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A two-node spatial beam element with the Euler-Bernoulli assumption is developed for the nonlinear dynamic analysis of slender
beams undergoing arbitrary rigidmotions and large deformations. During the analysis, the global displacement and rotation vectors
with six degrees of freedom are selected as the nodal coordinates. In addition, the “shear locking” problem is avoided successfully
since the beam cross-sections are always perpendicular to the current neutral axes by employing a special coupled interpolation of
the centroid position and the cross-section orientation.Then a scheme is presented where the original transient strains representing
the nodal forces are replaced by proposed average strains over a small time interval.Thus all the high frequencies can be filtered out
and a corresponding equivalent internal damping will be produced in this new formulation, which can improve the computation
performance of the proposed element for solving the stiff problem and evaluate the governing equations even by using the nonstiff
ordinary differential equation solver. Finally, several numerical examples are carried out to verify the validation and efficiency of
this proposed formulation by comparison with the analytical solutions and other research works.

1. Introduction

Lots of slender structures in engineering are composed by
beams, such as framed structures, robot arms, large deploy-
able space structures, and turbine propellers. Motivated by
the higher standards and increasing demands in the field
of engineering design, the rigid-flexible coupling dynamic
analysis of the spatial beams undergoing large deformation
has drawn great attentions in the past few decades [1–10].

According to the rigid cross-section assumption, the
dimension of beam model is reduced. Meanwhile, it needs
paying careful attention to the parameterization and dis-
cretization of the finite rotation. As well known, the geo-
metrically exact beam theory [4, 5, 11] allows formulating
problems involving arbitrarily large displacements, rotations,
and strains, which has provided the basis ofmany recent finite
element formulations. In the original articles [5, 6], Simo and
Vu-Quoc employed the global position and rotation vector as
the nodal coordinates to independently interpolate the incre-
mental displacement and rotation fields. Since then, many

innovative numerical formulations of spatial beams with
different discretization of the rotation fields have been pro-
posed. Cardona and Geradin [1] advocated an interpolation
of the material incremental rotations. Ibrahimbegović et al.
[12] used a procedure to interpolate the total rotation vector
directly. Jelenić andCrisfield [13] proposed a new formulation
based on the interpolation of incremental local rotations. An
alternative approach was presented by Betsch and Steinmann
[10], in which the base vectors of the cross-section were
interpolated. Such beam elements, in which the fields of
displacement and rotation are interpolated independently,
are generally referred to as the “Timoshenko beam” elements,
however, accompanied by the “shear locking” phenomenon.
Moreover, the rotation vectors are physically nonadditive
quantities, and the direct discretization of rotations without
spoiling the objectivity of rotational strain measures is also a
challenging task [14, 15].

With one of the purposes of sidestepping the problems
caused by the finite rotation, the so-called absolute nodal
coordinate formulation of beam was originally developed
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by Shabana and Yakoub [16, 17]. By selecting absolute coor-
dinates and their slops, totally 12 degrees of freedom per
node, the particularly designed shape function can represent
arbitrary large rigid body motions exactly. This formulation
produces a constant mass matrix but suffers Poisson locking
problem [18].

The Euler-Bernoulli beammodel inherently requires that
the cross-section should keep perpendicular to the tangent
of the centerline during the deformation processes, which
means that the translation displacement and rotation fields
are coupled. It is easy to construct a set of field-consistent
interpolation functions under the assumption of small dis-
placements. Thus the Euler-Bernoulli beam elements are
commonly used in the corotational technique [19–22]. How-
ever, few Euler-Bernoulli beam formulations are proposed
for the structures with arbitrary rigid motions and large
deformations. Nanakorn and Vu [23] developed a planar
Euler-Bernoulli beam element for large displacement analysis
using the total Lagrangian formulation. More recently, Zhao
andRen [7] proposed a singularity-free Euler-Bernoulli beam
element, where each node includes totally eight degrees of
freedom (three global positions, four Euler parameters, and
one normal strain), to coupled interpolate the position and
orientation. However, the resulting governing equations are
a set of differential algebraic equations [7], which may lead
to additional challenges during calculating the numerical
solutions.

Although Euler-Bernoulli hypothesis makes the con-
struction of the interpolation function of the beam element
more difficult, it provides an idea to interpolate the finite
rotation field without direct discretization, which will benefit
from shear-locking-free and objectivity of rotational strains.
Based on this idea, a spatial Euler-Bernoulli element is devel-
oped in this paper for the rigid-flexible coupling dynamic
analysis. In this element, each node has six generalized nodal
coordinates, including the global displacement vector and
the rotation vector. Considering the normal strain being a
small quantity, we ignore the influence of the normal strain
at two end points on the shape of the centerline and get the
centroid position field through the nodal position vectors
and the normal vectors of the end sections with Hermite
interpolation. So the perpendicularity assumption at two
end points is guaranteed and the tangent field of centerline
is determined. Then the orientation of the cross-section
is achieved by the sequential rotations to keep the cross-
section perpendicular to the tangent vector. In this way, the
Euler-Bernoulli beam assumption is satisfied and the “shear
locking” problem will be avoided.

The governing dynamic equations of the system with
a large rigid body motion and small elastic vibration are
nonlinear stiff differential equations. Because of the presence
of high frequencies, whose response is an artifact of the spatial
discretization that contains no information about the physical
behavior of the system, the time integration of stiff equations
becomes very difficult. Many researches therefore try to
introduce a numerical dissipation in the high-frequency into
the time integration algorithms, such as Newmark method
[24], Wilson 𝜃-method [25], and generalized 𝛼-method [26].
In this paper, an effective scheme is proposed for reducing
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Figure 1: Geometric configuration of the spatial beam.

the difficulty of solving the stiff governing equation from the
finite element modeling. Based on this spatial beam element,
the average strains over a small time interval are introduced
to replace the original transient strains in the expression of
the nodal forces. Then an innovative finite element model
is derived, which can filter out all the high frequencies and
introduce the equivalent internal damping. The numerical
examples show that the governing equations can be solved
even by using the nonstiff ordinary differential equation
solver with an appropriate time interval parameter.

This paper is organized as follows. In Section 2 a brief
review of the parameterization of finite rotations is intro-
duced and the internal virtual power of a spatial Euler-
Bernoulli beam is derived. Then the finite element imple-
mentation for this beam is provided in Section 3. In addition,
several illustrative numerical examples are carried out in
Section 4 to verify the validation of the developed beam
element. Finally, some conclusions are presented in Section 5.

2. Geometry and Internal Virtual Power of
Euler-Bernoulli Beam

2.1. Parameterization of the Finite Rotation, Angular Velocity,
andCurvatureVector. According to the Bernoulli hypothesis,
which states that “plane sections remain plane,” the geometry
of the spatial beam is described by the centroid line and
a family of the corresponding cross-sections as shown in
Figure 1, where a fixed global frame with orthonormal base
vectors (g1, g2, g3) is defined and the centroid line is described
by the position vector r(𝑠) with 𝑠 representing the arc-length
coordinate of the reference configuration.

The cross-section, whose geometric shape is assumed to
be arbitrary and unchanged along the beam, executes rota-
tional motion during deformation. A family of orthonormal
basis (e1, e2, e3), called the cross-section basis or the material
basis, is employed to describe the orientation of the cross-
sections. The base vectors e2 and e3 are directed along the
principal axes of inertia of the cross-section, and e1 is the
normal vector of the cross-section; that is, e1 = e2 × e3.
The relationship between the global base vector g

𝑖
and cross-

section base vector e
𝑖
can be expressed as

e
𝑖
= Rg
𝑖
, 𝑖 = 1, 2, 3, (1)

where R is the rotation matrix with the following properties;
that is,

RR𝑇 = I,
det (R) = 1,

(2)

where I is the identity matrix.
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The time derivative of (1) leads to

ė
𝑖
= Ṙg
𝑖
= (ṘR𝑇)Rg

𝑖
= (ṘR𝑇) e

𝑖
. (3)

In this paper, the symbol ( )̇ denotes the time derivative. For
(2), we have

ṘR𝑇 = −RṘ𝑇 = − (ṘR𝑇)
𝑇

. (4)

This means that ṘR𝑇 is a skew-symmetric matrix and can be
denoted as

𝜔̃ = ṘR𝑇. (5)

Then substituting (5) into (3) results in

ė
𝑖
= 𝜔̃e
𝑖
= 𝜔× e

𝑖
, (6)

where 𝜔 is the axial vector of skew-symmetric matrix 𝜔̃, and
it denotes the angular velocity vector.

Similarly, taking derivative of (1) with respect to the arc-
length coordinate 𝑠 leads to

e󸀠
𝑖
= 𝜅̃e
𝑖
= 𝜅× e

𝑖
, (7)

where the symbol ( )
󸀠 denotes the derivative with respect to

the arc-length coordinate 𝑠, and the skew-symmetric matrix
𝜅̃ is given below

𝜅̃ = R󸀠R𝑇. (8)

The axial vector 𝜅 corresponding to 𝜅̃ is defined as the
curvature vector.

The curvature vector 𝜅 can be expressed with respect to
the material basis

𝜅 = 𝜅
𝑒1e1 + 𝜅

𝑒2e2 + 𝜅
𝑒3e3 = 𝜅

𝑒𝑖
e
𝑖
, (9)

where Einstein notation is introduced. By substituting (9)
into (7), we have

e󸀠
𝑗
= 𝜅
𝑒𝑖
e
𝑖
× e
𝑗
= 𝑒
𝑖𝑗𝑘

𝜅
𝑒𝑖
e
𝑘
, (10)

where 𝑒
𝑖𝑗𝑘

is the permutation symbol in 3D. For (10), we have
the following relationship

𝑒
𝑖𝑗𝑘

𝜅
𝑒𝑖

= e󸀠
𝑗
⋅ e
𝑘
. (11)

The time derivative of (11) could be expressed as

𝑒
𝑖𝑗𝑘

𝜅̇
𝑒𝑖

= ė󸀠
𝑗
⋅ e
𝑘
+ e󸀠
𝑗
⋅ ė
𝑘

= (𝜔
󸀠
× e
𝑗
+𝜔× e󸀠

𝑗
) ⋅ e
𝑘
+ e󸀠
𝑗
⋅ (𝜔× e

𝑘
)

= 𝜔
󸀠
⋅ e
𝑗
× e
𝑘
= 𝑒
𝑖𝑗𝑘
𝜔
󸀠
⋅ e
𝑖
.

(12)

Therefore, we can obtain the following equation:

𝜔
󸀠
= 𝜅̇
𝑒𝑖
e
𝑖
. (13)

Similarly the angular velocity 𝜔 can be given as

𝜔 = 𝜔
𝑒𝑖
e
𝑖
. (14)

By substituting (14) into (6), finally, we get

𝑒
𝑖𝑗𝑘

𝜔
𝑒𝑖

= ė
𝑗
⋅ e
𝑘
,

𝜅̇ = 𝜔
󸀠

𝑒𝑖
e
𝑖
.

(15)

The rotation matrix R could be written as a function of
rotational vector 𝜃; that is,

R (𝜃) = I+ sin 𝜗

𝜗
𝜃̃+

1 − cos 𝜗
𝜗2
𝜃̃

2
= exp (𝜃̃) , (16)

where 𝜃̃ denotes the skew-symmetric matrix corresponding
to 𝜃, and 𝜗 := ‖𝜃‖ is the norm of the rotational vector.
Formula (16) is also called the Rodrigues formula.

The relationship between the angular velocity vector 𝜔
and the time derivative of the rotation vector 𝜃̇ can be
expressed by

𝜔 = T𝜃𝜃̇. (17)

Similarly the curvature vector 𝜅 can be also expressed by the
arc-length derivative of the rotational vector 𝜃󸀠; that is,

𝜅 = T𝜃𝜃
󸀠
, (18)

where T𝜃 denotes a matrix given by

T𝜃 = I+ 1 − cos 𝜗
𝜗2
𝜃̃+

𝜗 − sin 𝜗

𝜗3
𝜃̃

2
. (19)

According to (17), the time derivative of the rotational vector
can be obtained by

𝜃̇ = T−1
𝜃
𝜔, (20)

where

T−1
𝜃

= I− 1
2
𝜃̃+

1
𝜗2

(1−
𝜗

2 tan (𝜗/2)
) 𝜃̃

2
(21)

is the inverse matrix of T𝜃. According to (20), the singularity
problem will occur at 𝜗 = 2𝑘𝜋, 𝑘 ∈ 𝑍 \ {0}, because
2𝑘𝜋/2 tan 𝑘𝜋 tends to infinity. That is the major shortcoming
while using the rotation vector to represent the finite rotation.

Let’s consider a rotation vector 𝜑 with a rotation angle
which is greater than 𝜋 and less than 2𝜋; that is, 𝜋 < 𝜑 < 2𝜋;
then its complement rotation vector is defined by

𝜑
∗
= 𝜑−

2𝜋
𝜑
𝜑. (22)

It can be seen that themagnitude of the new rotation vector is
𝜑
∗
= 2𝜋−𝜑, which means 0 < 𝜑

∗
< 𝜋. Note that the rotation

vector 𝜑 and its complement 𝜑∗ represent the same rotation;
that is,R(𝜑

∗
) = R(𝜑). So the rotation could be represented by

these two rotation vectors. When a rotation angle is greater
than 𝜋, the change of parameterization according to (22) will
be achieved. Thus, the singularity problems at the rotation
angle 2𝜋 will never be encountered.The similar procedure of
passing the singularity of the rotation vector can be found in
[1, 3, 12].
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Figure 2: Equilibrium of an infinitesimal element of a beam.

2.2. Internal Virtual Power of Euler-Bernoulli Beam. An
infinitesimal element of a spatial beam is shown in Figure 2,
where the beam is subjected to the external distributed forces
and moment vectors n(𝑠) and m(𝑠) per unit length of the
reference line of centroids. And, in that figure,N(𝑠) andM(𝑠)

are the stress-resultant force and resulting moment vectors
over the cross-section, respectively.

The equilibrium equations of the infinitesimal element
can be written as

𝐴
𝜌

̈r = n+N󸀠,

J
𝜌
𝜔̇+𝜔× J

𝜌
𝜔 = m+M󸀠 + r󸀠 ×N,

(23)

with 𝐴
𝜌
and J

𝜌
representing the linear mass density and

moment of inertia, respectively. The virtual kinetic power of
the infinitesimal element is given by

𝛿𝑝ine = 𝛿 ̇r ⋅ ̈r𝐴
𝜌
𝑑𝑠 + 𝛿𝜔 ⋅ (J

𝜌
𝜔̇+𝜔× J

𝜌
𝜔) 𝑑𝑠. (24)

By substituting (23) into (24), we can obtain

𝛿𝑝ine = 𝛿 ̇r ⋅ (n+N󸀠) 𝑑𝑠 + 𝛿𝜔 ⋅ (m+M󸀠 + r󸀠 ×N) 𝑑𝑠. (25)

The external virtual power of the infinitesimal element can be
expressed as

𝛿𝑝ext = 𝛿 ̇r ⋅n𝑑𝑠 + 𝛿 ̇r ⋅N󸀠𝑑𝑠 + (𝛿 ̇r󸀠) ⋅N𝑑𝑠 + 𝛿𝜔 ⋅m𝑑𝑠

+ 𝛿𝜔 ⋅M󸀠𝑑𝑠 + (𝛿𝜔
󸀠
) ⋅M𝑑𝑠.

(26)

By using the principle of virtual power, which states that at
any time 𝑡, the total virtual power of the external, internal, and
inertia forces is zero in any admissible virtual state of motion,
the internal virtual power of the infinitesimal element is given
by

𝛿𝑝int = 𝛿𝑝ext − 𝛿𝑝ine

= 𝛿 ( ̇r󸀠) ⋅N𝑑𝑠 − 𝛿𝜔 ⋅ (r󸀠 ×N) 𝑑𝑠 + 𝛿 (𝜔
󸀠
)

⋅M𝑑𝑠 = 𝛿 ( ̇r󸀠 −𝜔× r󸀠) ⋅N𝑑𝑠 + 𝛿 (𝜔
󸀠
) ⋅M𝑑𝑠.

(27)

For the Euler-Bernoulli beam, the cross-section remains
perpendicular to the tangent of the centerline during defor-
mation; that is,

r󸀠 = (1+ 𝜀) e1, (28)

where 𝜀 is the normal strain, and we also have

̇r󸀠 −𝜔× r󸀠 = ̇𝜀e1. (29)

Substituting (13) and (29) into the internal virtual power
equation (27) and calculating the integral over the range [0, 𝐿]
leads to

𝛿𝑝int

= ∫

𝐿

0
(𝛿 ̇𝜀𝑁
𝑒1 + 𝛿𝜅̇

𝑒1𝑀𝑒1 + 𝛿𝜅̇
𝑒2𝑀𝑒2 + 𝛿𝜅̇

𝑒3𝑀𝑒3) 𝑑𝑠,
(30)

where𝑁
𝑒𝑖
and𝑀

𝑒𝑖
are components ofN andM given relative

to the material basis; that is,
N = 𝑁

𝑒1e1 +𝑁
𝑒2e2 +𝑁

𝑒3e3,

M = 𝑀
𝑒1e1 +𝑀

𝑒2e2 +𝑀
𝑒3e3.

(31)

The constitutive equation of the Euler-Bernoulli beam can be
described as

𝑁
𝑒1 = 𝐸𝐴𝜀,

𝑀
𝑒1 = 𝐺𝐽𝜅

𝑒1,

𝑀
𝑒2 = 𝐸𝐼

𝑒2𝜅𝑒2,

𝑀
𝑒3 = 𝐸𝐼

𝑒3𝜅𝑒3.

(32)

By substituting (32) into (30), the internal virtual power can
be expressed as

𝛿𝑝int = ∫

𝐿

0
(𝛿 ̇𝜀𝐸𝐴𝜀 + 𝛿𝜅̇

𝑒1𝐺𝐽𝜅
𝑒1 + 𝛿𝜅̇

𝑒2𝐸𝐼𝑒2𝜅𝑒2

+ 𝛿𝜅̇
𝑒3𝐸𝐼𝑒3𝜅𝑒3) 𝑑𝑠,

(33)

where 𝐸𝐴 and 𝐺𝐽 are the axial stiffness and the torsion
stiffness, respectively. 𝐸𝐼

𝑒2 and 𝐸𝐼
𝑒3 are the principal bending

stiffness.
This above introduced principle is usually regarded as the

geometrically exact beam theory, which is firstly proposed by
Reissner [11] and then has been mainly developed by Simo
and Vu-Quoc [4, 5].

3. Finite Element Implementation

3.1. Coupled Interpolation for Euler-Bernoulli Beam Element.
A two-node straight beam element with initial length 𝐿

and unchanged cross-section is considered as depicted in
Figure 3.

In the initial configuration, r0
𝑖
and R

𝜃
0 represent the

nodal position vector and the orientationmatrix of the cross-
section, respectively. For simplicity, the cross-section basis is
denoted by (n, t, b), which means that n = e1, t = e2, b = e3.
The global displacement and rotation vectors are chosen as
the nodal coordinates:

p1 = (
u1
𝜑1

) ,

p2 = (
u2
𝜑2

) .

(34)
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Figure 3: The kinematic description of the Euler-Bernoulli beam
element.

And the element generalized coordinates p
𝑒
can be defined

by

p
𝑒
= (

p1
p2

) . (35)

The nodal position vector and the orientation matrix of the
cross-section in the current configuration can be expressed
as

r
𝑖
= r0
𝑖
+ u
𝑖
,

R
𝑖
= [n𝑖 t𝑖 b𝑖] = R𝜑

𝑖

R
𝜃
0 .

(36)

For the Euler-Bernoulli beam, the arc-length derivative of
position vector remains parallel to the normal direction of the
cross-section, that is, (28). At the both ends of the element, we
have the relationship r󸀠

𝑖
= (1 + 𝜀

𝑖
)n
𝑖
. It should be pointed out

that the beam structure is mainly subjected to a transverse
load and produces a bending deformation.The normal strain
is a small quantity; that is, 𝜀 ≪ 1. Therefore, the influence of
the normal strain at two ends on the shape of the centerline
can be ignored, and the global position vector of centerline r
is obtained by employing the Hermite interpolation; that is,

r (𝜉) = 𝑁
0
1r1 +𝑁

1
1n1 +𝑁

0
2r2 +𝑁

1
2n2, (37)

where

𝑁
0
1 = 1− 3𝜉2 + 2𝜉3,

𝑁
1
1 = 𝐿 (𝜉

3
− 𝜉

2
) ,

𝑁
0
2 = 3𝜉2 − 2𝜉3,

𝑁
1
2 = 𝐿 (𝜉 − 2𝜉2 + 𝜉

3
)

(38)

are the Hermite shape functions with 𝜉 = 𝑠/𝐿, 𝜉 ∈ [0, 1].
The unit normal vector of the cross-section is given by

n =
r󸀠
󵄨󵄨󵄨󵄨r󸀠

󵄨󵄨󵄨󵄨

. (39)

The other two orthogonal unit vectors of the material basis
t and b can be determined by the successive application of

n

n
t t

1

1

1

2

2

2

1

𝛽𝛼

b
b

n

t

b

b n
t

Figure 4: The decomposition of beam section rotation.

the following two rotation vectors to the left end section basis
(n1, t1, b1).

Firstly, an intermediate reference frame (n, t, b) arrived
when rotating (n1, t1, b1) an angle 𝛽with respect to the direc-
tionn1×n, which is illustrated in Figure 4.The corresponding
rotation vector is expressed as

𝛽 = 𝜆
𝛽
n1 ×n, (40)

where

𝜆
𝛽
=

𝛽

sin𝛽
, 𝛽 = arccos (n𝑇1n) . (41)

Then, the final material basis (n, t, b) is achieved by rotating
the (n, t, b) by an angle 𝛼 with respect to the vector n. The
corresponding rotation vector is

𝛼 = 𝛼n. (42)

Thus the orientation matrix of the cross-section can be
expressed by

R𝜃 = [n t b] = R𝛼R𝛽R1. (43)

The above analysis shows that the first rotation vector
𝛽 can be determined by the interpolation of the position
vector r(𝑠). Hence, we just need to interpolate the second
rotation vector 𝛼within the element. Moreover, the direction
of rotation vector 𝛼 is n, and the angle 𝛼 can be interpolated
linearly by

𝛼 = (1− 𝜉) 𝛼1 + 𝜉𝛼2 = 𝜉𝛼2, (44)

were 𝛼1 = 0 and the relative torsion angle of the right end
section 𝛼2 can be obtained according to the following steps:

(a) The rotation vector 𝛼2 can be calculated according to
R𝛼2 = R2R𝑇1R

𝑇

𝛽2
. The extraction of 𝛼2 from R𝛼2 can

be performed by using the Spurrier [27] algorithm as
given by Simo and Vu-Quoc [5].

(b) Then, the relative torsion angle is given as 𝛼2 = n𝑇2𝛼2.

It should be mentioned that (40) cannot provide a unique
solution if the first rotation angle𝛽 is equal to𝜋, whichmeans
n = −n1. In this case, the relative bending angle within one
element will be greater than 180∘, which is prohibited in this
paper while constructing the element.
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Figure 5: The normal strain distribution.

3.2. Average Strains over a Small Time Interval and Nodal
Forces. According to (28), the normal strain within the
element is given by

𝜀 (𝜉) = n𝑇r󸀠 − 1. (45)

It is necessary and interesting to investigate the influence of
the normal strain at two ends on the element deformation.
Figure 5 shows the normal strain distribution in which
the element is subjected to pure axial tensile and has the
extension Δ𝐿.

In this example, the real normal strain distribution is uni-
form. But the normal strain directly derived from the position
interpolation (37) is nonuniform, as shown in Figure 5. The
magnitude of the normal strain reaches its maximal value in
the middle and tends to zero at two ends.The strain energy is
20%more than that of the uniform case, whichmeans that the
beam becomes stiffer. In order to improve this solution, we
assume that the normal strain is uniform within the element
and equal to the average normal strain, which can be written
by

𝜀
𝑒
= ∫

1

0
𝜀 (𝜉) 𝑑𝜉. (46)

For the axial tension case, the exact solution can be obtained
by using only twoGauss integration points. And the accuracy
of this assumption will be illustrated in Section 4.

In order to facilitate the following derivation, the time
derivative of 𝜀(𝜉) is defined by

̇𝜀 (𝜉) = n𝑇 ̇r󸀠, (47)

in which the identity ṅ𝑇n = 0 is used in the simplification.
According to the interpolation of the global position vector
(37), the velocity of the centroid can be expressed as

̇r = 𝑁
0
1 u̇1 −𝑁

1
1 ñ1𝜔1 +𝑁

0
2 u̇2 −𝑁

1
2 ñ2𝜔2 = Nrq̇𝑒, (48)

where ̇r
𝑖
= u̇
𝑖
denotes the velocity of the element node and

𝜔
𝑖
is the angular velocity. The element generalized velocity is

given by

q̇
𝑒
= [u̇𝑇1 𝜔

𝑇

1 u̇𝑇2 𝜔
𝑇

2 ]
𝑇

,

Nr = N
𝜉
D
𝑒
,

N
𝜉
= [𝑁

0
1 I 𝑁

1
1 I 𝑁

0
2 I 𝑁

1
2 I] ,

D
𝑒
= diag (I, − ñ1, I, − ñ2) .

(49)

Substituting (48) into (47) yields

̇𝜀 = Ψ
𝜀
q̇
𝑒
, Ψ
𝜀
= n𝑇N󸀠

𝑟
. (50)

Therefore, the time derivate of the average normal strain and
its virtual variation can be expressed by

̇𝜀
𝑒
= Ψ
𝑒
q̇
𝑒
,

𝛿 ̇𝜀
𝑒
= Ψ
𝑒
𝛿q̇
𝑒
,

(51)

where

Ψ
𝑒
= ∫

1

0
Ψ
𝜀
𝑑𝜉. (52)

Based on the definition of the curvature vector (18) and
the decomposition of beam cross-section rotation (43), the
curvature vector of the beam is given by

𝜅 = T𝛼𝛼
󸀠
+R𝛼T𝛽𝛽

󸀠
. (53)

Furthermore, the components of curvature 𝜅 with respect to
the material basis are given by

𝜅 = 𝜅
𝑛
n+ 𝜅
𝑡
t+ 𝜅
𝑏
b. (54)

The two bending curvature components 𝜅
𝑡
and 𝜅

𝑏
, in terms

of (11), are written as

𝜅
𝑡
= − b𝑇n󸀠,

𝜅
𝑏
= t𝑇n󸀠.

(55)

The torsion component 𝜅
𝑛
is

𝜅
𝑛
= n𝑇𝜅 = n𝑇T𝛼𝛼

󸀠
+n𝑇R𝛼T𝛽𝛽

󸀠
. (56)

By substituting (40) and (42) into the two items on the right-
hand side of (56), respectively, we obtain

n𝑇T𝛼𝛼
󸀠
= 𝛼
󸀠
=

𝛼2
𝐿

,

n𝑇R𝛼T𝛽𝛽
󸀠
= n𝑇T𝛽𝛽

󸀠
= c𝑇nn

󸀠
,

(57)

where

cn = 𝛾nn×n1, 𝛾n =
1

(1 + n𝑇1n)
, (58)

n󸀠 = Γnr
󸀠󸀠
, Γn =

(I − nn𝑇)
󵄨󵄨󵄨󵄨r󸀠

󵄨󵄨󵄨󵄨

. (59)

After substituting (57) into (56), we have

𝜅
𝑛
=

𝛼2
𝐿

+ c𝑇nn
󸀠
. (60)
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The time derivatives of (55) and (60) can be expressed by

𝜅̇
𝑏
= t𝑇ṅ󸀠 +n󸀠𝑇 ̇t,

𝜅̇
𝑡
= − b𝑇ṅ󸀠 −n󸀠𝑇ḃ,

𝜅̇
𝑛
=

𝛼̇2
𝐿

+ c𝑇n ṅ
󸀠
+n󸀠𝑇 ̇cn,

(61)

in which the time derivative of the unit normal vector n is
given by

ṅ = Γn ̇r󸀠 = Snq̇𝑒, Sn = ΓnN
󸀠

r. (62)

Therefore, the derivative of (62) with respect to arc-length
coordinate 𝑠 is

ṅ󸀠 = S󸀠nq̇𝑒. (63)

According to the decomposition of the cross-section rotation
(43), the relationship of the angular velocities at two ends of
the element can be expressed as

𝜔2 = T𝛼2 𝛼̇2 +R𝛼2T𝛽2 𝛽̇2 +R𝛼2R𝛽2𝜔1. (64)

So the time derivative of 𝛼2 is

𝛼̇2 = n𝑇2T𝛼2 𝛼̇2 = (n𝑇2 + c𝑇n2
ñ2)𝜔2 −n𝑇1𝜔1 = S𝛼2 q̇𝑒, (65)

where

S𝛼2 = (n𝑇2 + c𝑇n2
ñ2) S𝜔2 −n𝑇1 S𝜔1 , (66)

and S𝜔𝑖 is constantmatrix withwhich the angular velocity can
be denoted by 𝜔

𝑖
= S𝜔𝑖 q̇𝑒.

The time derivative of (58) is

̇cn = ̇𝛾nñn1 + 𝛾nñṅ1 − 𝛾nñ1ṅ = Cnq̇𝑒, (67)

where

Cn = ñΛnñ1S𝜔1 + ñ1Λ
𝑇

nSn,

Λn = 𝛾
2
nn1n
𝑇
− 𝛾nI.

(68)

The angular velocity 𝜔 can be expressed with respect to the
material basis

𝜔 = 𝜔
𝑛
n+𝜔
𝑡
t+𝜔
𝑏
b. (69)

Based on the relationship between the derivatives with
respect to time 𝑡 and arch-length coordinate 𝑠, we have

𝜔
𝑏
= t𝑇ṅ = W

𝑏
q̇
𝑒
,

𝜔
𝑡
= − b𝑇ṅ = W

𝑡
q̇
𝑒
,

𝜔
𝑛
= 𝜉𝛼̇2 + c𝑇n ṅ+n𝑇1𝜔1 = W

𝑛
q̇
𝑒
,

(70)

where

W
𝑏
= t𝑇Sn,

W
𝑡
= − b𝑇Sn,

W
𝑛
= 𝜉S
𝛼2

+ c𝑇nSn +n𝑇1 S𝜔1 .

(71)

Then the time derivative of the other base vectors t and b can
be given by

̇t = 𝜔× t = 𝜔
𝑛
b−𝜔
𝑏
n = S
𝑡
q̇
𝑒
, S
𝑡
= bW

𝑛
− nW

𝑏
,

ḃ = 𝜔× b = 𝜔
𝑡
n−𝜔
𝑛
t = S
𝑏
q̇
𝑒
, S
𝑏
= nW

𝑡
− tW
𝑛
.

(72)

By substituting (63), (65), (67), and (72) into (61), the time
derivatives of the curvature and their virtual variations can
be expressed as

𝜅̇
𝑏
= Ψ
𝑏
q̇
𝑒
,

𝛿𝜅̇
𝑏
= Ψ
𝑏
𝛿q̇
𝑒
,

𝜅̇
𝑡
= Ψ
𝑡
q̇
𝑒
,

𝛿𝜅̇
𝑡
= Ψ
𝑡
𝛿q̇
𝑒
,

𝜅̇
𝑛
= Ψ
𝑛
q̇
𝑒
,

𝛿𝜅̇
𝑏
= Ψ
𝑛
𝛿q̇
𝑒
,

(73)

where

Ψ
𝑏
= t𝑇S󸀠n +n󸀠𝑇St,

Ψ
𝑡
= − (b𝑇S󸀠n +n󸀠𝑇Sb) ,

Ψ
𝑛
=

1
𝐿
S
𝛼2

+ c𝑇nS
󸀠

n +n󸀠𝑇Cn.

(74)

By substituting the normal strain 𝜀
𝑒
, torsion 𝜅

𝑛
, two bending

curvatures 𝜅
𝑡
, 𝜅
𝑏
, and their virtual time derivatives (51) and

(73) into the internal virtual power equation (33), we obtain

𝛿𝑝int = 𝛿 ̇𝜀
𝑒
𝐸𝐴𝐿𝜀
𝑒

+𝐿∫

1

0
(𝛿𝜅̇
𝑛
𝐺𝐽𝜅
𝑛
+ 𝛿𝜅̇
𝑡
𝐸𝐼
𝑡
𝜅
𝑡
+ 𝛿𝜅̇
𝑏
𝐸𝐼
𝑏
𝜅
𝑏
) 𝑑𝜉

= (𝛿q̇
𝑒
)
𝑇 Fint,

(75)

where Fint is called the generalized nodal force:

Fint = Ψ
𝑇

𝑒
𝐸𝐴𝐿𝜀
𝑒

+𝐿∫

1

0
(Ψ
𝑇

𝑛
𝐺𝐽𝜅
𝑛
+Ψ
𝑇

𝑡
𝐸𝐼
𝑡
𝜅
𝑡
+Ψ
𝑇

𝑏
𝐸𝐼
𝑏
𝜅
𝑏
) 𝑑𝜉.

(76)

The time derivative of (76) can be written as

Ḟint = Ψ
𝑇

𝑒
𝐸𝐴𝐿 ̇𝜀
𝑒
+ Ψ̇
𝑇

𝑒
𝐸𝐴𝐿𝜀
𝑒

+𝐿∫

1

0
(Ψ
𝑛
𝐺𝐽𝜅̇
𝑛
+Ψ
𝑡
𝐸𝐼
𝑡
𝜅̇
𝑡
+Ψ
𝑏
𝐸𝐼
𝑏
𝜅̇
𝑏
) 𝑑𝜉

+ 𝐿∫

1

0
(Ψ̇
𝑛
𝐺𝐽𝜅
𝑛
+ Ψ̇
𝑡
𝐸𝐼
𝑡
𝜅
𝑡
+ Ψ̇
𝑏
𝐸𝐼
𝑏
𝜅
𝑏
) 𝑑𝜉

= (K
𝑡1 +K

𝑡𝜎
) q̇
𝑒
,

(77)
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where
Ψ̇
𝑒
= Ω
𝑇

𝑒
q̇
𝑒
,

Ψ̇
𝑛
= Ω
𝑇

𝑛
q̇
𝑒
,

Ψ̇
𝑡
= Ω
𝑇

𝑡
q̇
𝑒
,

Ψ̇
𝑏
= Ω
𝑇

𝑏
q̇
𝑒
,

K
𝑡1

= 𝐸𝐴𝐿Ψ
𝑇

𝑒
Ψ
𝑒

+𝐿∫

1

0
(𝐺𝐽Ψ

𝑇

𝑛
Ψ
𝑛
+𝐸𝐼
𝑡
Ψ
𝑇

𝑡
Ψ
𝑡
+𝐸𝐼
𝑏
Ψ
𝑇

𝑏
Ψ
𝑏
) 𝑑𝜉,

K
𝑡𝜎

= Ω
𝑇

𝑒
𝐸𝐴𝐿𝜀
𝑒

+𝐿∫

1

0
(Ω
𝑇

𝑛
𝐺𝐽𝜅
𝑛
+Ω
𝑇

𝑡
𝐸𝐼
𝑡
𝜅
𝑡
+Ω
𝑇

𝑏
𝐸𝐼
𝑏
𝜅
𝑏
) 𝑑𝜉.

(78)

The first part K
𝑡1 is generally called the material stiffness

matrix, and the second part K
𝑡𝜎

is the “geometric” stiffness
matrix.

The beams studied in the rigid-flexible coupled dynamic
systems undergo a large rigid body motion and small elastic
vibration. Due to the influence of high frequencies, the time
integration of the system equations becomes very difficult.
In order to eliminate their effects, the average strains over
a small time interval are proposed to replace the traditional
transient strains in the expression of the nodal forces (76).
Firstly, a second-order Taylor series expansion is employed
to represent the transient strain. Taking the normal strain as
an example, it can be given by

𝜀
𝑒 (𝑡 + ℎ) ≈ 𝜀

𝑒 (𝑡) + ̇𝜀
𝑒 (𝑡) ℎ +

1
2

̈𝜀
𝑒 (𝑡) ℎ

2
. (79)

Then the average normal strain over a small time interval ℎ is
defined as

󵱰𝜀
𝑒
=

1
ℎ
∫

ℎ

0
𝜀
𝑒 (𝑡 + ℎ) 𝑑ℎ = 𝜀

𝑒 (𝑡) + 𝑎1 ̇𝜀
𝑒 (𝑡) + 𝑎2 ̈𝜀

𝑒 (𝑡) , (80)

where the coefficients are expressed as 𝑎1 = ℎ/2 and 𝑎2 =

ℎ
2
/6. Thus the average rotational strains are given by

󵱰𝜅
𝑛
= 𝜅
𝑛
+ 𝑎1𝜅̇𝑛 + 𝑎2𝜅̈𝑛,

󵱰𝜅
𝑏
= 𝜅
𝑏
+ 𝑎1𝜅̇𝑏 + 𝑎2𝜅̈𝑏,

󵱰𝜅
𝑡
= 𝜅
𝑡
+ 𝑎1𝜅̇𝑡 + 𝑎2𝜅̈𝑡.

(81)

By replacing the transient strains in (76) with average strains
(80) and (81), the modified generalized nodal force can be
written as

󵱰Fint = Ψ
𝑇

𝑒
𝐸𝐴𝐿󵱰𝜀
𝑒

+𝐿∫

1

0
(Ψ
𝑇

𝑛
𝐺𝐽󵱰𝜅
𝑛
+Ψ
𝑇

𝑡
𝐸𝐼
𝑡
󵱰𝜅
𝑡
+Ψ
𝑇

𝑏
𝐸𝐼
𝑏
󵱰𝜅
𝑏
) 𝑑𝜉

= Fint + (𝑎1K𝑡1 + 𝑎2K̇𝐶) q̇𝑒 + 𝑎2K𝑡1q̈𝑒,

(82)

where

K̇
𝐶
= 𝐸𝐴𝐿Ψ

𝑇

𝑒
Ψ̇
𝑒

+𝐿∫

1

0
(𝐺𝐽Ψ

𝑇

𝑛
Ψ̇
𝑛
+𝐸𝐼
𝑡
Ψ
𝑇

𝑡
Ψ̇
𝑡
+𝐸𝐼
𝑏
Ψ
𝑇

𝑏
Ψ̇
𝑏
) 𝑑𝜉.

(83)

3.3. Virtual Power of Inertial Forces and Mass Matrix. In
terms of the centroid velocity (48), the virtual velocity of the
centroid can be expressed as

𝛿 ̇r (𝑠) = Nr𝛿q̇𝑒. (84)

The accelerated velocity of the centroid can be obtained by
the time derivation of (48):

̈r (𝑠) = Nrq̈𝑒 + ar, ar = Ṅrq̇𝑒. (85)

Therefore, the virtual kinetic power caused by the translation
can be expressed as

𝛿𝑝tra = 𝑚∫

1

0
𝛿 ̇r𝑇 ̈r𝑑𝜉 = 𝛿q̇𝑇

𝑒
(Mtraq̈𝑒 + Ftra) , (86)

where

Mtra = 𝑚∫

1

0
N𝑇r Nr𝑑𝜉 = 𝑚D𝑇

𝑒
HND𝑒,

Ftra = 𝑚∫

1

0
N𝑇r ar𝑑𝜉 = 𝑚D𝑇

𝑒
HNḊ𝑒q̇𝑒,

HN = ∫

1

0
N𝑇
𝜉
N
𝜉
𝑑𝜉

=
1
420

[
[
[
[
[

[

156I 22𝐿I 54I −13𝐿I

4𝐿2I 13𝐿I −3𝐿2I
sym. 156I −22𝐿I

4𝐿2I

]
]
]
]
]

]

.

(87)

The angular velocity of the cross-section is

𝜔 = R𝜃𝜔,

𝜔̃ = R𝜃𝜔̃R
𝑇

𝜃
.

(88)

According to (70), the angular velocity in the material form
and its virtual variation can be expressed as

𝜔 = N𝜔q̇𝑒,

𝛿𝜔 = N𝜔𝛿q̇𝑒,
(89)

where

N𝜔 = [W𝑇
𝑛

W𝑇
𝑡

W𝑇
𝑏
]
𝑇

. (90)

The angular acceleration is

𝜔̇ = 𝜔̇
𝑛
n+ 𝜔̇
𝑡
t+ 𝜔̇
𝑏
b = R

𝜃
𝜔̇, (91)
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where

𝜔̇ = N𝜔q̈𝑒 + a𝜔, a𝜔 = Ṅ𝜔q̇𝑒. (92)

The virtual kinetic power caused by the rotation may be
expressed by

𝛿𝑝rot = 𝐿∫

1

0
𝛿𝜔
𝑇
(J
𝜌
𝜔̇+ 𝜔̃J

𝜌
𝜔) 𝑑𝜉

= 𝐿∫

1

0
𝛿𝜔
𝑇
(J
𝜌
𝜔̇+ 𝜔̃J

𝜌
𝜔) 𝑑𝜉,

(93)

where J
𝜌

= R𝑇
𝜃
J
𝜌
R𝜃 is the centroidal inertia matrix of the

cross-section with respect to the material basis. Substituting
(89) and (92) into (93) yields

𝛿𝑝rot = 𝛿q̇𝑇
𝑒
(Mrotq̈𝑒 + Frot) , (94)

where

Mrot = 𝐿∫

1

0
N𝑇
𝜔
J
𝜌
N𝜔𝑑𝜉,

Frot = 𝐿∫

1

0
N𝑇
𝜔
(J
𝜌
a𝜔 + 𝜔̃J𝜌𝜔) 𝑑𝜉.

(95)

In terms of (86) and (94), the virtual power of inertial forces
𝛿𝑝ine can be written as

𝛿𝑝ine = 𝛿𝑝tra + 𝛿𝑝rot = 𝛿q̇𝑇
𝑒
(Mineq̈𝑒 + Fine) , (96)

where

Mine = Mtra +Mrot,

Fine = Ftra + Frot.
(97)

3.4. Governing Equation. The virtual power equation of the
beam element can be written as

𝛿𝑝ine + 𝛿𝑝int = 𝛿𝑝ext, (98)

in which 𝛿𝑝ext = 𝛿q̇𝑇
𝑒
Fext is the external virtual power and

Fext is the generalized external force. Substituting the internal
virtual power (75) and the inertial virtual power (96) into the
virtual power equation (98) yields

𝛿q̇𝑇
𝑒
(Mineq̈𝑒 + Fine + 󵱰Fint − Fext) = 0. (99)

By substituting the modified generalized nodal force (82)
into (99), the governing equations of beam element can be
expressed as

(Mine + 𝑎2K𝑡1) q̈𝑒 + (𝑎1K𝑡1 + 𝑎2K̇𝐶) q̇𝑒 + Fine + Fint

− Fext = 0.
(100)

Thus, the generalized acceleration is

q̈
𝑒
= 󵱰M−1󵱰F, (101)

where the mass matrix and generalized force can be written
by

󵱰M = Mine + 𝑎2K𝑡1,

󵱰F = Fext − Fine − Fint − (𝑎1K𝑡1 + 𝑎2K̇𝐶) q̇𝑒.
(102)

The underlined items in (102) are the additional mass
matrix and the additional generalized forces, which are
introduced by the average strains in the expression of the
nodal forces, and will vanish when the time parameter ℎ is
equal to zero. Generally, the system frequency will reduce
when increasing the mass. Referring to the damping model
in [28], it is found that the item 𝑎1K𝑡1q̇𝑒 is equivalent to the
internal damping force. If q̇

𝑒
represents the rigidmotion only,

this equivalent damping force will disappear since K
𝑡1q̇𝑒 is

equal to zero for the allowed rigid motion.
The element generalized velocity q̇

𝑒
and the generalized

coordinates p
𝑒
are set as the state variables; that is,

X = (
q̇
𝑒

p
𝑒

) , (103)

in which the relationship between the time derivative of p
𝑒

and q̇
𝑒
becomes

ṗ
𝑒
= Λq̇
𝑒
, Λ = diag (I,T−1

𝜑1
, I,T−1
𝜑2
) . (104)

The governing equations, which are a set of the second order
ordinary differential equations, can be written as

Ẋ = (

󵱰M−1󵱰F
Λq̇
𝑒

) . (105)

Equations (105) are the state equations, which are a set of the
first order ordinary differential equations, and can be directly
solved by the ordinary differential equation solvers.

As mentioned in Section 2, the inherent singularity prob-
lem of the rotation vector can be avoided according to the
procedures as shown in Figure 6. After each successful inte-
gration step, the rotation vector of every nodewill be checked.
Once the angle large is larger than 𝜋, the parameterization
will be changed into its complement rotation vector (22).
Then the next integration step can proceed.

4. Numerical Simulations

In this section, several numerical examples are carried out
to evaluate the static and dynamic behavior of the proposed
spatial Euler-Bernoulli beam element. All simulations are
performed on the same PC with an Intel Core 3.0GHz
processor and 8GB RAM.The static solution is calculated by
using fsolve function in the MATLAB package. The govern-
ing dynamic equations (105) are solved by using an explicit
Runge-Kutta method ode45 implemented in MATLAB and
an implicit Runge-Kutta method radau5 [29] separately.
In addition, the results obtained by our proposed method
are compared with the solutions calculated by the existing
alternative ones.
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Figure 6: Flowchart for avoiding the singularity of the rotation
vector.
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Figure 7: Cantilever beam with an end moment.

4.1. Cantilever Beam with an End Moment. The first problem
to be considered is a cantilever beamwithmaterial properties
shown in Figure 7, where a concentrated end moment is
imposed at the end of the beam.

This problem has been used by many researchers for
testing nonlinear beamelements since the analytical solutions
for the problem exist. The straight beam will be bent to a full
circle with the moment 𝑀 = 2𝜋𝐸𝐼/𝐿. In this problem, 10
elements are used to model the beam. The results obtained
from this study are compared with the analytical solutions
as shown in Figure 8. And the deformations of the cantilever
beamwith different bendingmoments are shown in Figure 9.
It can be seen that the results obtained by using our proposed
elements are exactly the same with the analytical solutions.

4.2. Cantilever Beam with End Point Load. The cantilever
beam subjected to a concentrated end load, as shown in
Figure 10, is investigated in this subsection.

In this problem, 10 elements are used to model the beam.
The obtained results are compared with the elliptic integral
solutions provided by Mattiasson [30] in Figure 11 and in
numeric form listed in Table 1. The comparison indicates our
results are good agreement with Mattiasson’s.

4.3. Natural Frequency of the Cantilever Beam. The cantilever
beam with the material properties as shown in Figure 12 is

Table 1: Cantilever beam with an end point load.

𝐹𝐿
2
/𝐸𝐼

𝑢/𝐿 V/𝐿
Mattiasson Present Mattiasson Present

1.0 0.05643 0.05643 0.30172 0.30172
2.0 0.16064 0.16064 0.49346 0.49347
3.0 0.25442 0.25442 0.60325 0.60327
4.0 0.32894 0.32894 0.66996 0.66999
5.0 0.38763 0.38762 0.71379 0.71383
6.0 0.43459 0.43458 0.74457 0.74462
7.0 0.47293 0.47292 0.76737 0.76743
8.0 0.50483 0.50482 0.78498 0.78505
9.0 0.53182 0.53182 0.79906 0.79913
10.0 0.55500 0.55499 0.81061 0.81070
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Figure 8: Comparison of the displacements of the cantilever beam
with an end moment.

carried out to study the natural frequency of the cantilever
beam by employing the proposed beam element.

To obtain the natural frequency, the nonlinear dynamic
equation (100) should be linearized at the equilibrium posi-
tions. Firstly, without considering average strains in the
expression of the nodal forces which means ℎ = 0, the
frequency equation can be given by

󵄨󵄨󵄨󵄨󵄨
K
𝑡1 −𝜔

2Mine
󵄨󵄨󵄨󵄨󵄨
= 0, (106)

where 𝜔 is the natural frequency of the cantilever beam. In
this example, the beam is modeled by 𝑁 elements. Then the
first bending, torsion, and tension frequencies are obtained
separately as shown in Table 2. It is found that the frequencies
will converge very fast to the theoretical values.

Then, the influence of introducing the average strains on
the frequencies is also studied. With a small time interval
parameter ℎ, the frequency equation becomes

󵄨󵄨󵄨󵄨󵄨
K
𝑡1 −𝜔
󸀠2
(Mine + 𝑎2K𝑡1)

󵄨󵄨󵄨󵄨󵄨
= 0, (107)

where 𝜔
󸀠 is the modified frequency of the system. Equation

(107) can be simplified to the equivalent form
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

K
𝑡1 −

𝜔
󸀠2

1 − 𝑎2𝜔
󸀠2Mine

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (108)
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Table 2: Frequency of cantilever beam with different meshes.

Modes Frequency (Hz)
1-elems 2-elems 5-elems 10-elems 20-elems Theory

Bending 5.291 5.269 5.266 5.266 5.266 5.266
Torsion 557.328 518.511 504.440 505.961 505.571 505.441
Tension 851.382 825.971 816.855 815.500 815.159 815.046
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Figure 9: Large deformations of the cantilever beam with an end
moment.
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Figure 10: Cantilever beam with an end point load.

By comparing (106) with (108), the relationship between 𝜔
󸀠

and 𝜔 can be given by

𝜔
󸀠
=

𝜔

√1 + 𝑎2𝜔
2
. (109)

Substituting 𝑎2 = ℎ
2
/6 into (109) yields

𝜔
󸀠
=

𝜔

√1 + (1/6) (𝜔/𝑓
ℎ
)
2
< √6𝑓

ℎ
, (110)

where 𝑓
ℎ

= 1/ℎ is the adjustable frequency parameter
associated with the given small time interval ℎ. According
to (110), the mapping between the normalized modified
frequency 𝜔

󸀠
/𝑓
ℎ
and 𝜔/𝑓

ℎ
is shown in Figure 13.

The influence of the time parameter ℎ on the system
frequencies can be summarized as follows:

(a) All the frequencies of the system decrease to varying
degrees.

(b) The frequencies with the magnitude less than 𝑓
ℎ

decrease very slightly.
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Figure 11: Displacement curve of cantilever beamwith an end point
load.
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Figure 12: Cantilever beam.

(c) The maximum limit of the modified frequencies is
√6𝑓
ℎ
.

Table 3 shows the modified frequency of cantilever beam
modeled by 20 elements with different time parameters.

Obviously, from the above discussion it is found that the
high frequency of the system can be filtered out by choosing
an appropriate time parameter ℎ. This property is very useful
for the time integration in the stiff problem, which is proved
in the following examples.

4.4. Right-Angle Cantilever Beam. An L-shaped cantilever
beam [6] is subjected to a concentrated load applied in the
direction of global 𝑧-axis at the elbow as shown in Figure 14.

The magnitude of this load follows the pattern of a hat
function, as shown in Figure 14. The material properties are

𝐸𝐴 = 𝐺𝐴 = 106,

𝐸𝐼 = 𝐺𝐽 = 103,
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Table 3: Modified frequency of cantilever beam with different time parameter ℎ.

Modes Modified frequency (Hz)
ℎ = 0 ℎ = 0.0001 ℎ = 0.001 ℎ = 0.01 ℎ = 0.05 ℎ = 0.1

Bending 5.266 5.266 5.266 5.265 5.236 5.148
Torsion 505.571 505.463 495.135 220.439 48.761 24.466
Tension 815.159 814.708 773.454 234.587 48.902 24.484
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Figure 13: General shape of the mapping curve between 𝜔
󸀠
/𝑓
ℎ
and

𝜔/𝑓
ℎ
.

Table 4:The comparison of CPU time for the right-angle cantilever
beam.

Time parameter ℎ Integration algorithms CPU time (s)
0 radau5 6279
0 ode45 —
0.01 ode45 3348
0.1 ode45 426

𝐿1 = 𝐿2 = 10,

𝐴
𝜌
= 1,

J
𝜌
= diag (20, 10, 10) .

(111)

The beam is meshed into 10 elements to study the dis-
placements at both the elbow and the tip. The computations
are carried out by using the radau5 and the ode45 with
different values of the time parameter ℎ. The total simulation
time is 30 seconds. The relative error tolerance is set to 10−4
and the absolute error tolerance is set to 10−6. Table 4 shows
the total CPU time while using the different methods. And
the computed response of the elbow and the tip displacements
are given in Figures 15 and 16, respectively. These results
correspond to the results given by Ibrahimbegović and
Mikdad [31].

It should be pointed out that the radau5 is a stiff ODE
solver, and the ode45 is only workable for solving nonstiff
differential equations. With the time parameter ℎ = 0,
the radau5 method needs 6279 seconds to accomplish the
simulation while ode45 cannot finish the task since the
governing equations of this example are stiff equations.When
ℎ is set to 0.01, it can be found that the ode45 solver can
complete the calculation without any difficulties and spends

F(t)
Y

X

Z
1 2

F

t

50

L1

L2

Figure 14: Right-angle cantilever beam.
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Figure 15: Time evolution of the displacement at the elbow.

only 3348 seconds, which is about half of that of the stiff ODE
solver radau5. For ℎ = 0.1, the CPU time of the ode45method
is reduced to 426 seconds. From Figures 15 and 16, it can be
also found that both the displacements at the elbow and at
the tip become small when increasing the time parameter ℎ.
This is because the internal damping forceswill become larger
while increasing the equivalent damping coefficient 𝑎

1
= ℎ/2.

Therefore, the displacements will become smaller in the case
of no energy input.

We want to emphasize that in [31] the independent
interpolations are used to interpolate the incremental values
of the chosen state variables for translational and rotational
motion components. And the reduced integration technique
is used for the tangent stiffness which is a remedy for curing
the shear locking phenomena. It can be seen from Figures
15 and 16 that the results obtained by using our proposed
elements are in good agreement with [31]. What is more, in
this example the amplitude of vibration is the same order of
the magnitude of the structure dimensions, which indicates
that the present formulation can deal with these problems
with the large rotations easily.
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Figure 16: Time evolution of the displacement at the tip.
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Figure 17: A flexible beam on a rotating base.

Table 5:The comparison of CPU time for the rotating flexible beam.

Time parameter ℎ Integration algorithms CPU time (s)
0 radau5 6140
0 ode45 —
0.01 ode45 3003
0.1 ode45 603

4.5. Flexible Beam on a Rotating Base. As shown in Figure 17,
a cantilever beam is fixed on a rigid base, which has a
prescribed rotation 𝜑(𝑡) with respect to the global 𝑧-axis.
Relative to themoving base, the beamwill have displacements
at both axial and transversal directions, which are denoted by
𝑢 and V, respectively.

This problem has been also studied in previous researches
[6, 7, 32, 33] with the rotation

𝜑 (𝑡)

=

{{

{{

{

6
15

[
𝑡
2

2
+ (

15
2𝜋

)

2
(cos 2𝜋𝑡

15
− 1)] 0 ≤ 𝑡 ≤ 15 s

6𝑡 − 45 𝑡 > 15 s

(112)

which will also be adopted here. In this problem, 10 elements
are used to study the displacements at the free end. The
calculation results are plotted in Figures 18 and 19. Table 5
shows the total CPU time spent by different methods.

It is found that a good agreement between our simulations
and reference ones [6]. With an appropriate time parameter
ℎ, the high frequencies of the system are filtered out. Conse-
quently, the governing equation can be solved using the well-
established nonstiff solver ode45.
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Figure 18: Time evolution of the axial displacement 𝑢 at the free
end.
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Figure 19: Time evolution of the transversal displacement V at the
free end.

5. Conclusions

In this paper, a two-node spatial Euler-Bernoulli beam
element with arbitrary rigid motion and large deformation
is developed. The global displacement and rotation vectors,
totally six degrees of freedom, are selected as the nodal
coordinates. And the centroid position and the cross-section
orientation are coupled interpolated by a special approach,
which guarantees the perpendicularity between the cross-
section and the deformed neutral axes. Based on this idea,
a shear-locking-free beam element is proposed. By using the
average strains over an appropriate time trivial to replace the
transient strains in the expression of the nodal forces, the
high frequencies of the system can be filtered out as discussed
in the third example of Section 4. This can make the gov-
erning equations of the rigid-flexible coupling system solved
by using the well-established nonstiff ordinary differential
equation solver. In addition, our proposed scheme can be
also extended to other elements for the rigid-flexible coupling
dynamic analysis.
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