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Acoustic emission (AE) technique is often used to detect inaccessible area of large storage tank floor with AE sensors placed outside
the tank. For tanks with fixed roofs, the drop-back signals caused by condensation mix with corrosion signals from the tank floor
and interfere with the online AE inspection. The drop-back signals are very difficult to filter out using conventional methods. To
solve this problem, a novel AE inner detector, which works inside the storage tank, is adopted and a pattern recognition algorithm
based on CRF (Conditional Random Field) model is presented. The algorithm is applied to differentiate the corrosion signals
from interference signals, especially drop-back signals caused by condensation. Q235 steel corrosion signals and drop-signals were
collected both in laboratory and in field site, and seven typical AE features based on hits and frequency are extracted and selected
by mRMR (Minimum Redundancy Maximum Relevance) for pattern recognition. To validate the effectiveness of the proposed
algorithm, the recognition result of CRF model was compared with BP (Back Propagation), SVM (Support Vector Machine), and
HMM (Hidden Markov Model). The results show that training speed, accuracy, and ROC (Receiver Operating Characteristic)

results of the CRF model outperform other methods.

1. Introduction

Acoustic emission (AE) is a beneficial method to test the
corrosion of the floor without opening the storage tank [1-5].
In conventional online tank floor tests [6], sensors are fixed
by magnets outside the tank wall to collect signals. However,
the AE test is susceptible to outside intervention, such as
sand collision and external vibration. To solve this problem,
a newly invented AE detection equipment is adopted in
tank floor inspection and it could work inside the tank
to collect the AE signals to avoid external disturbance [7].
Meanwhile, the condition of acoustic field inside storage
tank is complicated. The characteristics of many noise signals
inside tank are quite similar to the corrosion signals of
tank floor, which would seriously influence the result of the
evaluation of tank floor.

For those tanks with fixed-roofs, warm gas in the tank
condenses to droplets when it meets the cold roof. The
droplets fall down from the roof to the water/oil surface and
generate interference AE signals [8]. The interference signals
caused by the droplets should be filtered out to secure the
accuracy of corrosion source location and the efficiency of
the tank floor evaluation. Guard sensors are usually employed
with the aim of shielding droplets noise signals during AE
test for tank bottom. However, the space inside the inner AE
detector is small and the hardware system of guard sensors is
complicated. So it is not suitable for inner AE detector to use
guard sensors. For this reason, a specific pattern recognition
algorithm is proposed to filter out the interference signals.

Pattern recognition is often applied to identify AE signals
caused by different sources. In 2008, Riahi et al. [9] used
an artificial neural network system to differentiate between
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FIGURE 1: Structure of linear chain conditional random field.

leakage and corrosion signals in AE testing of aboveground
storage tank floors. Zhang et al. [10] proposed a method
to detect the leakage of the gas pipeline valve by using AE
technique and SVM (Support Vector Machine) was applied
to recognize the leak level of the valve accurately. And in the
field of tool wear monitoring, Zhu et al. [11], Varma and Baras
[12], Zhang et al. [13], and Chen et al. [14] both used HMM
(Hidden Markov Model) to recognize the different tool wear
states.

In this study, an algorithm based on CRF (Conditional
Random Field) model is proposed to differentiate drop-back
noise from corrosion AE signals. Seven typical AE parame-
ters, such as amplitude, counts, duration time, rise time, true
energy, average frequency, and peak frequency, are extracted
to create the classifier model by CRFE, BP (Back Propagation),
SVM, and HMM. The result showed that CRF model is better
than the other three models in training speed, accuracy, and
ROC (Receiver Operating Characteristic) results.

This paper is organized as follows. Section 2 introduces
the basic principles of CRF model. The experimental setup
and procedure are illustrated and feature extraction method
for the AE signals is presented in Section 3. Section 4 shows
the establishment procedure of CRF model creating and
the results, which are obtained by the comparison between
CRF and other three classifiers. Section 5 presents results of
application of CRF model in the field experiment. And the
summary of the paper is given in Section 6.

2. CRF Model

CRF model is a typical discriminant model which was
proposed by Lafferty et al. in 2001 [15]. A CRF may be viewed
as an undirected graphical model, or Markov random field,
which defines a single log-linear distribution over output
variable sequences given a particular input random variable
[16].

Linear chain conditional random field (LC-CRF), shown
in Figurel, is one of the most commonly used forms
of the CRF model. The input random variable X =
{x1, %5, %5,...,x,} and the output random variable ¥ =
{1> ¥25 ¥3>-..» ¥} denote the observation sequence and the
state sequence, respectively. If the conditional probability of
Y given X is known, Y tends to satisfy the maximum global
conditional probability Y*; that is,

Y = argm;ixP(Y | X). (1)
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In this model, for the observation data x, the probability
of the state sequence y can be represented as

1
P(ylx)=Z(x)

(2)
- exp <2Aktk (Viet> Yoo %0) + ) sy (o %, i)) :
ik il

Z(x) is a normalization factor which can be described as

Z (x)

=) exp <Zlktk Dits Yo 1) + Y s (3 %, i)) ,
y ik il

where t,(y;_;, ¥;, X, 1) is a transition feature function of the
entire observation sequence and the states at positions i and
i—1in the state sequence; s;(;, x, 1) is a state feature function
of the state at position i and the observation sequence; 1 and
;> which needed to be estimated from training data, denote
the weight values of the transition feature function and the
state feature function respectively.

For the AE testing on tank floors, the features extracted
from the AE signals can be viewed as the observation
sequence and the signal types can be viewed as the state
sequence. Then, the CRF model can be created and the signals
can be classified.

3)

3. Experimental Preparation and
Feature Extraction

3.1 Experimental Setup. The experimental system consists
of a water tank, the inner AE detector, and a specimen for
corrosion experiments, shown in Figure 2. The water tank
in Figure 3, with the dimension of 1.4m x 14m x 1.5m
(length x width x height), is used to simulate a storage tank
in the laboratory. The inner AE detector, which is utilized to
collect AE signals, includes AE sensors, the amplifier, the data
acquisition system, and batteries (see Figure 4(a)) [17]. The
detector can actuate itself to get close to the tank floor and
collect AE signals, so it could weaken the interference caused
by external disturbance and improve the signal-to-noise ratio
(SNR) compared with the conventional AE testing method
on tank floors. Four AE sensors are mounted in the holes
on the bottom of the detector to collect AE signals. And the
data acquisition system including processing circuits, the AD
sampling card, and the PC104 computer is placed inside the
shell to sample and save the collected signals.

The specimen, shown in Figure 4(b), is corroded by acid
to simulate the corrosion in tank floor. The material of the
specimen is the Q235 carbon steel sheet, which is identical
with the material of the storage tank floors. The specimen is
machined by the dimension of 180 mm X 180 mm x 5mm
(length x width x thickness) with the surface roughness of
0.02mm. A round, hollow vessel with the inner diameter of
50 mm is fixed on the specimen by epoxy. The surface of the
specimen was grinded by abrasive papers through 400-grade
to 2000-grade, rinsed with acetone, degreased with deionized
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FIGURE 3: The water tank in the laboratory.

water, and dried in air. Before the experiments, the acid would
be poured into the vessel and sealed with a lid wrapped with
a matching ribbon.

3.2. Experimental Procedure

3.2.1. Collection of Corrosion Signals. To collect the corrosion
signals, 5mol/L H;PO, was used as the test solution to
react with the specimen to simulate the corrosion in tanks.
R15 piezoelectric AE sensors produced by Physical Acoustics
Corporation (PAC), with operating frequency range of 50—
400 kHz, were used in the experiment. The gain of the charge
preamplifier is set to 60dB, and the cut-off frequencies of
the analog band pass filter are 100 kHz and 400 kHz [18, 19].

TABLE 1: Seven typical characteristic parameters of corrosion AE
signals.

Hit based features Comprehensive Frequency features
features

Amplitude

Counts

Duration time Average frequency Peak frequency

Rise time

True energy

The sampling rate is 3 MHz and the sampling precision is
10-bit. During the experiment, the threshold level was fixed
at 35mV, which was slightly above the previously measured
background noise.

A series of experiments were conducted in the laboratory.
The specimen, which was handled in terms of the procedures
mentioned before, was placed on the tank floor with a
distance of 15 cm under the inner detector in the water tank
and corrosion signals were collected for about 1 hour.

3.2.2. Collection of Drop-Back Signals. The field experiment
was conducted in a new fire-resistant water tank in good
condition. The diameter of the tank is 6 m and the height
is 10 m. The experiment preferences were the same as that
in the lab test. The temperature during the experiment
in the tank was 23°C, while the outside temperature was
—15°C. The drop-back signals were rich due to the difference
between the warm gas in the tank and the fixed cold roof of
the tank. After measuring the environment noise level, the
threshold is set higher than the background noise. During
the experiment, drop-back signals were collected without the
eroded specimens (see Figures 5 and 6).

3.2.3. Collection of Mixed Signals. After collecting the drop-
back signals, in the field water tank, the eroded specimen was
placed at the same position with the lab test. And both the
corrosion signals and the interference signals were acquired.
During the experiment of one hour, 7475 groups of AE signals
were collected for further analysis.

3.3. AE Feature Extraction and Sample Set. The feature of
AE parameters represents characteristics of the corrosion
signals, and seven typical feature parameters of AE signals
are extracted to build the classification model [20, 21]. The
features consists of five hit based features, one comprehensive
feature and one frequency feature, shown in Table 1.

In order to realize the classification by pattern recogni-
tion, 260 groups of corrosion signals and 260 groups of drop-
back interference signals were selected as samples to establish
the classification model. The signals were randomly divided
into 2 sets. 200 groups signals were used as the training set
while the other 60 groups were used as test set, respectively.
The formation of the training set and the test set are listed in
Table 2.

3.4. Feature Selection. As stated, seven AE features, such
as amplitude, counts, duration time, rise time, true energy,
average frequency, and peak frequency, are extracted and
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FIGURE 4: (a) Inner AE detector; (b) the specimen.

FIGURE 6: Testing in the field.

they are defined as F1~F7 To avoid the influence caused
by the different magnitude between seven features, charac-
teristic parameters are normalized to [-1,1]. And a feature
selection algorithm named mRMR (Minimum Redundancy
Maximum Relevance) is utilized to decide the optimal feature
set.

mRMR is a new method to select good features proposed
by Peng et al. [22]. It is going to find out the features with
the highest relevance to the target class while still having

TaBLE 2: Constitution of training set and test set.

Set name Samples Source of the signals

200 groups of corrosion signal

Laboratory test
Training features
set .200 groups of drop-back Field test
interference features
60 groups of corrosion signal Laboratory test
Test st features
60 groups of drop-back Field test

interference features

low redundancy with other features. And mRMR could be
defined as

maxD (S,c), D= #ZI(&J),

x;€S
. (4)
minR(S), R=— > I(xmx;),
|S| xi,x]-GS

where S is the initial feature set and c is the target class
set, I(x;,c) is the mutual information of feature x; and class
¢, D is the mean value of all mutual information values
between individual feature x; and class ¢, I(x;,x;) is the
mutual information of features x; and x, and R means the
mutual information between different features.

Mutual information is defined in terms of their proba-
bilistic density functions, given two random variables x and

y:

1e3) = [[ e log%dx e

The operator ®(D, R) is defined to combine D and R and
consider the following simplest form to optimize D and R:

max® (D,R), ®(D,R) =D -R. (6)

And the result of the formula (6) is called Mutual
Information Difference (MID) and it is used to rank features.
In practice, seven features are ranked by mRMR as follows:
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F7, F4, F1, F3, F2, F6, F5. The first 4 features (peak frequency,
rise time, amplitude, and duration time) are determined as
the optimal feature set to train and recognize the samples.

4. Classification Results and Discussions

In this section, the classifier models of CRE BP, SVM,
and HMM are adopted to recognize the corrosion signals
from interference signals based on the extracted features,
respectively. And the results of the different models are com-
pared and discussed.

4.1. Establishment of CRF Classification Model. In the LC-
CRF model, the feature vectors of input sequences are
considered to be positive integers. And thus, the extracted
features are normalized to 1~101 and used as the observation
sequences. The state of the sample for corrosions and drop-
back interferences is labeled as 1 and 2, respectively. The
application of the LC-CRF model includes two steps: training
and recognition. The features of the training samples are used
to calculate the model parameters (A, ). The conditional
probability model is obtained by means of the maximum
likelihood estimation, while the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm is used to get
the optimal parameters for the model. Here, the initial model
parameters are set to 0 and the convergent accuracy limit
is 0.000L. During recognition, features of the test samples
are taken as input variables while the state sequences for the
model, obtained in the first step, are calculated by the Viterbi
algorithm. The method can be summarized by the flowchart
illustrated in Figure 7.

4.2. Establishment of BB SVM, and HMM. As stated, BP,
SVM, and HMM are commonly used methods for classifica-
tion of AE signals. In order to compare with the recognition
results, the three classifiers use the same training and test
data as LC-CRF. The models of BP, SVM, and HMM are
established as follows.

BP is a common method of training artificial neural
networks. The structure of a typical BP classifier is shown
in Figure 8. To design a BP model, these parameters should
be determined: function of the output layer, function of the
hidden layer, training rate, and the number of hidden layer
nodes. In the tests, “S” function is selected as the activation
function of the hidden layer, and “P” function is chosen as
the transfer function of the output layer. And the learning
values are tuned by a gradient descent manner. The number of
hidden layer nodes, set as 14 in this test, was twice the number
of input nodes. In addition, learning rate is 0.01.

The SVM uses the central concept named kernel for
a number of tasks. Kernel machines provide a modular
framework that can be adapted to different tasks and domains
by using different kernel function and base algorithm. The
structure of SVM is shown in Figure 9, where k is the kernel
function. Three parameters need to be determined to design
a SVM model: the kernel function, the cost (c), and the
gamma (g). In this paper, the classical RBF kernel function is
chosen, where kernel parameters g and ¢ could be determined

TaBLE 3: Classification results using different features.

Feature set Accuracy rate (%)

F1~F7 99.17

F7, F4, F1, F3, F2, 100

F7, F4, F1, F3, 100

F7, F4, F1 99.17%
TABLE 4: Classification results.

Method Max training time (s) Accuracy rate (%)

BP 9.62 90.0

SVM 3.97 97.5

CRF 1.03 100

HMM 3.68 83.3333

by fivefold cross-validation methodology. In that case, the
optimal solution ¢ is 2, and g is 22.627.

HMM is composed of Markov chain and stochastic
process. The Markov chain corresponds to the state sequence,
which is described by 7 and A. The stochastic process is
depicted as the observation sequence, which is described by
B. So a HMM model can be described as

A=(M,N,A,Bn), (7)

where M is the state number of the Markov chain and N
is the possible number of observed value in each state. A is
state transfer probability matrix with sizes N x N and B is
the probability matrix of the observed values whose sizes are
equal to N x M. r is the initial probability distribution vector
with length N. So M and N must be confirmed to establish
a HMM classifier. The value of M and N is decided as 6 and
8, respectively, using the trial and error method. The model
parameters are calculated by Baum-Welch algorithm, while
the convergent accuracy limit is 0.0001.

4.3. Results and Discussions. To validate that if the first 4
features are the optimal feature set, samples are trained and
tested by CRF model using the first 3, the first 5, and all
seven features, respectively. The accuracy rates are shown in
Table 3. Using the first 4 and the first 5 features can make an
accuracy rate of 100%, higher than the other two feature sets.
So the first 4 features (peak frequency, rise time, amplitude,
and duration time) are selected as the optimal feature set to
train and recognize the samples.

Using same training and test set, the recognition results
of CRF model and the other three algorithms (BP, SVM, and
HMM) are compared based on a PC (Core 2 Duo E6300
with 3.2 G memory), respectively. The results are compared
in the training time, the accuracy, and the ROC (Receiver
Operating Characteristic) curve. The maximum training time
and accuracy rate are shown in Table 4.

It shows that the accuracy rate of the CRF is higher
than BP, SVM, and HMM model and the training time of
CREF is the shortest. Gradient descent algorithm is utilized to
adjust the parameters of BP, so it needs to iterate to get the
optimal parameters. Moreover, the selection of the maximum
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FIGURE 7: Flowchart of the identification process based on CRE.
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FIGURE 8: The architecture of the BP.

iteration, learning rate, and number of the hidden layer nodes
are often determined by experience or method of trial and
error. So the training speed and the accuracy rate of BP are
lower and it is difficult to get the optimum network. The
training speed and accuracy of SVM are higher than BP and
HMM but it is more suitable for the situation of small sample
data rather than AE testing field, which is a large sample
data situation. HMM is widely employed in many fields, but
one of the disadvantages of HMM is that this model assumes
that the observation value at one point is only dependent on
the state of Markov chain at this time and the observation
sequences are independent of each other, while the features of

FIGURE 9: SVM architecture.

AE signals are not independent of each other. So the accuracy
of HMM is the lowest in the four models. The CRF model
could fully utilize the information of the features and accept
the dependences between the features. Meanwhile, it could
always achieve global optimization.

Furthermore, ROC curve is used to test the performance
of CRF model and BP, SVM, and HMM model [23-25]. The
curve is created by plotting the true positive rate (sensitivity)
against the false positive rate (1 — specificity) at various
threshold settings. The area under the curve (AUC) can be
used as judge criteria of models. Larger AUC represents better
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FIGURE 10: The ROC curve of the recognition results for corrosion
signals.
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FIGURE 11: The ROC curve of the recognition results for drop-back
interferences.

performance. Figures 9 and 10 show the ROC curves of
the recognition results for corrosion signals and drop-back
noises, respectively.

It is shown in Figures 10 and 11 that CRF model has the
greatest AUC, followed by SVM, BP, and HMM model.

Therefore, the recognition result of CRF model outper-
forms SVM, BP, and HMM in training speed, accuracy rate,
and the AUC of the ROC curves.
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FIGURE 12: The relation curve of AE hits varying with time in
laboratory test.

5. Application of CRF Model in
Field Experiments

In the last step of field experiment, the inner detector
collected both corrosion signals and drop-back noise. During
the experiment of one hour, 7475 groups of AE signals were
collected and classified using CRF model. 1105 groups were
classified as corrosion signals and the other 6370 groups were
identified as drop-back interferences. And the quantity of
corrosion signals is approximately equal to the quantity of
corrosion signals collected in the laboratory in the same dura-
tion. To test the effect of CRF model in the field environment,
statistical analysis method was used to compare the results.
The relation curves, in which the cumulative quantity of
signals varies with time, were obtained and showed in Figures
12 and 13.

In Figure 12, the corrosion signals were collected in the
laboratory and the quantity of AE hits (corrosion signals)
varies with time. It is observed that the corrosion process
can be divided into 4 zones. At the beginning (Zone 1), the
phosphoric acid began to react with the steel plate. Because of
the large contact area and high hydrogen ion concentration,
the quantity of AE hits increases fast. Then, the hydrogen
created during the reaction accumulated on the surface of
the plate and formed bubbles so that the contact area was
decreased (Zone 2). As the reaction progressed, the bubbles
converged into large bubbles and then burst out. The acid
was fully contacted with the steel plate again and the reaction
rate and the growth rate of AE hits increased dramatically
(Zone 3). While the concentration of hydrogen ion fell, the
acid reacted with the steel plate slower than before and the
quantity of AE hits grew slowly (Zone 4).

Figure 13(a) shows the relation between the quantity of
AE hits and time before being classified by CRF model and
it is almost linear. It does not reflect the statistical law of
the corrosion tests. Figure 13(b) shows the relation curve of
AE hits and time of the signals collected in field site after
classified by CRF model. The relation curve in Figure 13(b)
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FIGURE 13: The relation curve of AE hits varying with time in field test. (a) Signals unclassified by CRE. (b) Signals classified by CRE

also has 4 zones with same characteristics in Figure 12. There
is a subtle difference between turning point of the zones on
time axis in Figure 13(b) and that in Figure 12 because the set-
up time for inner detector to start collecting signals in the
field test was a litter longer than in the laboratory test. The
result shows that the data processed using CRF model could
reflect the statistical law of the corrosion test and the CRF
model performs well in the field test application.

6. Conclusions

Drop-back signals which are caused by condensation in
storage tanks with fixed roofs are a big problem in AE online
storage tank floor inspection. In this paper, a new inner AE
detector and a recognition algorithm based on CRF model are
applied to differentiate corrosion AE signals from drop-back
interferences. AE parameters, amplitude, counts, duration
time, rise time, true energy, average frequency, and peak fre-
quency, were selected as feature parameters for recognition.

Experiments were carried out in water tanks both in
laboratory and in the field to collect corrosion AE signals
and drop-back signals. The recognition results of CRF are
compared with other 3 models of BP, SVM, and HMM. The
comparisons of the accuracy, training speed, and the AUC
of the ROC curve show that the CRF outperforms the other
three models for the recognition of corrosion signals and
drop-back interference signals.
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