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This paper is focused on an assessment of the state of the art of operational modal analysis (OMA) methodologies in estimating
modal parameters from output responses of nonlinear structures. By means of the Volterra series, the nonlinear structure excited
by random excitation is modeled as best linear approximation plus a term representing nonlinear distortions. As the nonlinear
distortions are of stochastic nature and thus indistinguishable from the measurement noise, a protocol based on the use of the
random phase multisine is proposed to reveal the accuracy and robustness of the linear OMA technique in the presence of the
system nonlinearity. Several frequency- and time-domain based OMA techniques are examined for the modal identification of
simulated and real nonlinearmechanical systems.Theoretical analyses are also provided to understand how the systemnonlinearity
degrades the performance of the OMA algorithms.

1. Introduction

Operational modal analysis (OMA) aims at identifying the
modal properties of a structure based on response data of the
structure excited by ambient sources. Unlike experimental
modal analysis (EMA) [1], the OMA is performed in opera-
tional conditions of the vibrating structure, where the excita-
tion is inaccessible to be measured or hard to be applied. The
research activity around the theoretical basis of the OMA has
been largely increased, and powerful OMA techniques have
been developed in both the time- and frequency-domains,
as collected in recent tutorial work [2, 3]. The time-domain
methodologies estimate the modal model based on a state-
space representation of the system obtained from the time-
domain data [4], while the frequency-domain approaches
identify the modal parameters from power spectral density
functions of output responses [5, 6]. System identification
methods for the OMA are extensively reviewed in [7, 8],
differentOMAand EMAmethods for the estimation of linear
time-invariant (LTI) dynamical models are compared in an
extensive Monte Carlo simulation study [8]. The state of the

art of OMA methodologies is also assessed for estimating
modal parameters of a helicopter structure in a laboratory
environment, where the helicopter structure behaves linearly
by controlling the excitation level [9].

The OMA techniques have been utilized to estimate the
modal properties of important structures for the purpose of
health monitoring and maintenance, such as wind turbines
[10], bridges [11], and historical aqueduct [12]. Generally,
with the real-life vibration data, the detection of structural
damage by estimating the modal properties is complicated
by the impact of changing environmental conditions and
the nonwhiteness property of the ambient excitation. Both
of them can induce significant changes of the monitored
alert feature. The former problem is treated using factor
analysis, and damage is detected using statistical process
control [13].The latter problem can be ideally solved through
the concept of the transmissibility, as the input excitation
is canceled in computing transmissibility functions between
output responses. The transmissibility functions are fully
exploited for the OMA, as reported in [14, 15]. In addition
to the above two factors, the output-only modal estimate
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is also perturbed by the system nonlinearity. Indeed, the
OMA techniques are all derived based on LTI dynamical
models, while all the actual structures are nonlinear to
some extent. Moreover, the structures to which the OMA
approaches are applied are assemblies, often utilize composite
materials, and even have flexible components. Diverse types
of nonlinearities can be present, such as geometric nonlin-
earity due to the large deformation experienced by a flexible
structure, material nonlinearity owing to a nonlinear stress-
strain constitutive law, contact nonlinearity resulting from
boundary conditions. Very often, the real-life structures to
be monitored are exposed to nonstationary and even severe
ambient excitation, for instance, caused by earthquake or
hurricane. Within such context, it is therefore of paramount
importance to study the influence of the system nonlinearity
on the output-only modal estimation for the purpose of
the (fully automatic) structural damage detection. To the
authors’ knowledge, this fundamental issue still remains to be
addressed. The way of dealing with the system nonlinearity
can be split into two groups.The first group considers explic-
itly a nonlinearmodel such as nonlinear ARX (autoregressive
with exogenous inputs) for parameter estimation [16, 17].The
second group still considers linear models while bounding
the estimation variability due to the nonlinear distortions.
The latter fits in the scope of this paper as the goal of
the present work is to assess the performance of the LTI
model based OMA technique with respect to the system
nonlinearity.

The system nonlinearity strongly depends on the class
of excitation signal. The ambient excitation is usually not of
Gaussian type. However, approximate Gaussian distribution
can occur in many situations, as explained by the Central
Limit Theorem. As reported in literature, only the first- and
second- order statistical properties of the ambient excitation
are exploited in the OMA algorithms. So a normally dis-
tributed ambient excitation is considered herein. The present
work is confined to nonlinear Wiener systems that can
be approximated in the mean square sense by a Volterra
system for Gaussian excitation. The major property of a
Wiener system is that the steady state response to a periodic
input is periodic with the same period as the input. The
nonlinear structure of the Wiener system can be modeled as
a related linear system plus a part representing the nonlinear
distortions under random excitation [18, 19]. The latter is
proved to be asymptotically normally distributed, mixing
of order infinity over frequency under Gaussian excitation
[18]. Then, considering them in the weighting matrix of the
cost function, applying LTI system identificationmethod will
return best (in the least square sense) linear approximation
(BLA) of the nonlinear system.

Disturbed by the measurement noise in observation data,
the stochastic nonlinear distortions are not recognizable,
usually naively treated as independent noise. Therefore, the
issues of separating them from noisy data and of generating
their stochastic realizations should first be addressed in order
to quantify the performance of the OMA algorithm. To this
end, the random phase multisine (RPM) is advocated as
an excitation signal for the OMA. The RPM is normally
distributed by increasing the number of harmonic lines and

advantageous over the Gaussian noise due to its flexible
design and its periodicity. The amplitudes of harmonic com-
ponents in the RPM are set constant to meet the whiteness
assumption of the excitation, as required by most OMA
algorithms. The random phases of the RPM then become
the sole factors to determine the nonlinear distortions of the
nonlinear system. Additionally, the periodic property of the
RPM leaves Fourier transformation of input/output data free
of the leakage error.

Despite the existence of a large number of alternative
OMA techniques developed during the last decades, they
are, however, just based on few basic principles. Therefore,
the present work is mainly focused on three representative
methods with completely distinct theoretical backgrounds:
frequency-domain decomposition (FDD), stochastic sub-
space identification (SSI), and transmissibility based opera-
tional modal analysis (TOMA).Themain contribution of the
present work is to provide a protocol to assess the modal
estimation of nonlinear structures by the OMA techniques,
which is based on the use of the RPM.Theprotocol comprises
two parts: one part is to evaluate the accuracy of the LTI
model based OMA algorithm in comparison with the well
established input-output approach; the other is to examine its
robustness to the nonlinear distortions. Further, the protocol
is carried out for a series of excitation levels in order to reveal
extensively the performance of the OMA techniques in the
presence of the systemnonlinearity. Also, theoretical analyses
are provided to understand how the system nonlinearity
influences the accuracy of the OMA algorithms.

The rest of the paper is structured as follows. Section 2 is
devoted to building a nonlinear framework for system iden-
tification. Section 3 recapitulates the theoretical background
of the considered OMA techniques. Section 4 describes the
protocol dedicated to investigating OMA techniques in the
presence of the structural nonlinearity. Section 5 illustrates
the output-only identification of simulated and real nonlinear
structures. Concluding remarks are given in Section 6.

2. Nonlinear System Modeling

2.1. Random Phase Multisine. The RPM plays a crucial role
in designing a protocol to assess the accuracy of estimating
nonlinear structures by OMA techniques. With a uniform
amplitude 𝐴0, it takes the following form:

𝑞 (𝑡) = 𝐴0

𝑁/2−1
∑

𝑘=−𝑁/2+1
exp (𝑗2𝜋𝑓

𝑠
𝑘𝑡 + 𝜙

𝑘
) , (1)

where 𝑓
𝑠
is the clock frequency of the arbitrary waveform

generator, 𝑁 is the number of samples in one signal period,
and the set of the phases {𝜙

𝑘
} is a realization of an inde-

pendent distributed random process on [0, 2𝜋) such that
E[exp(𝑗𝜙

𝑘
)] = 0 and 𝜙

−𝑘
= 𝜙

𝑘
. The amplitude of the RPM

is used to set the excitation level, and its random phases
determine the nonlinear distortions of the system.

2.2. Volterra Series of a Nonlinear System Output. A descrip-
tion of a nonlinear system by means of the Volterra series
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Figure 1: Modeling of a nonlinear system under a normally distributed excitation. 𝐹0(𝑘) and 𝑌0(𝑘) are the input-output noise-free spectra,
𝐺BLA(𝑘) is the best linear approximation of the nonlinear system, 𝑌Lin(𝑘) is the linear part of 𝑌0(𝑘), and 𝑌𝑆(𝑘) represents the nonlinear
distortions in 𝑌0(𝑘).

is formally introduced and the stochastic property of the
system nonlinearity is presented. The case of single output is
considered for the ease of illustration. By the Volterra series,
the output of a nonlinear system is decomposed into

𝑦 (𝑡) =

+∞

∑

𝛼=1
𝑦
(𝛼)
(𝑡) , (2)

where 𝑦(𝛼)
(𝑡) is the contribution of degree 𝛼

𝑦
(𝛼)
(𝑡)

= ∫

+∞

−∞

⋅ ⋅ ⋅ ∫

+∞

−∞

ℎ
(𝛼)
(𝜏1, . . . , 𝜏𝛼)

𝛼

∏

𝑖=1
𝑓 (𝑡 − 𝜏

𝑖
) d𝜏1,

. . . , d𝜏
𝛼
,

(3)

where 𝑓(𝑡) denotes the excitation (driven by the RPM) and
ℎ
(𝛼)
(𝜏1, . . . , 𝜏𝛼) (𝛼 > 1) is the generalization of the impulse

function ℎ(1)(𝜏) and is referred to as Volterra kernel, whose
symmetrized frequency-domain representation is written as

𝐻
(𝛼)

𝑘1 ,...,𝑘𝛼
= ∫

+∞

−∞

⋅ ⋅ ⋅ ∫

+∞

−∞

ℎ
(𝛼)
(𝜏1, . . . , 𝜏𝛼)

⋅ 𝑒
−𝑗2𝜋𝑓

𝑠
(𝑘1𝜏1+⋅⋅⋅+𝑘𝛼𝜏𝛼)d𝜏1, . . . , d𝜏𝛼.

(4)

Applying the discrete Fourier transform to (2) along with (4),
it follows that at the 𝑘th frequency line 𝑌(𝑘) = ∑+∞

𝛼=1 𝑌
(𝛼)
(𝑘),

with

𝑌
(𝛼)
(𝑘) =

𝑁/2−1
∑

𝑘1 ,...,𝑘𝛼−1=−𝑁/2+1
𝐻

(𝛼)

𝑘1 ,...,𝑘𝛼−1 ,𝐿𝑘
𝐹 (𝑘1)

⋅ 𝐹 (𝑘2) ⋅ ⋅ ⋅ 𝐹 (𝑘𝛼−1) 𝐹 (𝐿𝑘
) ,

(5)

and 𝐿
𝑘
= 𝑘 − ∑

𝛼−1
𝑖=1 𝑘𝑖.

2.3. Best Linear Approximation and Nonlinear Distortions.
The frequency response function of a nonlinear system is by
definition computed as

𝐺 (𝑘) =
𝑌 (𝑘)

𝐹 (𝑘)
=

+∞

∑

𝛼=1

𝑌
(𝛼)
(𝑘)

𝐹 (𝑘)
= 𝐻

(1)
𝑘⏟⏟⏟⏟⏟⏟⏟

𝐺0(𝑘)

+

+∞

∑

𝛼=2

𝑁/2−1
∑

𝑘1 ,...,𝑘𝛼−1=−𝑁/2+1
𝐻

(𝛼)

𝑘1 ,...,𝑘𝛼−1,𝐿𝑘

𝐹 (𝑘1) 𝐹 (𝑘2) ⋅ ⋅ ⋅ 𝐹 (𝑘𝛼−1) 𝐹 (𝐿𝑘
)

𝐹 (𝑘)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺
(𝛼)

(𝑘)

,

(6)

where 𝐺0(𝑘) is the underling linear system and ∑+∞

𝛼=2 𝐺
(𝛼)
(𝑘)

represents the system nonlinearity.
Under the excitation of the RPM, ∑+∞

𝛼=2 𝐺
(𝛼)
(𝑘) is further

decomposed into a systematic part𝐺
𝐵
(𝑘)which depends only

on the amplitude of the RPM and a stochastic part denoted
by 𝐺

𝑆
(𝑘) which depends on both the amplitude and the

phase of the RPM. 𝐺
𝑆
(𝑘) behaves as uncorrelated noise (over

frequency line), and further 𝐺
𝑆
(𝑘) is an asymptotically zero-

mean circular complex normal variable with respect to the
random realization of the phases of the RPM [18].𝐺0(𝑘) along
with𝐺

𝐵
(𝑘) constitutes the best linear approximation (BLA) of

the nonlinear system in the least square sense,

𝐺 (𝑘) = 𝐺0 (𝑘) + 𝐺𝐵 (𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺BLA(𝑘)

+𝐺
𝑆 (𝑘) . (7)

It is stressed that, through the term 𝐺
𝐵
(𝑘), 𝐺BLA(𝑘) depends

on the loading condition (level or location of the excitation)
applied to the distributed nonlinear structure. By (7), the
output of a nonlinear system is accordingly split into two
parts: the first part that is related to the input and the second
part𝑌

𝑆
(𝑘) that is uncorrelatedwith the input over the random

phases of the RPM, as illustrated in Figure 1. The output
nonlinear distortions 𝑌

𝑆
(𝑘) are related to 𝐺

𝑆
(𝑘) as

𝑌
𝑆 (𝑘) = 𝐺𝑆 (𝑘) 𝐹0 (𝑘) (8)

and have similar stochastic properties as 𝐺
𝑆
(𝑘) (see [18] for

proof details). 𝐹0(𝑘) is the force applied by the exciter, which
is controlled with the RPM defined in (1).

3. Theoretical Background of Operational
Modal Analysis Techniques

In this section, the theoretical background of the OMA
techniques considered in this paper is briefly recapitulated,
Note that they have all been developed with the purpose of
extracting the underlying system 𝐺0(𝑘) in (6). More details
can be found in the cited references.

3.1. Frequency-DomainDecomposition (FDD). The frequency
response matrix G(𝜔) is expressed as a sum of the contribu-
tions of system modes in a frequency band of interest,

G (𝜔) =
𝑁
𝑚

∑

𝑖=1

R
𝑖

𝑗𝜔 − 𝜆
𝑖

+
R
𝑖

𝑗𝜔 − 𝜆
𝑖

, (9)

where R
𝑖
= 𝜙

𝑖
𝛾𝑇
𝑖
with 𝜙

𝑖
the column vector of the 𝑖th mode

shape and 𝛾
𝑖
the column vector of the modal participation
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factor and 𝜆
𝑖
= (−𝜂

𝑖
+𝑗√1 − 𝜂2

𝑖
)𝜔0,𝑖 with 𝜂𝑖 the damping ratio

and 𝜔0,𝑖 the angular frequency (rad/s).
Theoretically, assuming that the ambient excitation has a

constant spectrum S
𝐹𝐹
, the noiseless output power spectral

density matrix is written as

SYY (𝜔) = G (𝜔) S𝐹𝐹G
𝐻
(𝜔) . (10)

Substituting G(𝜔) by its modal decomposition in (9) and
using the Heaviside partial fraction theorem for polynomial
expansions, SYY(𝜔) can be written as

SYY (𝜔) =
𝑁
𝑚

∑

𝑖=1

A
𝑖

𝑗𝜔 − 𝜆
𝑖

+
A

𝑖

𝑗𝜔 − 𝜆
𝑖

+
A𝑇

𝑖

−𝑗𝜔 − 𝜆
𝑖

+
A𝐻

𝑖

−𝑗𝜔 − 𝜆
𝑖

,

(11)

where

A
𝑖
= R

𝑖
S
𝐹𝐹

𝑁
𝑚

∑

𝑙=1

R𝐻

𝑙

−𝜆
𝑙
− 𝜆

𝑖

+
R𝑇

𝑙

−𝜆
𝑙
− 𝜆

𝑖

. (12)

In the vicinity of the 𝑖th eigenfrequency, 𝜔 ∈ sub(𝜔0,𝑖),
it approximatively holds by exploiting the lightly damped
property that

A
𝑖
≈
R
𝑖
S
𝐹𝐹
R𝐻

𝑖

2𝜂
𝑖
𝜔0,𝑖

= 𝜙
𝑖

𝛾𝑇
𝑖
S
𝐹𝐹
𝛾
𝑖

2𝜂
𝑖
𝜔0,𝑖
𝜙
𝐻

𝑖
= 𝑑

𝑖
𝜙
𝑖
𝜙
𝐻

𝑖
. (13)

Then for 𝜔 ∈ sub(𝜔0,𝑖) it is derived that

SYY (𝜔) ≈
𝑑
𝑖
𝜙
𝑖
𝜙𝐻
𝑖

𝑗𝜔 − 𝜆
𝑖

+
𝑑
𝑖
𝜙
𝑖
𝜙𝐻
𝑖

−𝑗𝜔 − 𝜆
𝑖

= 2 Re(
𝑑
𝑖

𝑗𝜔 − 𝜆
𝑖

)𝜙
𝑖
𝜙
𝐻

𝑖
,

(14)

where Re(𝑋) is the real part of the complex number𝑋.
Assuming the orthogonality of the mode shapes, (14)

can be interpreted as a singular value decomposition (SVD)
of SYY(𝜔) where only one single component is dominant
while 𝜔 ∈ sub(𝜔0,𝑖). This suggests a simple procedure to
estimate the modal parameters: decomposing the spectral
response into a set of single degree of freedom systems using
the SVD, each corresponding to an individual mode. The
poles are estimated by the enhanced FDD [20]. The unscaled
mode shape is obtained by picking out the corresponding
eigenvector of the estimated power spectral density matrix.

With the real-life data, the estimate of the output power
spectral density matrix can be (heavily) biased due to the
presence of the nonlinear distortions which are mutually
correlated over space in the frequency-domain.The use of the
SVD can alleviate this situation by discarding lower singular
valueswhich correspond to less significant components in the
noisy data.

3.2. Stochastic Subspace Identification (SSI). The SSI method
estimates the modal parameters based on the stochastic
discrete-time state-space model of a mechanical structure,

x
𝑘+1 = Ax

𝑘
+w

𝑘
,

y
𝑘
= Cx

𝑘
+ k

𝑘
,

(15)

where the subscript 𝑘 denotes the time instant, x
𝑘
is a vector

of the system state, y
𝑘
is an output vector, A is the discrete

state matrix, C is the selection matrix, w
𝑘
is a vector of noise

due to the (white) random excitation, and k
𝑘
is a vector of

noise representing the sum of the random excitation and the
measurement noise.

Two versions of the SSI are typically used [4, 21]: data
driven SSI and covariance driven SSI (SSI-COV). The latter
is taken for algorithmic explanation in what follows. The
SSI-COV algorithm starts with the covariance matrix of the
structural response with 𝑛

𝑟
reference outputs yref

𝑘
of them,

Λ
ref
𝑙
= E [y

𝑘+𝑙
(yref

𝑘
)
𝑇

] , (16)

where the expectation operation (E) is performed with the
purpose of correlating out the unwanted dynamics to obtain
the system description. However, the nonlinear distortions
in the output noise term k are mixing of infinite order over
time (self-correlated), whose components are also mutually
correlated over space.This leads to a biased covariancematrix
Λref

𝑙
, and eventually decreases the estimation accuracy.
A block Toeplitz matrix is constructed by assembling the

output covariance matrices

Lref1|𝑖
𝑏

=

[
[
[
[
[
[
[

[

Λref
𝑖
𝑏

Λref
𝑖
𝑏
−1 ⋅ ⋅ ⋅ Λref1

Λref
𝑖
𝑏
+1 Λ

ref
𝑖
𝑏

⋅ ⋅ ⋅ Λref2

.

.

.
.
.
. ⋅ ⋅ ⋅

.

.

.

Λref2𝑖
𝑏
−1 Λ

ref
2𝑖
𝑏
−2 ⋅ ⋅ ⋅ Λref

𝑖
𝑏

]
]
]
]
]
]
]

]

. (17)

UsingΛref
𝑙
= CA𝑙−1Gref withGref the so-called state-reference

output covariance matrix, Lref1|𝑖
𝑏

is decomposed into

Lref1|𝑖
𝑏

=

[
[
[
[
[
[
[

[

C
CA
.
.
.

CA𝑖
𝑏
−1

]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

O
𝑖
𝑏

[A𝑖
𝑏
−1Gref A𝑖

𝑏
−2Gref

⋅ ⋅ ⋅ AGref Gref
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Cref
𝑖
𝑏

,
(18)

where O
𝑖
𝑏

is called the extended observability matrix and
Cref

𝑖
𝑏

is the reference-based stochastic controllability matrix.
Theoretically, from the observability matrix O

𝑖
𝑏

, the state
matrix A and the output selection matrix C can be obtained.
The natural frequencies, damping ratios, and unscaled mode
shapes are finally derived from the estimated matrices A and
C.
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3.3. Transmissibility Based Operational Modal Analysis
(TOMA). The case of the scalar transmissibility function
is considered for the algorithmic illustration. The scalar
transmissibility function is defined in the Laplace domain as
the ratio of the output spectrum at the 𝑖th degree of freedom
(dof) and the one at the 𝑗th dof under the excitation of an
unknown force at the 𝑘th dof,

𝑇
(𝑘)

𝑖𝑗
(𝑠) =

𝑌
(𝑘)

𝑖
(𝑠)

𝑌
(𝑘)

𝑗
(𝑠)

=
𝐺

𝑖𝑘 (𝑠) 𝐹𝑘 (𝑠)

𝐺
𝑗𝑘 (𝑠) 𝐹𝑘 (𝑠)

=
𝐺

𝑖𝑘 (𝑠)

𝐺
𝑗𝑘 (𝑠)

. (19)

The kernel idea of the TOMA approach is that the scalar
transmissibility functions of a linear structure, estimatedwith
the response data from different loading conditions, cross
each other at the poles of the system.Using (9), the limit value
of the transmissibility function when 𝑠 → 𝜆

𝑚

lim
𝑠→𝜆

𝑚

𝑇
(𝑘)

𝑖𝑗
(𝑠) = lim

𝑠→𝜆
𝑚

(𝑠 − 𝜆
𝑚
) 𝐺

𝑖𝑘 (𝑠)

(𝑠 − 𝜆
𝑚
) 𝐺

𝑗𝑘 (𝑠)

= lim
𝑠→𝜆

𝑚

∑
𝑁
𝑚

𝑙=1 [(𝑠 − 𝜆𝑚
) 𝜙

𝑖𝑙
𝛾
𝑙𝑘
/ (𝑠 − 𝜆

𝑙
) + (𝑠 − 𝜆

𝑚
) 𝜙

𝑖𝑙
𝛾
𝑙𝑘
/ (𝑠 − 𝜆

𝑙
)]

∑
𝑁
𝑚

𝑙=1 [(𝑠 − 𝜆𝑚
) 𝜙

𝑗𝑙
𝛾
𝑙𝑘
/ (𝑠 − 𝜆

𝑙
) + (𝑠 − 𝜆

𝑚
) 𝜙

𝑗𝑙
𝛾
𝑙𝑘
/ (𝑠 − 𝜆

𝑙
)]

=
𝜙
𝑖𝑚
𝛾
𝑚𝑘

𝜙
𝑗𝑚
𝛾
𝑚𝑘

=
𝜙
𝑖𝑚

𝜙
𝑗𝑚

,

(20)

which is independent of the input. Combining the transmis-
sibility functions of two distinct loading locations (𝑘) and (𝑙),
it follows that

lim
𝑠→𝜆

𝑚

Δ𝑇
(𝑘𝑙)

𝑖𝑗
(𝑠) = lim

𝑠→𝜆
𝑚

[𝑇
(𝑘)

𝑖𝑗
(𝑠) − 𝑇

(𝑙)

𝑖𝑗
(𝑠)]

=
𝜙
𝑖𝑚

𝜙
𝑗𝑚

−
𝜙
𝑖𝑚

𝜙
𝑗𝑚

= 0.
(21)

Different ways are reported in the literature to extract the
modal parameters based on (21); see, for instance, [14, 15].
The approach employed here is based on the parametrically
estimated scalar transmissibility functions. The transmissi-
bility function admits a rational form, as indicated by (19).
Choosing the 𝑗th output as reference, a common denomina-
tor rationalmodel is used to parameterize the transmissibility
functions, whose parameters are estimated using the sample
maximum likelihood method [18].

Then, using the transmissibility functions estimated from
the loading conditions (𝑙) and (𝑘), respectively, the function
used for modal identification is defined as

Δ
−1
𝑇
(𝑘𝑙)
(𝑠, 𝜃̂) =

1
∑

𝑖∈D [𝑇
(𝑘)

𝑖𝑗
(𝑠, 𝜃̂) − 𝑇(𝑙)

𝑖𝑗
(𝑠, 𝜃̂)]

=
𝐵 (𝑠, 𝜃

𝑇
)

𝐴 (𝑠, 𝜃
𝑇
)
,

(22)

where D denotes the set of the dofs of the outputs except
the 𝑗th one. 𝜃

𝑇
can be easily derived from 𝜃̂ by means of

[1,1]
(t)

[2,1]
(t)

[N𝑅,1](t)

[1,2]
(t)

[2,2]
(t)

[N𝑅,2](t)

[1,N𝑃](t)

[2,N𝑃](t)

[N𝑅,N𝑃](t)

· · ·

· · ·

· · ·

...

Period

Exp. #1

Exp. #2

z

z

z

z z

zz

z z Exp. #NR

Figure 2: Scheme of multiple experiments, z(𝑡) = [𝑓(𝑡), y𝑇(𝑡)]𝑇,
y(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛

𝑦

(𝑡)]
𝑇 with 𝑛

𝑦
the number of outputs and

the superscript𝑇 the transpose operator.𝑁
𝑃
and𝑁

𝑅
are the number

of periods and experiments, respectively.

symbolic computation. The poles are then obtained from 𝜃
𝑇

and the unscaledmode shapes are estimated by evaluating the
identified transmissibility functions at the estimated poles.

Note that the TOMAmethod is superior to other output-
only identification techniques in dealing with colored ambi-
ent excitation; however, the need of combining different load-
ing conditionsmakes it vulnerable to the system nonlinearity.

4. Assessment Protocol

The output-only modal identification of nonlinear structures
is conducted for a series of excitation levels. At each excitation
level, a protocol is applied to assess the algorithm perfor-
mance with respect to the nonlinearity, which is established
in the following sections.

4.1. Uncertainty Bound Based on Multiple Experiments. With
the RPM defined in Section 2.1 as an excitation signal,
the measurement noise accounts for the difference of the
observed data over the periods while the nonlinear distor-
tions are deterministic once the phases of the RPM are fixed
in an experiment.Therefore, themeasurement noise is kicked
out by averaging vibration data over period and the denoised
output data are mainly corrupted by (a realization of) the
nonlinear distortions. The efficient way for examining the
robustness of the algorithm is to provide an uncertainty
bound induced by the system nonlinearity in the form of
formula. However, unlike the independent disturbing noise,
the nonlinear distortions are dependent on input signals.
This will create higher order moments in the variance
calculations formodal estimates, which cannot be captured in
a linear system identification framework. As a result, a Monte
Carlo analysis based on multiple experiments with different
random realizations of the RPM is needed.

The strategy of multiple experiments aims at generating
a set of realizations of the nonlinear distortions, over which
the robustness of the OMA algorithm is completely assessed
for a specified excitation level, as depicted in Figure 2.
Each experiment is conducted with an independent phase
realization of the RPM, and a number of consecutive periods
of the steady state response are measured.
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Figure 3: (a) 4DOF model with local nonlinearity (𝑚 = 1 kg, 𝑘 = 103 N⋅m−1, 𝑐 = 0.5 kg⋅s−1, 𝑘NL = 𝑘 + 50𝑥31(𝑡), and 𝑐NL = 𝑐 + 5 × 10−3𝑥̇24(𝑡)).
(b) Evolution of the BLAs associated with the 3rd mass when the input is located at the 4th mass with three levels of excitation and perturbed
lines displayed below represent the standard deviations of the nonlinear distortions (black: strong, dark gray: medium, and light gray: weak).

The dataset, collecting output data from all the experi-
ments, is used to investigate the uncertainties of the modal
estimates in light of the following procedure:

(i) Consider∀𝑟 = 1, . . . , 𝑁
𝑅
.

(a) Feed the shaker with the RPM of the 𝑟th phase
realization and acquire the noisy output signals
{y[𝑟,𝑝](𝑡)}𝑁𝑃

𝑝=1.
(b) Average the output data over the periods, leav-

ing them mainly corrupted by the nonlinear
distortions,

ŷ[𝑟] (𝑡) = 1
𝑁

𝑃

𝑁
𝑃

∑

𝑝=1
y[𝑟,𝑝] (𝑡) , (23)

where themeasurement noise in ŷ[𝑟](𝑡) vanishes
at the rate of 1/√𝑁

𝑃
.

(c) Apply each OMA algorithm to ŷ[𝑟](𝑡) to extract
eigenfrequencies, damping ratios, and unscaled
mode shapes.

(ii) Repeat steps (a)–(c) for all the 𝑁
𝑅
experiments, a set

of modal estimates being delivered, over which any
order statistics can be empirically computed.

4.2. Identification of Best Linear Approximation. The OMA
approaches fail to extract the underlying linear system due
to the presence of the bias term 𝐺

𝐵
in (7) induced by the

nonlinear behavior of the system.Therefore, their accuracy is
herein evaluated in comparison with the input-output EMA
approach. In the presence of the nonlinear distortions, the
EMA approach extracts the modal parameters based on the
BLAs of the nonlinear structure. The identification of the
BLA can be done, for instance, using the sample maximum
likelihood method which is optimal in the sense that the
variance of the estimate is close to the Cramér-Rao lower
bound [18].

5. Applications

The OMA techniques are applied to identify nonlinear
systems excited by a series of excitation levels. The excitation
level is expressed in the form of signal-to-noise ratio defined
as follows:

SNRdB = 10log10

{{{

{{{

{

∑
𝑛
𝑦

𝑖=1 ∑𝑘

󵄨󵄨󵄨󵄨󵄨
𝐺

(𝑖)

BLA (𝜔𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

∑
𝑛
𝑦

𝑖=1 ∑𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎̂
2
𝐺
(𝑖)

BLA
(𝜔

𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

}}}

}}}

}

, (24)

where 𝐺BLA and 𝜎
𝐺BLA

are the identified BLA and quantified
standard deviation, respectively.

5.1. Simulated Case

5.1.1. Nonlinear System. The simulated example is a 4DOF
mass-spring-damper model with local nonlinearity and the
spring stiffness and damping at the ends are state-dependent,
as described in Figure 3(a).

5.1.2. Parameter Setting. The sampling frequency is 64Hz,
𝑁

𝑃
= 4, 𝑁

𝑅
= 100. In order to illustrate the algorithmic

behavior very clearly, we take the extreme point of view that
no measurement noise is present. The simulated data are
only corrupted by the nonlinear distortions after discarding
the periods in response corrupted by the transient effect.
Three levels of excitation are considered, the corresponding
SNRdB, 89.8, 46.7, and 37.6, are classified as weak, medium,
and strong, respectively.The evolution of the BLAs and of the
associated nonlinear distortions of the 3rd mass is shown in
Figure 3(b) when the input is located at the 4th mass.

The modal assurance criterion (MAC) index is set equal
to 0.85 for the FDD method to choose the frequency vicinity
around a pole. Consider 𝑖

𝑏
= 15 in (17) for the SSI-COV

algorithm. The number of measured outputs (𝑛
𝑦
) directly

influences the performance of the FDD, SSI, and TOMA
through (10), (16), and (22), respectively. The more reliable
results would be obtained with more output data. However,
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Figure 4: The rows show four modes and the columns represent the probability distributions of eigenfrequencies obtained by the SSI-COV,
FDD, and TOMA for three excitation levels (light gray: weak, dark gray: medium, and black: strong). Dashed lines: EMA estimates with the
force applied at 𝑥4.

𝑛
𝑦
is limited by the data acquisition system. Here, 𝑛

𝑦
is set as

4 for the output-only and input-output modal identification.
Two loading conditions are created for the TOMA approach
by shifting the excitation location from the 1st mass to the 4th
one.

5.1.3. Results and Discussion. Themultiple simulated data are
generated (as shown in Figure 1), based on which the previ-
ously described OMA and EMA approaches are applied to
obtain the modal estimates. The estimated eigenfrequencies
and damping ratios are normalized with respect to those
identified using the input-output data at the lowest level of
excitation.Themode shape estimated by theOMA is normal-
izedwith respect to the one obtained by the EMA through the
use of the MAC.These normalized modal values can provide
a clear view on the accuracy of the OMA algorithms, whose
dispersion vividly demonstrates the algorithmic robustness
with respect to the nonlinear distortions.

As expected, Figures 4–6 depict that in the case of the
lowest excitation level the considered OMA techniques all
identify well the system which behaves linearly. The modal
estimates are shown to become more dispersed and even
biased but still situated around those of the BLAs when

severe nonlinear distortions are stimulated by increasing
the excitation level. The performance of the FDD method
is remarkable except for the mode shape estimates as they
are obtained by picking the discrete values determined by
the frequency resolution of the spectrum. As commented
in Section 3.3, the eigenfrequency estimates by the TOMA
approach generally deviate more from the EMA estimates
than the other methods. However, it is worth pointing out
that the hardening behavior of the nonlinear system is most
captured by all the OMA techniques, as reflected by the
estimated eigenfrequencies.

5.2. Real Case

5.2.1. Nonlinear System. The nonlinear system under inves-
tigation is a mechanical structure consisting of a beam,
frame, and support attachment, as displayed in Figure 7(a).
The main part of the system is formed by fastening two
beams together, whose left side is clamped in a rigid support
and right side is adhered to a steel frame put freely on
the ground. The use of various assemblies and joins in this
setup creates diverse underlying sources of nonlinearity, such
as beam clamping which introduces nonlinear stiffness of
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Figure 5: The rows show four modes and the columns represent the probability distributions of damping ratios obtained by the SSI-COV,
FDD, and TOMA for three excitation levels (light gray: weak, dark gray: medium, and black: strong). Dashed lines: EMA estimates with the
force applied at 𝑥4.

(possibly high-order) polynomial form, frictional slips at
loosened interfaces which introduce additional flexibility
and hysteretic damping to the overall structural dynamics.
Also, it commonly occurs that nonlinearity is unintentionally
introduced in the measurement chain, for example, preload-
ing the beam because of insufficient human checks, which
generally creates a nonlinear stiffness of cubic form. All kinds
of nonlinearity are treated in a unified way based on the
established protocol, whose effects on structural dynamics
are determined by identifying the BLA and bounding the
stochastic nonlinear distortions.

5.2.2. Parameter Setting. The sampling frequency is 8192Hz,
𝑁

𝑃
= 256, 𝑁

𝑅
= 40. Following the same lines of the

simulation, three levels of excitation are set by the SNRdB:
60.3 (weak), 48.7 (medium), and 33.5 (strong). Applying the
shaker at the position (1), Figure 7(b) shows the apparent
shift-down of eigenfrequencies of the considered system by
raising the excitation level, which is in large part due to the
use of various joints in the setup. In addition to the softening
effect, two close but distinct poles are present around 300Hz
for low levels of excitation.These poles are transformed into a
single pole when a larger amount of power is injected into the

system. The presence of the system nonlinearity is classically
indicated in terms of the coherence function in Figure 8(a),
and Figure 8(b) displays several realizations of the nonlinear
distortions.

The MAC index is set equal to 0.9 for the FDD method.
Consider 𝑖

𝑏
= 25 for the SSI-COV algorithm. The shaker

is applied at locations (1) and (2) on the beam, respectively,
creating distinct loading conditions for the TOMA.

5.2.3. Results and Discussion. When an electrodynamic
shaker is used to excite the structure in modal testing, it
is not trivial to investigate the considered OMA techniques
in a fair way. In fact, the force applied on the structure is
the reaction force between the shaker and the beam when
the armature mass and spider stiffness of the shaker are
not negligible, whose magnitude and phase depend upon
the characteristics of the structure and of the exciter. Thus
the shaker driving force does not meet the fundamental
assumption of white noise. Consequently, the FDD and SSI-
COV algorithms actually identify the whole system including
the nonlinear structure and the shaker part. Superior to
both of OMA techniques, the TOMA approach can identify
only the nonlinear structure of interest as the shaker part
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Figure 6:The rows show fourmodes and the columns represent the probability distributions ofMAC indices obtained by the SSI-COV, FDD,
and TOMA for three excitation levels (light gray: weak, dark gray: medium, and black: strong).
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Figure 7: (a) Experiment setup of the real structure, (b) best linear approximations under three excitation levels (black: strong, dark gray:
medium, and light gray: weak).

is simultaneously present in different outputs and further
canceled by computing transmissibility functions.

The output data are processed in line with the proposed
protocol (see Section 4.1). As shown in Figures 9 and 10,
the eigenfrequencies estimated by the SSI-COV and FDD
algorithms agree well with those extracted from the BLAs for
the three excitation levels. It is also found by comparing with

EMA estimates that the eigenfrequency estimates are more
accurate than those of damping ratios for the considered
OMA techniques. As analyzed in Sections 3.1 and 3.2, the esti-
mated SYY(𝜔) used for the FDD andΛref

𝑙
for the COV-SSI are

biased in the presence of the correlated nonlinear distortions
over space and time. The nonlinear perturbations in these
covariance matrices are propagated to the identification of
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Figure 8: (a) Coherence functions under three excitation levels (black: strong, dark gray: medium, and light gray: weak), (b) samples of the
nonlinear distortions separated from output data.
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Figure 9: The columns show four modes and the rows represent the probability distributions of eigenfrequencies obtained by the SSI-COV
and FDD with the shaker at location (1) for three excitation levels (light gray: weak, dark gray: medium, and black: strong). Dashed lines: the
EMA estimates.

damping ratios, especially for the SSI-COV without applying
any filter, as verified in Figure 10.

Shifting the shaker between the two locations induces a
remarkable evolution of the BLA, as clearly demonstrated in
Figure 11. The modal parameters are estimated by combining
the output dataset from these two loading configurations, as
seen in Figure 11.The eigenfrequency estimates still approach
quite well those of the BLAs with a relative error up to only
2.5%. They also can reflect the shift-down property of the
system, while the damping estimates are less meaningful. In
fact, (21) does not hold anymore in the presence of the system
nonlinearity such that lightly damping properties are hardly
extracted with reliable accuracy.

Although the approaches in time- and frequency-
domains behave similarly, it is found from the simulated and
real case studies that the FDD approach is characterized by
the highest accuracy for the eigenfrequency estimates.

6. Conclusions

TheOMA techniques have been applied to identify simulated
and real nonlinear structures; a full view on the algorithmic
performance is delivered by using a protocol that establishes
the estimation accuracy and robustness with respect to the
system nonlinearity. A theoretical motivation for the pro-
posed protocol is also provided. The following conclusions
and remarks can be drawn from our study.

(i) The output-only identification techniques are able to
extract most linear dynamics of a nonlinear structure,
but the estimates obtained by them are more biased
and dispersed in the presence of increasing nonlinear-
ity induced by the excitation change. The estimated
eigenfrequency is a robust indicator of the system
state induced by the nonlinearity.
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Figure 10: The columns show four modes and the rows represent the probability distributions of damping ratios obtained by the SSI-COV
and FDD with the shaker at location (1) for three excitation levels (light gray: weak, dark gray: medium, and black: strong). Dashed lines: the
EMA estimates.
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Figure 11: The columns show four modes and the rows show the probability distributions of eigenfrequencies and damping ratios by the
TOMA for three excitation levels (light gray: weak, dark gray: medium, and black: strong). Solid and dashed lines: EMA estimates from two
loading conditions.

(ii) Contrary to the SSI-COV and FDD, the TOMA
is insensitive to the coloring of the unobserved
excitation. However, it is more sensitive to system
nonlinearities than them.

(iii) Two (or more) loading conditions can be present in
one real-life measurement record, which can confuse
the interpretation of the modal estimates obtained
from it.Thus, developing an assistant tool of detecting
loading conditions comes to be very demandingwhen

the OMA is performed for the purpose of structural
health monitoring and system modeling.

Appendix

The modal assurance criterion (MAC) is used to determine
a suitable frequency band for FDD estimation, which is
performed based on the following steps.
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(1) Estimate roughly the 𝑟th eigenfrequency (e.g., by
the pick-up method) and obtain the eigenvector of
SYY(𝜔̂0,𝑟) at the estimated eigenfrequency 𝜔̂0,𝑟, which
is seen as the modal vector 𝜙

𝑑𝑟
.

(2) Select a frequency line in the vicinity of the eigen-
frequency 𝜔̂0,𝑟, at which the eigenvector of SYY(𝜔) is
decomposed and denoted by the modal vector 𝜙

𝑐𝑟
.

(3) Compute the MAC index

MAC =

󵄨󵄨󵄨󵄨󵄨
𝜙
𝐻

𝑑𝑟
𝜙
𝑐𝑟

󵄨󵄨󵄨󵄨󵄨

2

{𝜙
𝐻

𝑑𝑟
𝜙
𝑑𝑟
} {𝜙𝐻

𝑐𝑟
𝜙
𝑐𝑟
}
, (A.1)

where the superscript𝐻 denotes theHermitian trans-
pose.

(4) Collect all the frequency lines at which the MAC val-
ues are above the predefined threshold, constituting
the frequency band for the FDD estimation.
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