relia-
bility due to unplanned shutdown have a serious impact; thus
machine performance monitoring is increasingly important
in industry. The first step to monitor any deterioration is

to establish a monitoring programme which can guide main-
tenance decisions. A number of monitoring methods for
machinery with rotating components are available, including
monitoring the lubrication, vibration, and acoustic emissions
[2, 3].

Emerging technologies, such as artificial intelligence (AI)
techniques and complex computational analysis, have led to
the advancement inmachine conditionmonitoring. Artificial
intelligence has several advantages as compared to the tradi-
tional mathematical modelling and statistical analysis. This
includes dispensing of the necessity for detailed system
behavior knowledge which can be replaced by relatively
simple computational methods [4].

The prediction for the condition of moving components
in machines can be assessed by measuring the lubricating oil
film thickness. This has been a typical approach applied by
numerous researchers in the past. An adequate lubrication
regime is essential to prevent or reduce surface wear on gear
teeth. The ability to predict and rectify wear-related damage
will improve the performance of gear transmission systems.
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The established methods have to include monitoring the per-
formance that can detect changes in vibration, sound, wear,
and lubricant behavior [5, 6].

In the past, research has been carried out to correlate
acoustic emission with specific lubricant film thickness in
spur gears. The method used to establish the relationship
involved spraying liquid nitrogen onto a rotating gear wheel.
This lowered its operating temperature and changed the
response of the lubricant under a range of load and speed con-
ditions [7]. Höhn and Michaelis have discussed the effect on
gear failure due to rise in temperature [8]. Nondestructive
acoustic emission (AE) testing showed a direct correlation
between the root mean square (RMS) value of the signals and
the specific film thickness (𝜆). The AE RMS measures were
particularly sensitive to detect specific film thickness changes
[9–11].

The decision to apply ANN modelling in this research
was based on its suitability and potential existence in wide
range of applications to recognize specific patterns that can
lead to the detection, classification, and diagnosis of changes
in performance [12–19]. The particular application used is
to identify and characterize the gear failure [1, 3]. In order
to identify the regime and estimate the performance of the
oil film thickness, feed-forward and Elman neural networks
are suitable to monitor gear operations and potentially can
accurately diagnose faults. These methods analyze the RMS
and temperature as an input and the oil film thickness as the
predicted output. By adopting an ANN-based system, the
analysis is efficient and the incidence of error is low. Figure 1
shows the flowchart indicating the process of applying ANN
tomonitor the condition of gear.Thiswork represents the first
attempt to applyANN inmonitoring oil film thickness in spur
gear depending on the temperature and acoustic emission
signal only to assess the oil film thickness condition of the
gear. The designed ANN shall facilitate the identification of
oil film regime and the gear tooth wear and surface failure
can be controlled before fault development. It is anticipated
that this area of research can potentially result in a wide range
of applications in preventing fatal breakdown in the rotating
machinery.

2. Methodology

2.1. Acoustic Emission Signals. Acoustic emission signals are
outside human hearing and occur on the surface or from
within materials when elastic waves at 20 kHz–1MHz are
released [20].Thewaves are sent from an emission source and
transferred to the surface by the transmission medium. The
low displacement or high frequency mechanical waves can
be picked up as electronic signals. The signal strength can be
increased by using a preamplifier before the data are inter-
preted by the AE equipment [21, 22]. The data used in this
research were taken from earlier research [7, 9, 10]. The three
main factors affecting the AE signal in these experiments are
speed of rotation, applied torque (load), and the oil tem-
perature. The most significant factor is the changes in the
temperature of the lubricant.The data arising from the torque
(applied load) and speed are of lesser importance [23].
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Figure 1: ANN training and testing of conditionmonitoring system.
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Figure 2: Back-to-back test gearbox arrangement [9].

2.2. Experimental Setup and Data Acquisition System. The
test rig used in these experiments was a standard back-
to-back gearbox with oil bath lubrication as illustrated in
Figure 2. A summary of the test gear specifications is listed in
Table 1. The tests were carried out under extreme pressure
usingMobil MOBILGEAR 636 as the lubricant.The selection
of the lubricant was made to reduce the incidence of natural
pitting andwear, and the lubricant properties are summarized
in Table 2.

The setup includes a model WD wideband AE sensor
capable of picking up relatively flat responses in the range
100 kHz–1MHz with the operating temperature range of −65
to 177∘C (Physical Acoustic Corp.). The AE signals from the
rotating test pinion were transmitted to a commercial data
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Table 1: Test gears specifications.

Number of teeth, pinion : gear 49 : 65
Base diameter, pinion : gear (mm) 138.13 : 183.24
Pitch diameter, pinion : gear (mm) 147.00 : 195.00
Tip diameter, pinion : gear (mm) 153.00 : 201.00
Contact ratio 1.33
Module (mm) 3.00
Addendum modification coefficient 0
Surface roughness, Ra (mm) 2.00
Face width (mm) 30.00
Pressure angle (∘) 2.00
Modulus of elasticity (GPa) 228.00

Table 2: Lubricant properties.

Viscosity
40∘C (cSt) 680.0
100∘C (cSt) 39.2

Density at 15.6∘C (kg/L) 0.91
Viscosity index 90.0
Pour point (∘C) −9.0
Flash point (∘C) 285.0
Pressure viscosity coefficient, 𝛼 (mm2/N) 2.2 × 10−8

acquisition system by silver contact slip rings (Figure 2). Dur-
ing testing, the signals from the sensor were preamplified at
20 and 40 dB. Figure 3 shows the fixing of a sensor to the
gear pinion with strong adhesive. Two iron-constantan ther-
mocouples (type J) capable of measuring gear metal temper-
atures in the range 0–200∘C were mounted on the test pinion
and third one was located inside the oil bath to measure
the lubricant temperature. Mass of the thermocouple and the
AE sensor are considered to be small; therefore unbalance is
considered to be negligible.

The gearbox test rig was set to continuously record AE
RMS signals which were captured by software interfaced with
an analogue-to-digital converter (ADC). The torque loading
parameters were 60, 120, and 250Nm and the gearbox was
run at 700 and 1450 rpm. The selected speed represented
approximately one complete revolution of the pinion at
700 rpm. Using the accumulated squared ADC values, the
RMS could then be calculated. An antialiasing filter was used
before signal sampling at the ADC. The AE waveform sam-
pling rate was 10MHz and the digital filtering range was 100–
1200 kHz. The temperature sampling rate was set at 1 Hz and
the accuracy was 70.1% on a 1∘C resolution [7, 9].

The selection of lubrication system for the test rig was
based on gear tangential speed. Methods of lubrication that
are generally used in gears are three primary methods.

They are grease lubrication (0 to 6m/s tangential gear
speed), splash lubrication (4 to 15m/s tangential gear speed),
and forced oil circulation lubrication (above 12m/s tangential
gear speed). The splash or oil bath lubrication system was
selected for the purpose of this research programmer since

AE sensor

Thermocouple

Figure 3: AE sensor and thermocouple location on test pinion gear
[9].

the tangential speed during the test mostly ranges from
5.39m/s to 12.20m/s.

2.3. Mathematical Principles. Oil lubrication prevents the
gear teeth from coming into direct contact and reduces
friction, vibration, heat buildup, and corrosion.Thepredicted
fatigue life of the gears can be understood by the lambda (𝜆)
ratio. The operating determinants affecting the 𝜆 ratio cal-
culations are temperature, load, surface roughness, and gear
speed [11]. The 𝜆 ratio is defined as the oil film thickness (ℎ)
divided by the composite surface roughness (𝜎rms) as derived
in

𝜆 =
ℎ

𝜎rms
, (1)

where

ℎ =
𝑘 (𝜂
𝑜
𝑢)
0.7

𝑅
0.43

𝑤0.13
𝜇m. (2)

And 𝑘 = 1.6𝛼0.6𝐸0.03, 𝜂
𝑜
is dynamic viscosity in Pa⋅s, 𝜇 is

entraining velocity in m/s, 𝑅 is equivalent radius in m, 𝑤 is
load applied along the line of contact in N/m, 𝛼 is pressure
viscosity coefficient in mm2/N, and 𝐸 is modulus of elasticity
of the gear in Pa.

The film thickness is indicative of the lubrication regime
between two rough surfaces. The film is affected by high
pressure contact and sliding, which causes heat generation
and changes in physical properties. Typical operating condi-
tions cause the lubricant to become thin, reducing protection
against rubbing at the surfaces and resulting in lubricant
failure. The characteristics of the lubricant are therefore cru-
cial to maintain the minimum film thickness under specific
operating conditions and this would require a sufficiently
large 𝜆 ratio [1].

Three different lubrication regimes can be distinguished
depending on the lubricant film thickness which are hydro-
dynamic lubrication (HL), elastohydrodynamic lubrication
(EHL), and boundary lubrication (BL). Mixed lubrication
is an intermediate regime between elastohydrodynamic and
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boundary lubrication. Full hydrodynamic lubrication would
normally occur at 𝜆 > 10. This condition would produce
minimal friction and wear with no direct surface interaction.
Pressure transmitted through the lubricant would represent
the only likely fatigue mechanism. Gears generally operate
in the elastohydrodynamic regime (2 < 𝜆 < 10) and at a
lower film thickness ratio there is likely to be contact on the
moving surfaces from asperities in the lubricant producing
wear. The effect of thermal and pressure conditions at the
surfaces can result in larger asperities in the lubricant and lead
to film breakdownwhich causes severe wear, such as scuffing.
Boundary and dry lubrication would typically occur at 𝜆 < 2.
Figure 4 shows the “Stribeck curve” illustrating the 𝜆 values
in the various lubrication regimes [20].

2.4. Artificial Neural Networks. Modelled on thinking mech-
anisms that have been mapped in the human brain, an ANN
architecture consists of input and output layers, several neu-
ron layers, and one or more hidden layers. Information flows
through different layers from the input to the output and each
layer is connected by neurons to adjacent layers. The layered
network matrix connections will assign numerical values
based on the connective arcs and the weight they are given,
which can be adjusted during the training phase.

In this study, oil temperature and acoustic emission
signals are the inputs and the specific film thickness (𝜆) is the
output used to build the exploratory artificial neural network.
The function of an ANN is to describe a systemwhich cannot
be readily interpreted by other analytical methods. It is a
particularly efficient way to classify large amounts of input
and output data which do not have an obvious linear relation-
ship. Nonlinear relationships can be developed in an ANN
where system information is absent, which is the advantage
of neural networks.

When designing a neural network there are a number
of different parameters that must be decided. Some of these
parameters are the number of training iterations, the number
of layers, the learning rate, the number of neurons per layer,
and the transfer functions, and so forth.

The ANN parameter is generally performed by a devel-
oper through a trial-and-error procedure [24]. Number of
training iterations used her is 1000 epochs; the goal of training
is zero error. The used parameter in building ANN and why
this parameter is selected in this work are explained below.

2.4.1. Feed-Forward Back-Propagation Neural Networks
(FFBP). Multilayer FFNN modelling can be used in fault
detection and diagnosis in rotating machinery. The neural
networks are trained using a back-propagation algorithm to
estimate lubrication film thickness [1, 25]. The term feed-
forward relates to theway inwhich patterns are processed and
recalled where the neurons are only connected forward. Each
network layer is linked to the next, for example, from the
input to the hidden layer. Back-propagation is a form of
supervised training in which the network receives input
samples which are associated to the predicted output. A
comparison is made between predicted and actual outputs
associated with a given input. Using the predicted outputs,
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Figure 4: The Stribeck curve and specific film thickness (𝜆).

the back-propagation training algorithm calculates an error
related to the actual output. This adjusts the weighting of the
layers backwards from the output layer to the input layer.The
feed-forward back-propagation neural networkmodelled the
film thickness. The computational modelling software func-
tions were supported by the MATLAB ANN toolbox. The
toolbox functions include identifying the training algorithm,
training and transfer functions, the types of input and hidden
layers, the initial weights and bias values, and the other
mathematical analysis that results in accurate prediction by
an ANN structure.

Tan-sigmoid (nonlinear outputs between−1 and +1), Log-
sigmoid (nonlinear outputs between 0 and +1), and transfer
function linear outputs (between −1 and +1) can be used in
hidden and output layers. Different transfer functions are
explained in Figure 5, together with the structure of feed-
forward back-propagation.Thequality of results is dependent
on the selection of a suitable transfer function in the hidden
and output layers. In this study the Log-sigmoid transfer
function was used by the network in the hidden layer and the
Purelin linear transfer function was used in the output layer.

One of the earliest training algorithms was developed
by Levenberg and Marquardt (LM). It is commonly used
in conjunction with feed-forward neural networks. It can
resolve a number of problems in nonlinear multilayered
networks [26].

2.4.2. Elman Network (EN). This is a semirecursive neural
network which identifies patterns from a sequence of values
by the back-propagation through time learning algorithm.
First proposed by Jeffrey Elman in 1990, it is a recurrent neu-
ral network that enables sequential learning and recognition
of patterns in series of values or events which unfolded over
time and can be predicted. In Figure 6, an Elman network is
shown in which there is a recurrent first layer, as opposed to
a conventional, two-layer network. Values from a previous
time step can be stored and used in the current time step.The
stored information can be used in the future and this enables
temporal and spatial pattern learning. Recognition and gen-
eration of both types of patterns are possible in Elman
networks.

The Elman ANN uses the Log-sigmoid and Purelin
transfer functions in its hidden layer and output layers,
respectively, providing approximation to any function. The
Levenberg-Marquardt (LM) training algorithm also
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Figure 6: ANN structure and transfer function types of Elman network.

improves performance compared to other network training
methods.

2.4.3. Training and Testing Strategies. Training (Tr) in a
neural network is the most intense and important com-
putation that takes place. When the training is complete,
rapid identification of any unknown input samples in the
network is possible. A relationship between input data can be
established, even if arising from spurious signals.

During training, the node weighting is continually
adjusted to get as close to the real value associated with all
available inputs.This involves extensive amounts of informa-
tion and is a very important process to improve the func-
tionality of the network. However, once an overfitting is
identified the analytical processing is halted.

Overfitting takes placewhen themodel is performingwell
during training; then it starts to decline when tested with
unseen data. Cross-validation which estimates the perfor-
mance of a predictive model can overcome overfitting. Train-
ing and validation require two distinct data sets. The mean
squared error (MSE) of the validation data first decreases
when overfitting takes place, reaches a minimum, and then
increases. However, the training data MSE continues to
decrease. It is assumed that when the validation data set MSE
increases, the regression algorithm is overfitting the training
data and training is stopped [26].

The supervised training method was used in this study.
The network has an input layer (2 neurons), a hidden layer
(5 neurons), and an output layer (1 neuron). The number of

neurons in the hidden layer is assumed to be the number of
inputs multiplied by two, plus one (number of inputs × 2 + 1)
[27]. During testing (Ts), the real output is compared to the
network output. At this stage the weightings are not adjusted
and the data are collected, converted, and a comparison is
made. Each category of data displayed on a network consists
of a set of inputs and outputs. Two different sets of data are
also used for training and testing. The network is suitable for
use when testing shows it is able to process correct answers.

2.5. Statistical Error Analysis. In this research, performance
of a network is evaluated by statistical error analyses which
identify themost suitablemodel.Three types of error analysis
were used to evaluate and compare the models.

2.5.1. Mean Squared Error (MSE). An error is the difference
between the predicted and actual value. The MSE finds the
average of the squares of the predicted errors, which corre-
sponds to the risk factor the network represented, because of
quadratic or square error loss. The cause of the difference is
due to either the random approach or the fact that certain
information has not been processed during the prediction,
which would have produced a more accurate estimate. If 𝑌́

𝑖

is a vector of n predictions and 𝑌
𝑖
is the vector of the actual

values, then the (estimated) MSE of the predictor is

MSE = 1
𝑛

𝑛

∑

𝑖=1

(𝑌́
𝑖
− 𝑌
𝑖
)
2

. (3)
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Table 3: Statistical error value in training and testing.

Network MSE MAE MAPE
Training Testing Training Testing Training Testing

Elman 3.4684 × 10−4 6.5959 × 10−4 7.2 × 10−3 2.31 × 10−2 2.388 × 10−1 4.58 × 10−1

FFBP 1.3524 × 10−5 5.848 × 10−4 2.6 × 10−3 2.18 × 10−2 1.617 × 10−1 4.548 × 10−1

2.5.2. Mean Absolute Percentage Error (MAPE). The MAPE
is a method which can measure the accuracy of constructing
fitted time series values and estimating the trend. Accuracy is
measured in percentage error using the following equation:

MAPE = 1
𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑌
𝑖
− 𝑌́
𝑖

𝑌
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (4)

where 𝑌
𝑖
is the actual value and 𝑌́

𝑖
is the predicted value.

The absolute value is summed for each fitted or predicted
point in time, divided by the number of fitted points (𝑛) and
multiplied by 100.

2.5.3. Mean Absolute Error (MAE). The MAE is a quantity
comparing the closeness of predicted and actual values given
by the following equation:

MAE = 1
𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑌́
𝑖
− 𝑌
𝑖

󵄨󵄨󵄨󵄨󵄨
. (5)

It is commonly used to predict error when analyzing time
series.

2.6. Data Preparation and Simulation. In this study, the data
was taken from previous research to investigate and under-
stand the influence of specific film thickness (𝜆) on the gen-
eration of AE activity during spur gear mesh under various
operating conditions [7, 9, 10]. The gearbox was run at three
different torque loading conditions which are 60Nm (L1),
120Nm (L2), and 250Nm (L3). The two speeds used were
700 rpm (S1) and 1450 rpm (S2).

In this study of the lubrication regimes, the data was
divided into 6 categories; each category represents one load
and speed condition. The first load and speed condition is
(S1L1), with the speed at 700 rpm (S1) and torque loading
conditions 60Nm (L1). The data for temperature, acoustic
emission, and specific film thickness comprise 1000 sets each
and the same for (S1L2), (S1L3), (S2L1), 18 (S2L2), and (S2L3).
This study has a total of 6 load and speed conditions for 2
speed and 3 torque loading conditions.

The simulation of the network was done using
SIMULINK of MATLAB and then tested by the test
data set. The data set is comprised of 20% for each input and
output, variables for tow speed and three load conditions (2 ×
3). Classification program was designed and used to classify
the prediction output to hydrodynamic lubrication (HL), elas-
tohydrodynamic lubrication (EHL), and boundary lubri-
cation (BL) based on the specific film thickness magnitude.

The input data for ANN are temperature and RMS of
the acoustic emission signal. The output data is the specific

Table 4: FFBP performance.

FFBP network MSE MAE MAPE
S1L1 2.6965 × 10−4 1.3 × 10−3 3.127 × 10−2

S1L2 1.0253 × 10−4 7.05 × 10−3 1.784 × 10−1

S1L3 1.3524 × 10−5 2.6 × 10−3 1.617 × 10−1

S2L1 9.4002 × 10−5 6.6 × 10−3 2.359 × 10−1

S2L2 7.1003 × 10−4 1.01 × 10−2 8.836 × 10−1

S2L3 1.1 × 10−3 1.5 × 10−2 9.447 × 10−1

film thickness. This data was divided into two sets which
are training and testing. From all the data 80% was used for
training and 20% for testing.

3. Results and Discussion

Neural network toolboxes in MATLAB use many types of
training algorithms and training functions. Feed-forward
back-propagation networks with the Levenberg-Marquardt
training algorithm and Elman back-propagation with the
Levenberg-Marquardt training algorithm were used in this
study to improve oil film regime predicting accuracy. The
number of neuronswas determined to be (number of inputs×
2 + 1) neurons [27].

Since the study included two speeds and three load condi-
tions, by using two networks (12 load and speed conditions),
a lot of information from each condition was obtained. For
that reason, only the best and the poorest performances from
the six conditions in each network are discussed.

Table 3 shows the value of the three statistical errors
which have been done in training and testing performance for
both networks.These three statistical errors have been used to
assess the performance of the networks. The result indicates
that the performance of networks in training is better than
in testing for both Elman and FFBP, whereas the value of the
errors measurement in training is less than in testing. (Note
that the difference in error between the networks is much
larger during training as compared to testing.)

3.1. FFBP Result. The advantage of FFNN is that it is easy
to construct. During the development of FFNN, after all the
parameters (such as input layer, hidden layer, and output
layer) are confirmed, the weights and biases of the network
are saved as one model.

Table 4 shows the performance of the FFBP network
for the six load and speed conditions. The FFBP network
represents very good results for the third load and speed con-
ditions (S1L3) where the MSE, MAE, and MAPE values are
very small compared to the other conditions. At the same
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Figure 7: FFBP network training output and the target.
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time, the value of the statistical errors measurement for
load and speed conditions (S2L3) is higher than the other
conditions because the performance of the network for
(S2L3) is less than the others.

Figure 7 illustrates the target for (S1L3) and the FFBP net-
work training output for this condition. The FFBP provided
an excellent prediction, where the prediction and the target
were almost the same as MSE equal to 1.3524 × 10−5.

On the other hand, the network delivered for (S2L3) was
not fully satisfactory with the MSE equal to 6.1 × 10−3, which
was made clear when testing this network with unseen data.
As shown in Figure 8, there are some differences between the
predicted and the actual outputs.

The MSE error is plotted against a number of epochs of
training for S1L3 and S2L3. Figure 9 shows that the best vali-
dation performance is 1.5007× 10−5 for S1L3 and 4.5334× 10−3
for S2L3. As seen in the two figures, after 1,000 iterations for
S1L3 and 369 iterations for S2L3, the error comes down and
flattens out revealing nomore significant change in error with
a further increase in the number of epochs. There are also
less testing and validation errors, as seen fromclose proximity
of the curves.

The FFBPP network is trained and regression performed
on its targets and outputs. Regression testing can be used
for testing the correctness of a module and for tracking the
quality of its output. Figure 10 displays the regression test
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Figure 9: Validation performance for FFBP network: (a) S1L3 and
(b) S2L3.

between the network output and the target for training,
validation, and testing for (S1L3) for this load and speed
conditions. The training, validation, and testing indicate a
very good fit where the simple liner correlation 𝑅 = 0.99999.
This value indicates that the network output is consistent with
the target.

3.2. Elman Result. The EN was selected in this paper for a
modelling process because of its ability to learn temporal
patterns and store information for future reference.

The Elman network for load and speed conditions (S1L1)
gave a great performance, as can be seen from Table 5
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Figure 10: Feed-forward network regression performed on its targets and outputs.
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Table 5: Elman network performance.

Elman network MSE MAE MAPE
S1L1 9.7594 × 10−4 1.5 × 10−3 3.47 × 10−2

S1L2 3.4684 × 10−4 7.2 × 10−3 2.388 × 10−1

S1L3 2.1 × 10−3 2.73 × 10−2 1.0187
S2L1 1.16 × 10−2 6.78 × 10−2 2.012
S2L2 3.5 × 10−3 1.08 × 10−2 4.599 × 10−1

S2L3 2.1 × 10−3 1.91 × 10−2 3.5312

0
2
4
6
8

10
12
14
16

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

67
6

70
3

73
0

75
7

78
4

81
1

83
8

86
5

89
2

91
9

Sp
ec

ifi
c fi

lm
 th

ic
kn

es
s

Time (s)
TargetS1L1Tr
S1L1_LM_loglin_output Tr Elman

Figure 11: Elman network training output and the target.

where it gave the smallest value for the three-statistical
errors measurement compared to the other 5 load and speed
conditions. Also, the network provided the exact prediction
for (S1L1). This is obvious from Figure 11, where the network
output matches the target and there is no difference between
them.

Meanwhile, the network performance provided a less
accurate prediction for S2L1, since the value of the error
measurement is higher than the other load and speed con-
ditions (as shown in Table 5). Also, when testing the network
there were some differences between the network output and
the target. This is clear from the comparison between actual
output and the prediction as displayed in Figure 12.

Figure 13 displays the validation performance for EN,
where the error comes down and the best validation perfor-
mance is 6.413 × 10−5 for S1L1 after 459 iterations and 8.9168 ×
10−3 for S2L1 after 208 iterations.

The result above indicates that the networks performed
very well during training and validation processes for load
and speed conditions (S1L1) and less for the other load and
speed conditions, especially for (S2L1).

3.3. Comparison between FFBP and Elman Networks. This
work is important in confirming the optimal network that can
be used for predicting the oil film thickness. For that purpose,
a comparison between FFBP and Elman networks is done in
order to select the most suitable network for the modelling
process. The network which produces the lowest validation
error during training is selected as the optimum network.

Table 6 shows the best validation performance for FFBP
and Elman networks during training. The observation from
this table is that FFBP gave a lower validation error for all load
and speed conditions.
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Table 6: Best validation performance for FFBP and Elman networks during training.

Load and speed condition FFBP network Elman network
Best validation Iteration number Best validation Iteration number

S1L1 6.2725 × 10−5 247 6.4130 × 10−5 459
S1L2 1.9810 × 10−5 993 6.9132 × 10−5 351
S1L3 1.5007 × 10−5 1000 2.5177 × 10−3 420
S2L1 8.6352 × 10−5 1000 8.9168 × 10−3 208
S2L2 4.6211 × 10−4 131 2.6495 × 10−3 883
S2L3 4.5334 × 10−3 369 5.1342 × 10−3 438
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Figure 14: Compression between Elman and FFBP network testing error. (a) S1L1, (b) S1L2, (c) S1L3, (d) S2L1, (e) S2L2, and (f) S2L3.
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Table 7: Networks classification success results.

Load and speed condition FFBP network Elman network
Training classification Testing classification Training classification Testing classification

S1L1 100% 100% 100% 100%
S1L2 100% 100% 100% 100%
S1L3 100% 100% 100% 99.5%
S2L1 100% 100% 100% 99.2%
S2L2 100% 99.7% 100% 99.5%
S2L3 100% 99.7% 100% 99.6%

Figure 14 represents the output error for the Elman
and FFBP network during testing. The testing output error
represents the differences between the testing target and the
testing prediction output

Testing output error (Tse)

= testing target − testing prediction output Ts.
(6)

From this figure it can be seen that the FFBP network test-
ing errorwas smaller than theElman testing error.Thismeans
that the predicted output from the FFBP network is more
accurate than Elman and is almost the same as the target.

Classification program is designed and used to classify
the oil film regime in gear, the program used with estimated
data. When the two networks were tested with input data
sets and targeted outputs, the networks yielded a predicted
output. This output was used in the program. In this way, the
result, as shown in Table 7, was obtained. The result of this
comparison demonstrates that EN and FFBP have the ability
to give superior performances of classification accuracy.

At the end, the two networks can be utilized in industry
fields for condition monitoring of oil regime in gear, since
the oil film thickness problems could be identified and
alarmed through a comparison between actual and estimated
thickness. The appropriate messages are generated if the
estimated levels of any input variables differ significantly from
the nominal level over a period of time.

The use of ANN in rotating machine condition moni-
toring based on acoustic emission signal is very rare. There-
fore we cannot do any comparison between this work and
other researchers’ works, because most of researchers used
vibration data as input and output of ANN. Sreepradha et al.
[1] only used vibration data from two sensors, torque of the
motor, and the temperature as inputs of ANN, while the
output was oil film thickness.The approach of this work is by
using FFBB and Elman networks for condition monitoring
of lubricating oil in spur gears. Based on acoustic emission
signal and oil temperature, ANN algorithm predicts film
thickness in order to classify oil conditions as hydrodynamic
lubrication, elastohydrodynamic lubrication, and boundary
lubrication that help in finding faults during operation of
gears.

4. Conclusion

An ANN techniques approach was proposed to improve
the accuracy of oil film thickness prediction for spur gear.

The results showed that FFBP and Elman models were
effective and this suggested technique attained 100% success
in prediction and classification at high speed during training.
The FFBP is better than Elman during testing and gives very
good result in prediction and classification.The present study
concludes that FFBP is better than EN, with better perfor-
mance, prediction, classification, and less error.The architec-
ture and topology of the network through specific systems
can be used for online monitoring of oil film thickness and
to predict any causes of failure of spur gear operation.
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