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The energy density governing equation to analyze the high-frequency dynamic behavior of plates in thermal environments is
derived in this paper, in which the thermal effects are considered to change the membrane stress state and temperature dependent
material properties of plates. Then the thermal effects on the energy reflection and transmission coefficients are dealt with hereof.
Based on the above, an EFEM (energy finite element method) based approximate approach for the energy analysis of coupled plates
under nonuniform thermal environments is proposed. The approach could be conducted by three steps: (1) thermal analysis, (2)
thermal stress analysis, and (3) forming element matrixes, joint matrixes, and the whole EFEM formulation for the energy analysis.
The same mesh model is used for all the three steps. The comparison between EFEM results and classical modal superposition
method results of simply supported plates in various uniform thermal environments and coupled plates in nonuniform thermal
environments demonstrated that the derived energy governing equation and the proposed approach described well the smooth
time- and locally space-averaged energy density. It is found that the distributions and levels of energy density are affected by thermal
effects, and the variation trends are related to exciting frequency.

1. Introduction

With the great development of hypersonic crafts which are
usually subjected to extremely aerodynamic heating and
high-frequency exciting during working, there is a great need
for the high-frequency dynamic analysis of structures in ther-
mal environments.

Thermal environments have a series of effects onmaterial
properties, geometry shapes, stress state, and so on. Great
efforts have been made to analyze the dynamic characters
of the structure in thermal environments at low frequencies.
Ganesan andDhotarad [1] developed a numerical method for
the vibration analysis of thermally stressed plates inwhich the
thermal stresses were evaluated by the finite element method
and these stress values were then used in a dynamic analysis
of the plate performed by either the finite difference method
or variation methods. Jeyaraj et al. [2, 3] used combined
FEM/BEM to analyze the vibration and acoustic radiation
characters of an isotropic plate and a composite plate with

inherentmaterial damping in a thermal environment, finding
out that the natural frequencies decrease when the tem-
perature increases and the overall sound radiation of the
plate reduces marginally only due to the interaction between
reduced stiffness and enhanced damping. Geng and Li [4]
analyzed the acoustic radiation and vibration of a flat plate
in thermal environments through both the theory method
and combined FEM/BEM, and the two results correspond
to each other. Liu and Li [5] investigated the vibration and
acoustic response of rectangular sandwich plate in thermal
environments.

With the frequency increase, more and more elements
are needed to describe the vibration of structures, and also
small uncertainties will have more and more effects on the
calculating results. Thus the FEM and BEM calculation
will not only cost much time, but the error is much bigger.
Though SEA (statistical energy analysis) is widely used to
predict the space- and frequency-averaged behavior of built-
up structures at high frequencies where the modal density of
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structures is high [6], it could only approximate a single
acoustic or vibrational energy value for each subsystem of
structures.

Due to the disadvantages of the FEM, BEM, and SEA
at high frequency, EFEM (energy finite element method)
which could predict the time- and space-averaged far field
vibrational energy of structures appeared. Belov et al. [7]
first proposed the power flow model. Nefske and Sung [8]
developed the finite element formulation of the power flow
model and applied it to beams. Wohlever and Bernhard [9]
made a further research on the vibration energy response
of rods and beams. Bouthier and Bernhard extended the
work to two-dimensional structures and analyzed the energy
density distribution of a membrane [10] and a Kirchhoff
plate [11]. Wang et al. [12] presented the high-frequency
energy boundary element method combined with energy
finite element to describe the energy density distribution of
structure-acoustic coupled system. Park et al. [13] developed
the power flow model of in-plane waves in thin plates
and flexural waves in finite orthotropic plates. Then they
derived the energy governing equation of flexural waves in
Timoshenko beam [14, 15], Mindlin plate [16], and Rayleigh-
Bishop rod [17] which take shear distortion and rotatory
inertia acting an important role in high-frequency range into
consideration. Zhang et al. developed an alternative energy
finite element formulation for interior acoustic spaces and
thin plates considering the wave response as a summation
of incoherent orthogonal waves [18]. They also expanded
the EFEM to analyze the energy distribution of stiffened
plates under heavy fluid loading [19]. Xie et al. applied
EFEM to high-frequency structural-acoustic coupling of
an aircraft cabin with truncated conical shape [20] and
proposed the transient vibrational energy response analysis
of a rod under high-frequency excitation [21]. Park made
an introduction of the developed EFEM based software–
EFADS, and the results of one part of a real automobile
derived from EFADS matched well with the experimental
results [22].

Though EFEM has been developed well since 1980s, only
Zhang et al. [23] researched on the thermal effects on the
high-frequency vibration. They derived the energy density
governing equation of beams and verified the accuracy. In
this paper, we derived the energy governing equation of
plates in thermal environments. The thermal environments
are considered to affect the material property and thermal
stress condition. We then study the thermal effects on
power transmission and reflection coefficient and develop
an approximate approach to analyze the energy density
distribution of coupled plates in nonuniform thermal envi-
ronments: first, the thermal analysis and thermal stress
analysis are conducted; then based on the temperature and
thermal stresses derived above, the energy distribution of
the structure could be obtained therefore. The accuracy of
the derived equation is verified by comparing the developed
EFEM results with classical modal superposition results of
a simply supported plate in uniform thermal environments.
The thermal effects on the energy distribution and level are
also analyzed. Finally, the numerical example of the coupled
plate in nonuniform thermal environments shows that the

approach could describe well the thermal effects on the level
and distribution of energy density.

2. Energy Governing Equation for a Plate in
Thermal Environments

2.1. Derivation of Wavenumber and Group Velocity with
Thermal Effects. For a plate with the temperature uniform
throughout the thickness, assume that the plate is stress-
free at the reference temperature 𝑇

0
. With the temperature

increasing, the changes of thermal stress and material pro-
perties should be taken into consideration. So when the tem-
perature changes to 𝑇, the transversely vibrating governing
equation will be [4]
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where𝐷 = 𝐸ℎ3(1+𝑗𝜂)/12(1−𝜐2) = 𝐷
0
(1+𝑗𝜂) is the complex

bending stiffness of the plate, 𝜂 is the structural damping loss
factor, 𝜌 is the density, ℎ is the thickness, 𝑞 is the transverse
mechanical load applied on plate, and 𝑗 is the imaginary unit.
𝑁
𝑥
,𝑁
𝑦
, and𝑁

𝑥𝑦
are the thermally inducedmembrane forces.

Use the separation of variables, the general solution can
be expressed as
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𝑖𝑘
𝑥
𝑥
𝑒
𝑖𝑘
𝑦
𝑦
𝑒
𝑖𝜔𝑡
, (2)

where 𝑘
𝑥
and 𝑘

𝑦
are the wavenumbers in 𝑥 and 𝑦 directions

and 𝜔 is the circular frequency. At small damping, the com-
plex wavenumbers in 𝑥 and 𝑦 directions above could be
approximate as
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By substituting (2) into (1), the dispersion relation can be
derived as
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2
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(4)

Assume that 𝑘 is the total wave numbers in the wave
propagation angle 𝜃, so 𝑘

𝑥1
and 𝑘
𝑦1
could be expressed as [25]

𝑘
𝑥1
= 𝑘 cos 𝜃 𝑘

𝑦1
= 𝑘 sin 𝜃. (5)

Substituting (5) into (4)
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4
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(6)

Assume that

𝐵 =
𝑁
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sin 𝜃 cos 𝜃. (7)
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Thus we could derive the expression of 𝑘 in terms of 𝜃:

𝑘 = ±
√
−𝐵 ± √𝐵2 + 4 (𝜌ℎ𝜔2/𝐷

0
)

2
.

(8)

From (8) and (7) we could find that the total wavenumber 𝑘
varies with the wave propagation angle 𝜃. In EFEA method,
the plate is diffuse wave fields, so averaging 𝑘

𝑥1
and 𝑘

𝑦1
over

𝜃, we could obtain the averaged diffuse wavenumber in 𝑥 and
𝑦 directions:
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𝑑
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= √

1
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∫
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1
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∫
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0
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(9)

The group velocity in terms of 𝜃 could be expressed as

𝐶
𝑔
=
𝜕𝜔

𝜕𝑘
=
2𝐷𝑘
3
+ 𝐵𝑘

𝜌ℎ𝜔
. (10)

Equation (10) shows that the group velocity also depends on
the direction of the wave propagation. So the same as (9), the
group velocity should also be averaged over 𝜃 [26]:

𝐶
𝑑

𝑔
=
1

2𝜋
∫

2𝜋

0

𝐶
𝑔
𝑑𝜃. (11)

From (9) and (11), we can see that the wavenumber and group
velocity will be changed in thermal environments.

Because, in high-frequency range, the wavelength is
quite small and the near field waves usually decay in half
wavelength, we only utilize the far field solution of (1) to
simplify the energy analysis [11]. So the general form of the
far field travelling plane wave solution can be expressed as
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where the unknown constants 𝐴
𝑥
, 𝐵
𝑥
, 𝐴
𝑦
, and 𝐵

𝑦
are the

amplitudes of the waves in 𝑥 and 𝑦 directions.

2.2. Derivation of the Energy Governing Equation with Ther-
mal Effects. As discussed by Bouthier and Bernhard [11], the
time-averaged energy density which includes both the kinetic
and potential energy densities of the plate across the thickness
can be expressed in terms of transverse displacement as
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(13)

As above, the time-averaged energy intensity across the
thickness can be expressed in terms of transverse displace-
ment as [11]
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Substituting (12) into (13)-(14), we can obtain the com-
plete time-averaged far field energy density and energy
intensity expressions in terms of transverse displacement. For
we could not find obvious relations between them, they are
averaged spatially over a half wavelength for small damping
in the following manner [11]:
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Thus the time- and space-averaged density ⟨𝑒⟩ can be written
as
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The time- and space-averaged intensities ⟨𝐼
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Obviously the relationship between the time- and space-
averaged energy density and intensity is
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For an elastic medium, the differential steady energy
balance equation in terms of time- and space-averaged energy
density can be written as [8]

𝜋in − 𝜂𝜔𝑒 = ∇ ⋅ ⃗𝐼. (19)

Combining (18) and (19), we can obtain the steady far
field energy governing equation of plates in uniform thermal
environments:

−
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∇
2
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= ⟨𝜋in⟩ .

(20)

It is obvious that thermal environments affect the first
coefficient of (20) by changing wavenumbers of the plate;
thus the energy distribution state of the plate is changed
thereof. Compared to the energy governing equation derived
by Bouthier and Bernhard [11], (20) becomes the same when
the temperature becomes reference temperature.

The finite element formulation is introduced here to solve
(20) [19]:

[𝐸
𝑒
] {𝑒
𝑒
} = {𝐹

𝑒
} + {𝑄

𝑒
} , (21)

where 𝐸𝑒 is the system matrix for element including thermal
effects, 𝑒𝑒 is the vector of nodal energy density for the
corresponding element, 𝐹𝑒 is the vector of input power at the
nodal locations, and 𝑄𝑒 is the vector of power flow across
element boundaries including thermal effects, which will be
introduced in the next sections.

In high-frequency range, for the wavelength is small, the
input power could be expressed as [27]

⟨𝜋in⟩ =
1

2
Re (𝐹𝑉∗) (22)

or

⟨𝜋in⟩ =
1

2
|𝐹|
2 Re( 1

𝑍
) , (23)

where 𝐹 is the amplitude of the external point force, 𝑉∗ is
the conjugate of the velocity of the exciting point and𝑍 is the
impedance of the corresponding infinite plates with thermal
effects at the driving point expressed as follows:

𝑍 =
8𝜌ℎ𝜔

(𝑘𝑑)
2
,

𝑘
𝑑
= √

1

2𝜋
∫

2𝜋

0

𝑘2𝑑𝜃.

(24)

The wavenumber will be anisotropic when the thermal
stresses are different in different directions, and the structure
is diffused field, so the wavenumber is averaged over 𝜃.

3. An Approximate Method for the Energy
Density Analysis of Coupled Plates in
Arbitrary Thermal Environments

Usually, the thermal environments are nonuniform, and the
structures are made up of coupled plates, which means
the thermal stresses and temperature dependent material
properties are not the same everywhere. Thus the group
velocities will be different everywhere. And also the power
transmission and reflection will happen everywhere. There-
fore the derived energy governing equation (20) cannot be
used directly for structures as traditional method. So it is
of great importance to develop a method to analyze the
high-frequency vibration energy density of coupled plates in
arbitrary thermal environment.

3.1. Derivation of Power Transmission and Reflection Coeffi-
cients in Thermal Environments. As we know, it is not easy
and takes a lot of time to consider all the energy transmission
and reflection. So we assume that the temperature and ther-
mal stresses are uniform in every element and just calculate
the energy transmission and reflection coefficients between
every two adjacent elements. The method introduced by
Langley and Heron [28] is expended here to take the thermal
effects into consideration for the plates.

As shown in Figure 1(a), the model of plate junc-
tion in global coordinate is introduced here. The trac-
tions (𝑇

𝑗
, 𝑁
𝑗
, 𝑆
𝑗
), displacements (𝑢

𝑗
, V
𝑗
, 𝑤
𝑗
), thermal stresses

(𝑁
𝑥𝑗
, 𝑁
𝑦𝑗
, 𝑁
𝑥𝑦𝑗

), and temperature 𝑇
𝑗
of either single plate

are defined in local coordinate as shown in Figure 1(b). For
the membrane stress will not affect the in-plane vibration
characteristics, the thermal effects will change the in-plane
energy density distribution and level only by the temperature
dependent material properties. So the governing equations
of out-of-plane and in-plane deformation of the 𝑗th plate
defined in local coordinate are

𝐷
𝑗
∇
4
𝑤 + 𝜌
𝑗
ℎ
𝑗

𝜕
2
𝑤

𝜕𝑡2
= 𝑁
𝑗𝑥

𝜕
2
𝑤

𝜕𝑥2
+ 𝑁
𝑗𝑦

𝜕
2
𝑤

𝜕𝑦2
+ 2𝑁
𝑗𝑥𝑦

𝜕
2
𝑤

𝜕𝑥𝜕𝑦
.
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Figure 1: (a) Schematic of plate junction in thermal environments.
(b) Coordinate system, displacements, tractions, temperature, and
thermal stresses of plate 𝑗.

𝜕
2
𝑢

𝜕𝑥2
+

1 − ]
𝑗

2

𝜕
2
𝑢

𝜕𝑦2
+

1 + ]
𝑗

2

𝜕
2V

𝜕𝑥𝜕𝑦
=

(1 − ]2
𝑗
) 𝜌
𝑗
ℎ
𝑗

𝐸
𝑗

𝜕
2V
𝜕𝑡2

𝜕
2V
𝜕𝑥2

+

1 − ]
𝑗

2

𝜕
2V
𝜕𝑦2

+

1 + ]
𝑗

2

𝜕
2
𝑢

𝜕𝑥𝜕𝑦
=

(1 − ]2
𝑗
) 𝜌
𝑗
ℎ
𝑗

𝐸
𝑗

𝜕
2
𝑢

𝜕𝑡2
.

(25)

The relationship between the forces and moments per
unit lengthwhich are applied to the junction by plates and the
tractions which act at the edge of plates could be expressed as

Q =
𝑁

∑

𝑗=1

R
𝑗
F
𝑗
, (26)

where the forces and moments vectorQ are defined in global
coordinate and the tractions vector F

𝑗
= (𝑇𝑗 𝑁𝑗 𝑆𝑗 𝑀𝑗)

𝑇 is
defined in local coordinate. The transformation matrix R

𝑗
is

R
𝑗
=

[
[
[
[
[

[

1 0 0 0

0 cos 𝜃
𝑗
− sin 𝜃

𝑗
0

0 sin 𝜃
𝑗

cos 𝜃
𝑗
0

0 0 0 1

]
]
]
]
]

]

. (27)

The compatibility conditions between the junction dis-
placements a = (𝑢 V 𝑤 𝜃)

𝑇 and the edge displacements of
plate 𝑗 b

𝑗
= (𝑢𝑗 V

𝑗
𝑤
𝑗
𝜃
𝑗)
𝑇 could be expressed as

b
𝑗
= R𝑇
𝑗
a. (28)

According to (25), the wavenumbers corresponding to
bending, longitudinal, and shear waves are

𝑘
𝐵
=
√
−𝐵
𝑗
± √𝐵
2

𝑗
+ 4 (𝜌

𝑗
ℎ
𝑗
𝜔2/𝐷
0𝑗
)

2

𝑘
𝐿
= (

𝜌
𝑗
𝜔
2
(1 − 𝜐

2

𝑗
)

𝐸
𝑗
ℎ
𝑗

)

1/2

, 𝑘
𝑆
= (

2𝜌
𝑗
𝜔
2
(1 + 𝜐

𝑗
)

𝐸
𝑗
ℎ
𝑗

)

1/2

.

(29)

Assume that the incident wave travels through one of
the plates towards the junction with an incident angle of 𝜙

𝑗
.

The compatibility at the junction means the incident waves
along with the reflected waves and transmitted waves share
the same wave motion 𝑒−𝑗𝑘1 sin𝜙𝑗𝑥 in 𝑥 direction. So the wave
motion in 𝑦 direction could be obtained by

𝜇
2

𝐵𝑗
= 𝑘
2

1
sin2𝜙
𝑗
−

−𝐵
𝑗
± √𝐵
2

𝑗
+ 4 (𝜌

𝑗
ℎ
𝑗
𝜔
2

𝑗
/𝐷
0𝑗
)

2

= (𝑘
2

1
sin2𝜙
𝑗
− 𝑘
2

𝐵𝑗
) or (𝑘

2

1
sin2𝜙
𝑗
+ 𝑘
2

𝐵𝑗
+ 𝐵
𝑗
)

𝜇
2

𝐿𝑗
= 𝑘
2
− 𝑘
2

𝐿𝑗

𝜇
2

𝑆𝑗
= 𝑘
2
− 𝑘
2

𝑆𝑗
,

(30)

where the subscript 𝑗means the number of an arbitrary plate.
So the bending and in-plane response could be expressed

as

𝑤 =

2

∑

𝑛=1

𝛼
𝐵𝑛

exp (−𝑖𝑘𝑥 + 𝜇
𝐵𝑗𝑛
𝑦 + 𝑖𝜔𝑡)

(

𝑢

V
) = {𝛼

𝐿
(

𝑘

𝑖𝜇
𝐿𝑗

)𝑒
𝜇
𝐿
𝑦
+ 𝛼
𝑆
(

𝑖𝜇
𝑆𝑗

−𝑘
) 𝑒
𝜇
𝑆
𝑦
} exp (−𝑖𝑘𝑥 + 𝑖𝜔𝑡) ,

(31)

where 𝛼
𝐵𝑛
, 𝛼
𝐿
, and 𝛼

𝑆
are the complex amplitudes of each

wave.
According to [28], the equation determining the junction

displacements is

{

{

{

𝑁

∑

𝑗=1

R
𝑗
K
𝑗
R𝑇
𝑗

}

}

}

𝑎 = R
𝑚
𝑓
𝑚
, (32)

whereK
𝑗
is the dynamic stiffness matrix of 𝑗th plate.The𝑚th

plate carries the incident wave.
By solving (32), the displacement of junction in general

coordinate is derived. And the amplitudes of each wave could
be obtained through (28) and (31). And only propagating
waves carry power away from the junction. The power could
generally be written as 2𝑒𝑐

𝑔
sin𝜙, where 𝑒 is the average

kinetic energy and 𝑐
𝑔
is the group velocity. So the power

transmitted by each type of wave could be expressed as

𝑃
𝐵
=
1

2
(2𝐷𝑘
3

𝐵
+ 𝐵𝑘
𝐵
) 𝜔𝛼
2 sin𝜙

𝑃
𝐿
=
1

2
𝜌
𝑗
𝜔
3
𝑘
𝐿
𝛼
2 sin𝜙
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Figure 2: Energy distribution analysis process of coupled plates in nonuniform thermal environments.

𝑃
𝑆
=
1

2
𝜌
𝑗
𝜔
3
𝑘
𝑆
𝛼
2 sin𝜙,

(33)

where 𝜙 is the propagating angle of corresponding wave. The
expression of 𝑃

𝐵
is different from that in [28] for the group

velocity has been changed in thermal environments.
The power transmission coefficients 𝜏𝑖𝑗𝑝𝑟(𝜔, 𝜙) associated

with each of the generated waves are defined as the ratio of
power of generated waves over power of incident wave, where
𝑖, 𝑝,𝜔, and 𝜙 represent the carrier plate, wave type, frequency,
and heading of the incident wave and 𝑗 and 𝑟 represent the
carrier plate and wave type of a generated wave. The diffuse
field transmission coefficients are calculated by

𝜏
𝑖𝑗

𝑝𝑟
(𝜔) =

1

2
∫

𝜋

0

𝜏
𝑖𝑗

𝑝𝑟
(𝜔, 𝜙) sin𝜙𝑑𝜙. (34)

Therefore, the joint matrix in EFEA formulation is [29]

𝑄 = ([𝜏] − [𝐼]) ([𝐼] + [𝜏])
−1
[𝐶
𝑔
] ∫
𝐵

𝜓
𝑖
𝜓
𝑗
𝑑𝐵, (35)

where 𝜓
𝑖
and 𝜓

𝑗
are Lagrangian basis functions and 𝐵 is the

boundary between element 𝑖 and element 𝑗.
Substituting (35) into (21), the whole EFEM formulation

is derived and the thermal effects are taken into consideration
completely.

3.2. An Approximate Analysis Approach to Analyse the Energy
Distribution of Plates in Nonuniform Thermal Environments.
Based on the energy governing equation (20) and the
reflection, transmission coefficients in thermal environments
derived above, we develop the numerical approach to analyze
the energy distribution of coupled plates in arbitrary thermal
environments.

Thermal analysis and thermal stress analysis only need
a few elements and the same mesh model could also be
used for energy density distribution analysis. So as shown in
Figure 2, in the complete analysis process, thermal analysis
and thermal stress analysis should be done first, and the four
nodal temperatures and thermal stresses of every elements
are averaged to calculate the reflection and transmission
coefficients, element matrixes, and joint matrixes. Then the
whole EFEM matrix is formed to calculate energy density
distribution of the whole structure.

4. Validation and Discussion

4.1. Validation of the Derived Energy Governing Equation for
Simply Supported Plates in Uniform Thermal Environments.
In this section, we will verify the accuracy of the new derived
energy governing equation of simply supported plates in

Table 1: Geometric parameters and material properties of the plate.

𝜇 𝜌 (kg/m3) 𝐿
𝑥
(m) 𝐿

𝑦
(m) ℎ (m)

0.3 2700 1 1 0.03

z

x

y

h

Lx

Ly

F𝛿(0.5Lx, 0.5Ly)

Figure 3: Simply supported, point excited plate.

Table 2: Temperature dependent elastic modulus and thermal
expansion coefficient [24].

𝐸 (MPa) 𝛼 (/K)

65144 + 73.432𝑇 − 0.1618𝑇
2 2× 10

−5
+6× 10

−9
𝑇+3×10

−12
𝑇
2

+10
−14
𝑇
3

uniform thermal environments and investigate how the
thermal environments affect the energy distribution of the
plate.

As shown in Figure 3, a simply supported plate is studied
here.The plate is excited by a harmonic point force at the cen-
ter. The geometric parameters and temperature independent
material properties are shown in Table 1. The temperature
dependent elasticmodulus and thermal expansion coefficient
especially are presented in Table 2 [24].

According to the boundary condition and material prop-
erties above, the thermal stress could be calculated as

𝑁
𝑥
= −

𝐸𝛼Δ𝑇ℎ

1 − 𝜐
𝑁
𝑦
= −

𝐸𝛼Δ𝑇ℎ

1 − 𝜐
𝑁
𝑥𝑦
= 0. (36)

That means the wavenumbers and the group velocities are all
the same in different directions. Assuming that 𝑁

𝑥
= 𝑁
𝑦
=

𝑁, the wavenumber and group velocity could be simplified as

𝑘
𝑑
= 𝑘 =

√− (𝑁/𝐷0) +
√(𝑁/𝐷

0
)
2
+ 4𝜌ℎ𝜔2/𝐷

0

2
.

𝐶
𝑑

𝑔
= 𝐶
𝑔
=
2𝐷𝑘
3

1
+ 𝑁𝑘
1

𝜌ℎ𝜔
.

(37)

Thus the energy governing equation of the simply supported
plate in uniform thermal environment could be simplified as

−

𝐶
2

𝑔

𝜂𝜔
∇
2
⟨𝑒⟩ + 𝜂𝜔 ⟨𝑒⟩ = ⟨𝜋in⟩ . (38)
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Figure 4: The energy density distributions of the plate in case 1 calculated by both modal superposition method and EFEM.

Table 3: Parameters for each case.

Case Frequency (Hz) Loss factor Temperature (∘C)
1 15000 0.05 40
2 15000 0.1 40
3 25000 0.05 60
4 25000 0.1 60

4.1.1. Accuracy Validation. The finite element formulation of
the new derived equation (20) is developed here to calculate
the energy density distribution of the example. The results
are compared to the classical modal superposition results.
As discussed by Geng and Li [4], the displacement modal
superposition expression of (1) with four boundaries simply
supported and a harmonic point force excited in the center is

𝑤 (𝑥, 𝑦, 𝑡) = ∑

𝑚,𝑛

4𝑞

𝜌𝐿
𝑥
𝐿
𝑦
(𝜔2
𝑚𝑛
− 𝜔2)

sin 𝑚𝜋𝑥
𝑎

sin
𝑛𝜋𝑦

𝑏
𝑒
𝑗𝜔𝑡
,

(39)

where

𝜔
𝑚𝑛
= √𝜋4 (

𝑚
2

𝑎2
+
𝑛
2

𝑏2
)

2

𝐷
0

𝜌ℎ
+
𝑁
𝑥

𝜌ℎ
(
𝑚𝜋

𝑎
)

2

+

𝑁
𝑦

𝜌ℎ
(
𝑛𝜋

𝑏
)

2

.

(40)

Thus the exact energy density could be obtained by
substituting (39) into (13).

The input power is computed from (22), and the velocity
could be obtained from the modal superposition method.

First we choose 4 different cases here to verify the
accuracy of the derived energy governing equation. The
temperature, frequency, and damping factor of each case are
shown in Table 3. The reference temperature in this work is
20∘C. And the reference energy density is 1 × 10−12 J/m2.

Figures 4, 5, 6, and 7 give the calculated energy density
distributions of the four cases obtained by both the classical
modal superposition method and EFEM, respectively. It
is clear that the classical modal solutions are fluctuating
surfaces, while the EFEM solutions are smooth surfaces
which represent the averaged energy density distribution
trends. And from the observation of the four figures, we can
find that the global variation of energy density increases with
the damping factor increasing, and the energy density level
decreases with the frequency increasing.

The comparisons of the energy density along the line
𝑦 = 𝑥 of the four cases are illustrated in Figures 8 and 9. It
is obvious that in all the four cases, EFEM solutions approxi-
mate well the time- and space-averaged far field energy den-
sity compared to the classical modal solutions.

From the above cases, the good agreement between
EFEM solutions and modal superposition solutions demon-
strates that the energy governing equation derived in this
paper approximates well the smooth time- and space-aver-
aged energy density distribution of simply supported plate in
thermal environments.

4.1.2. Investigation of Thermal Effect on Energy Density Level.
In this section, the effects of thermal environments on the
averaged energy density level of the plate are investigated.The
energy density levels obtained by EFEM in 961 points uni-
formly distributed in the plate are averaged as the averaged
energy density level of the plate.

First, the averaged energy level variation by exciting
frequency from 5000Hz to 50000Hz with an increment of
100Hz when temperatures are reference temperature 20∘C
and 65∘C is shown in Figure 10. As the figure shows, both in
20∘C and 65∘C, the energy density level curves decline with
the frequency increasing on the whole, while fluctuating in
every local region, and at the same time, the curve in 65∘C
wholly moves to the left compared to the curve in 20∘C.
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Figure 5: The energy density distributions of the plate in case 2 calculated by both modal superposition method and EFEM.
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Figure 6: The energy density distributions of the plate in case 3 calculated by both modal superposition method and EFEM.

The reason why both curves decline with fluctuating is
that the vibration energy of the structure ismainly distributed
at lower frequency range and will rise suddenly at natural
frequencies for resonance while the density of natural fre-
quencies increases with the frequency increase. As for the
movement of curve in 65∘C, it could be explained as the
thermal effects: the thermal stress and the decrease of elastic
modulus both result in the reduction of bending stiffness
whichmake the natural frequencieswholly reduce at the same
time. Then the local energy density level peaks will wholly
float to lower frequencies.

Above all, the variation trend of energy density according
to temperature depends on the exciting frequency and the

temperature increasing range. For the case of a small increas-
ing range, the frequency response curve only moves a little
that no peaks or valleys pass the exciting frequency; then
the energy density will increase or decrease monotonously
according to the exciting frequency. For the case of a big
increasing range, which means that the curve moves a lot
that any peaks or valleys pass the exciting frequency, then the
variation trend of the energy density will be nonmonotonous.

4.2. Numerical Examples of Coupled Plates in Nonuniform
Thermal Environments. The model here is the simply sup-
ported coupled plates as shown in Figure 11, where the joint
angle is right angle and the dimension andmaterial properties
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Figure 7: The energy density distributions of the plate in case 4 calculated by both modal superposition method and EFEM.
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Figure 8: The energy density distribution comparisons between the two methods along the line 𝑦 = 𝑥 in case 1 and case 2.

of the two plates are the same as that in Tables 1 and 2.
Table 4 gives the detail parameters of the two cases. The tem-
perature boundary condition of case 1 especially is that the
temperatures of the centers of the two plates are set to 80∘,
while the temperatures of the boundaries of the coupled
plates are the reference 20∘. Case 2 is set to the reference
uniform thermal environment as a comparison with case 1.
The transverse harmonic point force is located at the center

of plate 1 with an amplitude of 10N and an exciting frequency
of 15000Hz.

For case 1, the plate is divided into 400 uniform elements.
Thermal analysis and thermal stress analysis are carried out
first to obtain the temperature field and thermal stress field
of the plate. The input power is computed from (22), and the
velocity could be obtained from FEA dynamic analysis. On
the base of the temperature field and thermal stress field, the
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Figure 9: The energy density distribution comparisons between the two methods along the line 𝑦 = 𝑥 in case 3 and case 4.
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Figure 10: Averaged energy density levels by frequency with an
increment of 100Hz when 𝑇 = 20∘C and 𝑇 = 65∘C.

power transmission and reflection coefficients between every
two adjacent elements could be calculated, and the energy
density distribution is derived thereof.The comparison of the
energy density along dotted line between EFEM solution and

Plate 1

Plate 2

F𝛿(0.5L1x, 0.5L1y)

90∘

Figure 11: Simply supported coupled plates.

Table 4: Parameters for each case.

Case Frequency
(Hz)

Loss
factor

Center
temperature

(∘C)

Boundary
temperature

(∘C)
1 15000 0.05 20 80
2 15000 0.05 20 20

FEM solution is illustrated in Figure 12. Partially enlarging
Figure 12, energy jumps caused by thermal effects will be
observed at the joints of every two adjacent elements as
shown in Figure 13. So above all, it is obviously observed
that the method proposed in this paper could not only
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Figure 12: Comparison of the energy density along the dotted line between FEM solution and EFEM solution.
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Figure 13: Detail view of circled places in Figure 12.

approximate well the time and space-averaged energy density
of plates in nonuniform thermal environments but also
clearly reflect the local energy variation of the plates caused
by thermal effects.

To investigate the thermal effect on the energy density
distribution, the comparison of energy density along dotted
line between case 1 and case 2 is illustrated in Figure 14. The
input power of case 2 is assumed to be the same as case 1.
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Figure 14: Comparison of energy density along dotted line between case 1 and case 2.

From the figure we could clearly observe how the thermal
environments affect the level and global variation of energy
density distribution. In Figure 14(a), the total energy of case 1
changes a little in plate 1 and is lower in plate 2 compared to
case 2. In Figure 14(b), the bending energy of case 1 is nearly
the same in plate 1 with case 2, andmuch lower in plate 2. For
the in-plane energy, the longitude energy of case 1 is lower
than case 2 in both plates as shown in Figure 14(c), while the

shear energy of case 1 is a bit higher in plate 1 than case 2 and
much higher in plate 2 as shown in Figure 14(d).

5. Conclusion

The energy density governing equation of plates in thermal
environments is derived in this paper. The thermal envi-
ronments are considered to change the material properties
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and membrane stresses of the plate. Thus the thermal effects
are included in the derivation of energy governing equation
through wavenumber and group velocity which could be
expressed as functions in terms of material properties and
membrane stress. Then the thermal effects on the power
transmission and reflection coefficients are also investigated.
Based on the governing equation and power transmission
coefficients derived above, an approximate approach to ana-
lyze the energy density distribution of coupled plates in
nonuniform thermal environments is developed, in which,
thermal analysis and thermal stress analysis are completed
firstly; then the obtained temperature and thermal stress are
averaged at element level to form the element matrixes, joint
matrixes, and the whole EFEM formulation, and the energy
distribution could be calculated therefore.

To verify the accuracy of the derived governing equation,
a series of numerical examples of simply supported plates in
uniform environments are performed with both EFEM and
modal superposition method. The results demonstrate that
the derived energy governing equation approximates well the
time- and space-averaged energy density. The results also
show that the averaged energy density of the plate will vary
as the temperature changes, and the variation trends depend
on the exciting frequency for sudden rises will appear at
natural frequencies. For the examples of coupled plates in
nonuniform thermal environments, energy jumps will occur
at the joints of every two adjacent elements, and thus the
variation of energy density distribution caused by thermal
effects could be reflected.

Hypersonic aircraftswhich aremade up of a lot of coupled
plates usually work in nonuniform thermal environments,
subjected to high-frequency exciting.The present study could
be a foundation for researchers to do further research on
the high-frequency vibration energy response of complex
structures in nonuniform thermal environments.
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