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The aim of this article is to analyze classical flutter and active control of single-cell thin-walled composite wind turbine blade
beam based on piezoelectric actuation. Effects of piezoelectric actuation for classical flutter suppression on wind turbine blade
beam subjected to combined transverse shear deformation, warping restraint effect, and secondary warping are investigated. The
extendedHamilton’s principle is used to set up the equations ofmotion, and theGalerkinmethod is applied to reduce the aeroelastic
coupled equations into a state-space form. Active control is developed to enhance the vibrational behavior and dynamic response
to classical aerodynamic excitation and stabilize structures that might be damaged in the absence of control. Active optimal control
scheme based on linear quadratic Gaussian (LQG) controller is implemented.The research provides a way for rare study of classical
flutter suppression and active control of wind turbine blade based on piezoelectric actuation.

1. Introduction

Although instability of stall nonlinear flutter has generally
been an important issue in flutter research [1], classical flutter
was observed involving a high-speed rotating blade in pitch
excitation process. Simultaneously, with the advent of large
wind turbine fitted with relatively slender blades, classical
flutter may become a more important design consideration.
In addition, innovative blade designs involving the use of
aeroelastic tailoring and structural tailoring, wherein the
blade twists as it bends under the action of aerodynamic loads
to shed load resulting fromwind turbulence,may increase the
blade’s proclivity for flutter [2].

Most of the literature of classical flutter focused on the
helicopter blades, noncoupling wing sections, and fan rotor
blades [3–5]. As for active control, most of the literature
focused on beam structures rather than the blade sectional
shapes. Kapuria and Yasin [6] study the active vibration sup-
pression of hybrid composite and fiber metal laminate plates
integrated with piezoelectric fiber reinforced composite sen-
sors and actuators. Phung-Van et al. [7] present an effect-
ive formulation based on higher-order shear deformation
theory to investigate free vibration and dynamic control
of piezoelectric composite plates integrated with sensors

and actuators. Supersonic flutter control of a three-layered
sandwich curved panel of rectangular plan form with an
adaptive electrorheological fluid core layer is investigated by
Hasheminejad and Motaaleghi [8].

Park and Kim [9] study the active twist rotor blade
incorporating single crystal macrofiber composite actuators
and analyze the aeroelasticity. Although the rotor blade
properties dynamically represent a real rotor blade, the anal-
ytical objects, are the torsional behavior of helicopter blades
or the vibration behavior of airfoils in which only the
torsional motions are involved. Simultaneously, the objects
of the existing literature mostly concentrate on the frequency
research rather than time response analysis.

In this work the classical flutter and flutter suppression
of composite blade beam are investigated for single-cell thin-
walled structure with piezoelectric patch embedded. The
validity of the piezoelectric actuation is tested and illus-
trated by time domain response analysis rather than fre-
quency research. The analysis is applied to a laminated host
structure of the circumferentially asymmetric stiffness (CAS)
that produces bending-twist-transverse shear coupling. The
governing system can be derived by the extended Hamilton
principle. The spanwise distributed PZT-4 sensor/actuator
pair is embedded into the orthotropic host. The net voltage
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Figure 1: Coordinate system and aerodynamics and structure.

output from sensor is fed to a controller for the purpose of
actuation. For piezoelectric actuation, active feedback control
law and linear quadratic Gaussian controller are imple-
mented. The purpose of present study is to investigate the
validity of piezoelectric actuation under extreme conditions
especially in critical region.

2. Analytical Model and Equations of Motion

Consider the thin-walled structure in which piezoelectric
patch is embedded as Figure 1. The length 𝐿 of the blade is
along 𝑧 direction. The origin of the rotating axis system is
located at the rigid root in which the blade beam is mounted.
Ω is the rotating speed; 𝑐 is the chord length; ℎ is the thickness
of section; 𝑟

𝑛
is the radius of curvature of the middle surface;

𝜙 is the twist angle of section; 𝑈 is the wind velocity. It is
assumed that 𝑐 ≪ 𝐿, ℎ ≪ 𝑐, and ℎ ≪ 𝑟

𝑛
. The equation of

the middle line of the closed section is as follows [2]:

𝑦 = 𝑒 {exp [0.05 (1− cos 𝜃
𝜑
)
2
+ 0.05 (sin 𝜃

𝜑
)
2
]

+ exp [−0.05 (1− cos 𝜃
𝜑
)
2
− 0.05 (sin 𝜃

𝜑
)
2
]

⋅ cos 𝜃
𝜑
} ,

(1a)

𝑧 = 𝑒 {exp [0.05 (1− cos 𝜃
𝜑
)
2
+ 0.05 (sin 𝜃

𝜑
)
2
]

− exp [−0.05 (1− cos 𝜃
𝜑
)
2
− 0.05 (sin 𝜃

𝜑
)
2
]

⋅ sin 𝜃
𝜑
} ,

(1b)

where 𝑒 is the 1/4 chord length and 𝜃
𝜑
changes from 0∼2𝜋.

The configuration of the piezoelectric actuator is assumed
to be distributed over the entire blade span. The characteris-
tics of the host composite structure and piezoelectric struc-
ture are depicted as (a) transverse shear, warping restraint
effect, and secondary warping as depicted in [10]; (b) the
master structure consists of 6-layer CAS configuration; the
actuator is 1 piezoelectric layer, with the height 𝑏𝑎

𝑘
and width

𝑠
𝑎

𝑘
along the circumferential 𝑠, spanwise 𝑧, and transverse

𝑛 directions; the width of piezoelectric layer 𝑠𝑎
𝑘
is relatively

small, generally less than or equal to 1/6 chord length; (c)
the piezoelectric elements may be employed concurrently
for sensing and actuation and relate the voltage produced
by the piezoelectric layer to the strain in the host structure;
(d) the feedback control is achieved through the action of
piezoelectrically induced vertical transverse shear motion at
the blade tip.

To simplify the analysis, a structural tailoring technology
for symmetric thin-walled structure is applied [10]. Consider
the cantilever vibration first, ignore rotation about 𝑦, and
retain rotation about 𝑥 according to the requirements of
piezoelectric actuation, the displacements 𝑢, V, 𝑤, 𝜃

𝑥
, and 𝜙

are displayed in Figure 1, and the system kinetic energy𝑇 and
potential energy 𝑉 are, respectively, expressed as

𝑇 =
1
2
∫

𝐿

0
∮

𝑁

∑

𝑘=1
∫
ℎ(𝑘)

𝜌
(𝑘)

{(�̇� − 𝑦 ̇𝜙)
2
+ (V̇ + 𝑥 ̇𝜙)

2
+ [(�̇� + 𝑦 ̇𝜃

𝑥
− 𝐹

𝑤

̇𝜙
󸀠

) − (
𝑑𝑥

𝑑𝑠

̇𝜃
𝑥
+ 𝑎 ̇𝜙

󸀠

)]

2
}𝑑𝑛 𝑑𝑠 𝑑𝑧, (2a)

where the primary warping function 𝐹
𝑤
is depicted as

𝐹
𝑤
= ∫

𝑠

0
[𝑟
𝑛
(𝑠) − 2

𝐴
𝑒

𝛽
]𝑑𝑠, (3)

where 𝐴
𝑒
denotes the section area bounded by the midline

and 𝛽 denotes the length of the contour midline. The radius
of curvature of the middle surface is expressed as
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Table 1: Composite parameters and piezoelectric properties.

Composite items Values Piezoelectric items Values
Maximum exterior width 24.21 × 10−3 m Thickness 𝑡𝑎 1.9 × 10−4m
Maximum exterior height 2.643 × 10−3 m Piezoelectric coefficient 𝑒

31
−2.05 × 102 PaV

Blade density 𝜌
𝑚

1672 kg/m3 Density 7.65 × 102 kg s2/m4

Ply layers 6 Electrical permittivity 𝜉
3

𝑝 1.2 × 10−8 F/m
Ply thickness 127 × 10−6 m Elastic coefficient 𝐶11 1.39 × 1011 Pa
Ply layers 6
𝐺
12
/V
12

3.5 GPa/0.34 Elastic coefficient 𝐶12 7.778 × 1010 Pa
𝐸
11
/𝐸
22

25.8GPa/8.7GPa Piezoelectric width 𝑠
𝑘

𝑎 c/6m

𝑟
𝑛
= 𝑥
𝑑𝑦

𝑑𝑠
− 𝑦
𝑑𝑥

𝑑𝑠
, (4)

𝑉 =
1
2

⋅ ∫

𝐿

0
∮

𝑁

∑

𝑘=1
∫
ℎ(𝑘)

𝜌
(𝑘)

{𝜎
(𝑘)

𝑧𝑧
[𝑤

󸀠

+ 𝑦𝜃
󸀠

𝑥
− 𝐹

𝑤
𝜙
󸀠󸀠

− 𝑛(
𝑑𝑥

𝑑𝑠
𝜃
󸀠

𝑥
+ 𝑎𝜙

󸀠󸀠

)] + 𝜎
(𝑘)

𝑠𝑧
[𝑢
󸀠
𝑑𝑥

𝑑𝑠
+ (V󸀠 + 𝜃

𝑥
)
𝑑𝑦

𝑑𝑠
+
2𝐴

𝑒

𝛽
𝜙
󸀠

] + 𝜎
(𝑘)

𝑛𝑧
[(𝑢

󸀠

)
𝑑𝑦

𝑑𝑠
− (V󸀠 + 𝜃

𝑥
)
𝑑𝑥

𝑑𝑠
]} 𝑑𝑛 𝑑𝑠 𝑑𝑧,

(2b)

where 𝜎𝑘
𝑖𝑗
denotes the stress component and represents the

three-dimensional constitutive equations for the actuator
layers with strain components 𝜀

𝑖𝑗
. It can be deduced as

[
[

[

𝜎
𝑠𝑠

𝜎
𝑧𝑧

𝜎
𝑠𝑧

]
]

]

=

[
[
[
[

[

𝐶11 𝐶12 0
𝐶12 𝐶11 0

0 0 𝐶11 − 𝐶12
2

]
]
]
]

]

[
[

[

𝜀
𝑠𝑠

𝜀
𝑧𝑧

𝜀
𝑠𝑧

]
]

]

−

[
[
[

[

𝑒31𝜉3𝑅 (𝑛) 𝑅 (𝑠) 𝑅 (𝑧)

𝑒31𝜉3𝑅 (𝑛) 𝑅 (𝑠) 𝑅 (𝑧)

0

]
]
]

]

,

(5)

where 𝐶
𝑖𝑗
means elastic coefficient and the last terms identify

the actuation stresses induced by the applied electric field.
In addition, 𝑅 is a spatial function expressed by Heaviside
distribution [10].The composite parameters and piezoelectric
properties can be found in Table 1.

Based on the extended Hamilton principle, the governing
system of cantilever vibration can be derived as follows:

∫

𝑡2

𝑡1

(𝛿𝑇− 𝛿𝑉+𝛿𝑊) 𝑑𝑡 = 0, (6)

where 𝛿𝑊 is the virtual work of the nonconservative forces
depicted as [10]

𝛿𝑊 = ∫

𝐿

0
(𝐹
𝑢
𝛿𝑢0 +𝐹V𝛿V0 +𝑀𝜑𝛿𝜙−𝑀𝑥𝑎𝛿𝜃

󸀠

𝑥

+𝐵
𝑤𝑎
𝜙
󸀠󸀠

) 𝑑𝑧,

(7)

where 𝑀
𝑥𝑎

and 𝐵
𝑤𝑎

are the piezoelectrically induced terms
expressed as

𝑀
𝑥𝑎
= ∮𝜉3𝑏

𝑎

𝑘
𝑒31𝑅 (𝑠, 𝑧)

⋅ [𝑦(1− 𝐴12
𝐴11
)+
𝑑𝑥

𝑑𝑠
(
𝐵12
𝐴11

− 𝑛
𝑎

𝑘
)]𝑑𝑠,

𝐵
𝑤𝑎
= ∮𝜉3𝑏

𝑎

𝑘
𝑒31𝑅 (𝑠, 𝑧)

⋅ [𝐹
𝑤
(1− 𝐴12

𝐴11
)− 𝑎(

𝐵12
𝐴11

− 𝑛
𝑎

𝑘
)]𝑑𝑠,

(8)

where

𝑛
𝑎

𝑘
=
1
2
𝑐 − 𝑏

𝑎

𝑘
−
1
8
ℎ, 𝑎 = −𝑦 (𝑠)

𝑑𝑦

𝑑𝑠
− 𝑥 (𝑠)

𝑑𝑥

𝑑𝑠
(9)

and 𝜉
3
is the applied electric field on which the piezoelectri-

cally induced moment depends related with patch area𝐴
𝑝
. It

is computed as

𝜉3𝜉
𝑝

3𝐴𝑝 = ∬{𝑒31𝑦 (𝑠) [
̇𝜃
𝑥
(𝑧2) −

̇𝜃
𝑥
(𝑧1)]} 𝑑𝑠 𝑑𝑡 (10)

and 𝐴
𝑖𝑗
and 𝐵

𝑖𝑗
denote local stretching and stretching-bend-

ing coupling rigidity quantities, respectively.
It is complicated to directly deduce the equations of

motion of the rotating section with piezoelectric fiber
rein forced composite actuators. Hence another simplified
method is applied here. Based on (6), the equations ofmotion
of cantilever vibration can be obtained first.With the rotating
centrifugal motion [11] and the CAS structural tailoring
technology being considered [10], the equations of rotating
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motionwith vertical bending-twist-transverse shear coupling
can be deduced as

𝑏1V̈− 𝑎1V
󸀠󸀠

− 𝑎2𝜙
󸀠󸀠󸀠

− 𝑎1𝜃
󸀠

𝑥
−
1
2
𝑚Ω

2
[V󸀠󸀠 (𝐿2 − 𝑧2)

+ V󸀠 (−2𝑧)] = 𝐹 cos (𝜓) ,
(11a)

[𝑏
2

̈𝜙 − 𝑏
3

̈𝜙
󸀠󸀠

+ 𝑎
3
𝜙
󸀠󸀠󸀠󸀠

− 𝑎
5
𝜙
󸀠󸀠

+ 𝑎
2
V󸀠󸀠󸀠 + 𝑎

4
𝜃
󸀠󸀠

𝑥
+𝐵

󸀠󸀠

𝑤𝑎

−
1

2
𝑚Ω

2

𝐾
2

𝐴
(𝐿
2

− 𝑧
2

)] 𝜙
󸀠󸀠

+𝑚Ω
2

𝐾
2

𝐴
𝑧𝜙
󸀠

+𝑚Ω
2

(𝐾
2

𝑚2
−𝐾

2

𝑚1
) 𝜙 = 𝑀+𝐹𝑒 cos (𝜓 −𝜑) ,

(11b)

𝑏
0

̈𝜃
𝑥
− 𝑎

6
𝜃
󸀠󸀠

𝑥
+ (𝑎

2
− 𝑎

0
) 𝜙
󸀠󸀠

+ 𝑎
1
V󸀠 + 𝑎

1
𝜃
𝑥
+𝑀

󸀠

𝑥𝑎
= 0, (11c)

where the related composite structural parameters 𝑎
𝑗
and 𝑏

𝑗

are displayed in appendix, and the classical aerodynamics of
lift 𝐹 and moment𝑀 can be expressed as [2]

𝐹 = −𝜌
𝑎
𝑐𝑉

2
0 𝜋 (𝛼+ V

󸀠

) ,

𝑀 = −𝜌
𝑎
𝑐
2
𝑉

2
0 𝜋𝑒 (𝛼 + V

󸀠

) ,

(12)

where

Ω =
𝜆𝑈

𝐿
,

𝐾
2
𝑚1 =

1
𝑚
∬𝜌

𝑚
𝑥
2
𝑑𝑦𝑑𝑥,

𝐾
2
𝑚2 =

1
𝑚
∬𝜌

𝑚
𝑦
2
𝑑𝑦𝑑𝑥,

𝐾
2
𝑚
= 𝐾

2
𝑚1 +𝐾

2
𝑚2,

𝐴0 = ∬𝑑𝑦𝑑𝑥,

𝐴0𝐾
2
𝐴
= ∬(𝑦

2
+𝑥

2
) 𝑑𝑦 𝑑𝑥.

(13)

3. Solution Methodology

3.1. Application of Galerkin Method. To analyze the aeroelas-
tic system given by (11a)–(11c), theGalerkinmethod is used so
as to reduce the aeroelastic coupled equations into the state-
space form [11]. Firstly the representation of displacement
functions is as follows:

𝑉 (𝑧, 𝑡) = 𝑉
𝑇

(𝑧) 𝑞V (𝑡) ,

𝜙 (𝑧, 𝑡) = Φ
𝑇

(𝑧) 𝑞
𝜑
(𝑡) ,

(14)

𝜃
𝑥
(𝑧, 𝑡) = 𝑆

𝑇

(𝑧) 𝑞
𝜃
(𝑡) , (15)

where test functions are required to satisfy the kinematics and
force boundary conditions of the cantilever blade and can be
written as

𝑉
𝑇

(𝑧) = [V1, V2, V3, V4, . . . , V𝑁] ,

Φ
𝑇

(𝑧) = [𝜑1, 𝜑2, 𝜑3, 𝜑4, . . . , 𝜑𝑁] ,

𝑆
𝑇

(𝑧) = [𝜃1, 𝜃2, 𝜃3, 𝜃4, . . . , 𝜃𝑁] ,

V
𝑗
(𝑧) = cosh (𝛽

𝑗
𝑧) − cos (𝛽

𝑗
𝑧)

+ 𝛼
𝑗
(sinh (𝛽

𝑗
𝑧) − sin (𝛽

𝑗
𝑧)) ,

𝜑
𝑗
(𝑧) = √2 sin (𝛾

𝑗
𝑧) ,

𝜃
𝑗
(𝑧) = √2 sin (𝛾

𝑗
𝑧) ,

𝛾
𝑗
= 𝜋(𝑗 −

1
2
) ,

𝛽
𝑗
= (𝑗 −

1
2
)𝜋,

𝛼
𝑗
= −

cos𝛽
𝑗
+ cosh𝛽

𝑗

sin𝛽
𝑗
+ sinh𝛽

𝑗

.

(16)

Secondly substituting (15) into (11a)–(11c), with Galerkin
method applied, gives 3𝑁matrix equations as follows:

𝑀
𝑃𝑁
�̈� +𝐾

𝑃𝑁
𝑋 = 𝑄

𝑃𝑁
, (17)

where the state variable 𝑋 = [𝑞V|
𝑇

𝑁×1, 𝑞𝜑|
𝑇

𝑁×1, 𝑞𝜃|
𝑇

𝑁×1]
𝑇, and

the related coefficient matrices are

𝑀
𝑃𝑁
= [𝑀

𝑃𝑁1 𝑀𝑃𝑁2 𝑀𝑃𝑁3] ,

𝑀
𝑃𝑁1 =

[
[
[
[

[

∫

𝐿

0
𝑏1𝑉

𝑇

(𝑧) V
𝑗
𝑑𝑧

0
0

]
]
]
]

]

,

𝑀
𝑃𝑁2 =

[
[
[
[

[

0

∫

𝐿

0
{𝑏2Φ

𝑇

(𝑧) − 𝑏3 [Φ
𝑇

(𝑧)]
󸀠󸀠

} 𝜑
𝑗
𝑑𝑧

0

]
]
]
]

]

,

𝑀
𝑃𝑁3 =

[
[
[
[

[

0
0

∫

𝐿

0
𝑏0𝑆

𝑇

(𝑧) 𝜃
𝑗
𝑑𝑧

]
]
]
]

]

,

𝐾
𝑃𝑁
= [𝐾

𝑃𝑁1 𝐾𝑃𝑁2 𝐾𝑃𝑁3] ,
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𝐾
𝑃𝑁1

=

[
[
[
[
[
[

[

∫(𝑄V + 𝜋𝜌𝑎𝑐𝑉
2
0 [𝑉

𝑇

(𝑧)]
󸀠

cos𝜓) V
𝑗
𝑑𝑧

∫ (𝑎2 [𝑉
𝑇

(𝑧)]
󸀠󸀠󸀠

+ 𝜋𝜌
𝑎
𝑉

2
0 [𝑉

𝑇

(𝑧)]
󸀠

𝑒𝑐 (𝑐 + cos𝜓)) 𝜑
𝑗
𝑑𝑧

∫ 𝑎1 [𝑉
𝑇

(𝑧)]
󸀠

𝜃
𝑗
𝑑𝑧

]
]
]
]
]
]

]

,

𝐾
𝑃𝑁2 =

[
[
[
[
[
[

[

−∫(𝑎2 [Φ
𝑇

(𝑧)]
󸀠󸀠󸀠

+ 𝜋𝜌
𝑎
𝑐𝑉

2
0 [Φ

𝑇

(𝑧)] cos𝜓) V
𝑗
𝑑𝑧

∫ (𝑄
𝜑
− 𝜋𝜌

𝑎
𝑉

2
0 [Φ

𝑇

(𝑧)] 𝑒𝑐 (𝑐 + cos𝜓)) 𝜑
𝑗
𝑑𝑧

∫ (𝑎2 − 𝑎0) [Φ
𝑇

(𝑧)]
󸀠󸀠

𝜃
𝑗
𝑑𝑧

]
]
]
]
]
]

]

,

𝐾
𝑃𝑁3 =

[
[
[
[
[
[
[

[

−∫𝑎1 [𝑆
𝑇

(𝑧)]
󸀠

V
𝑗
𝑑𝑧

∫ {𝑃
𝐵𝑤𝑎
[𝑆
𝑇

(𝑧)]
󸀠󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝐿

+ 𝑎4 [𝑆
𝑇

(𝑧)]
󸀠󸀠

} 𝜑
𝑗
𝑑𝑧

∫𝑄
𝜃
𝜃
𝑗
𝑑𝑧

]
]
]
]
]
]
]

]

,

𝑄
𝑃𝑁
=

[
[
[
[
[

[

−∫ (𝜋𝜌
𝑎
𝑐𝑉

2
0𝜓 cos𝜓) V𝑗𝑑𝑧

−∫ (𝜋𝜌
𝑎
𝑉

2
0𝜓𝑒𝑐 (𝑐 + cos𝜓)) 𝜑𝑗𝑑𝑧

0

]
]
]
]
]

]

,

(18)

where

𝑄V = − 𝑎1 [𝑉
𝑇

(𝑧)]
󸀠󸀠

−(
𝑚Ω

2

2
)(𝐿

2
− 𝑧

2
) [𝑉

𝑇

(𝑧)]
󸀠󸀠

+𝑚Ω
2
𝑧 [𝑉

𝑇

(𝑧)]
󸀠

,

𝑄
𝜑
= 𝑎3 [Φ

𝑇

(𝑧)]
󸀠󸀠󸀠󸀠

− 𝑎5 [Φ
𝑇

(𝑧)]
󸀠󸀠

+𝑚Ω
2
𝑘
2
𝐴
𝑧 [Φ

𝑇

(𝑧)]
󸀠

+𝑚Ω
2
(𝑘

2
𝑚2 − 𝑘

2
𝑚1)

⋅ 𝑧 [Φ
𝑇

(𝑧)] −(
𝑚Ω

2

2
)𝑘

2
𝐴
(𝐿

2
− 𝑧

2
) [Φ

𝑇

(𝑧)]
󸀠󸀠

,

𝑄
𝜃
= −𝑎6 [𝑆

𝑇

(𝑧)]
󸀠󸀠

+ 𝑎1 [𝑆
𝑇

(𝑧)] + [𝑆
𝑇

(𝑧)]
󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝐿

⋅ {
4𝑒31𝑏

𝑎

𝑘

𝑡
𝑎

(
𝜉3𝑡𝑎

[𝑆𝑇 (𝐿) 𝑞
𝜃
]
)

⋅∮[𝑦(1− 𝐴12
𝐴11
)+
𝑑𝑥

𝑑𝑠

𝐵12
𝐴11

−
𝑑𝑦

𝑑𝑠
𝑛
𝑎

𝑘
] 𝑑𝑠} ,

𝑃
𝐵𝑤𝑎
=
4𝑒31𝑏

𝑎

𝑘

𝑡
𝑎

(
𝜉3𝑡𝑎

[𝑆𝑇 (𝐿) 𝑞
𝜃
]
)

⋅∮[𝐹
𝑤
(1− 𝐴12

𝐴11
)− 𝑎

𝐵12
𝐴11

+ 𝑎𝑛
𝑎

𝑘
] 𝑑𝑠.

(19)

Equation (17) is the linear decoupling equation governing
the motion of the aeroelastic system, which is a matrix equa-
tion with 3𝑁 subequation structure.

3.2. Active Control. In active flutter suppression, it is essen-
tial to properly select actuators and properly use control

method andmathematical algorithm.The feedback control is
achieved through the piezoelectrically induced vertical trans-
verse shearmotion at the blade tip, considered in conjunction
with the implementation of a combined feedback control law,
when external voltage of opposite sign is applied in the upper
and bottom piezoactuator layer. The applied electric field 𝜉

3

onwhich the piezoelectrically inducedmoment dependsmay
be expressed through a prescribed linear functional relation-
ship with the kinematical response quantities characterizing
the blade’s response. The piezoelectrically induced bending
moment 𝑀

𝑥𝑎
intervenes solely in the boundary conditions

prescribed at the blade tip and plays the role of a boundary
moment control due to special distribution of piezoactuators
[12]. A feedback control law is implemented with𝑀

𝑥𝑎
at the

blade tip expressed as

𝑀
𝑥𝑎
(𝐿, 𝑡) = 𝑘V

̇𝜃
𝑥
(𝐿, 𝑡) + 𝑘

𝑎

̈𝜃
𝑥
(𝐿, 𝑡) , (20)

where 𝑘V and 𝑘𝑎 denote the velocity and acceleration feedback
gains, respectively. So for active control with feedback law,
system equation (17) is rewritten as

𝑀
𝑃𝑁
�̈� +𝐶

𝑃𝑁
�̇� +𝐾

𝑃𝑁
𝑋 = 𝑄

𝑃𝑁
, (21)

where the new coefficient matrices are as follows:

𝑀
𝑃𝑁3 =

[
[
[
[

[

0
0

∫

𝐿

0
{𝑏0𝑆

𝑇

(𝑧) + 𝐾
𝑎
[𝑆
𝑇

(𝑧)]
󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝐿

} 𝜃
𝑗
𝑑𝑧

]
]
]
]

]

,

𝐶
𝑃𝑁
=

[
[
[
[

[

0 0 0
0 0 0

0 0 ∫ 𝐾V [𝑆
𝑇

(𝑧)]
󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝐿

𝜃
𝑗
𝑑𝑧

]
]
]
]

]

.

(22)

In order to determine the time domain response of
the dynamic system of (21), a Runge-Kutta time-marching
approach is applied. Using the method presented in [1],
(21) will be expressed in state-space form. In general, upon
defining the state vector 𝑌 = [𝑋𝑇, �̇�𝑇]𝑇 and adjoining the
identity equation �̇� = �̇�, (21) can be converted to the state-
space expression:

�̇� = 𝐴𝑌+𝐵,

𝑌
𝑂
= 𝐶𝑌+𝐷,

(23)

where 6𝑁× 6𝑁 state matrix𝐴 and 6𝑁× 1matrix 𝐵 are given
by

𝐴 = [

0 𝐼
𝐸

−𝑀
−1
𝑃𝑁
𝐾
𝑃𝑁
−𝑀

−1
𝑃𝑁
𝐶
𝑃𝑁

] ,

𝐵 = [

0

𝑀
−1
𝑃𝑁
𝑄
𝑃𝑁

] .

(24)

Herein 𝐼
𝐸
is the 3𝑁 unitary matrix, 𝐶 is 6𝑁 unitary matrix,

and𝐷 is 6𝑁 × 1 zero matrix.
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In order to minimize settling time and required control
energy, optimal control techniques are necessary for con-
troller design. Since these sensitive structures often expe-
rience time-varying loads, their safe and effective design
requires accurate response [13].The linear quadratic regulator
(LQR) is often used to analyze vibration control of rotating
composite beam. An advantage of the quadratic optimal
control method is that it provides a systematic way of
computing the state feedback control gain matrix [14]. In
[13], the Galerkin method, along with either instantaneous or
classical LQR methods, is used to analyze vibration control
of a rotating composite pretwisted single-celled box beam,
exhibiting transverse shear flexibility and restrained warping.

Here in order to suppress the too large initial vibration
amplitude in LQR process and decrease the influence of
measurement noise (might be produced by unsteady aero-
dynamics), the linear quadratic Gaussian (LQG) controller
is used [4, 15]. It is assumed that the measurement noise and
disturbance signals (process noise) are stochastic with known
statistical properties and are hidden in system equation (23).
The dynamic equation of LQG controller can be represented
as

�̇�
𝐶
= 𝐴

𝐶
𝑋
𝐶
+𝐵

𝐶
𝑢,

𝑌
𝐶
= 𝐶

𝐶
𝑋
𝐶
,

(25)

where

𝐴
𝐶
= 𝐴−𝐵𝐾

𝑅
−𝐾

𝐹
𝐶+𝐾

𝐹
𝐷𝐾

𝑅
,

𝐵
𝐶
= 𝐾

𝐹
= 𝑋

𝐹
𝐶
𝑇

𝑅
−1
1 ,

𝐶
𝐶
= −𝐾

𝑅
= − (𝑅+𝐷

𝑇

𝑄𝐷)
−1
(𝐵
𝑇

𝑋
𝑅
+𝐷

𝑇

𝑄𝐶) ,

(26)

where 𝑄 and 𝑅 are the weighting matrices of system outputs
and control inputs, respectively; 𝐾

𝐹
and 𝐾

𝑅
are the gain

matrices of the Kalman state estimator and the gain matrix of
the optimal regulator, respectively;𝑋

𝐹
and𝑋

𝑅
are the positive

finite solution of algebraic Riccati equations as follows:

𝐴𝑋
𝐹
+𝑋

𝐹
𝐴
𝑇

−𝑋
𝐹
𝐶
𝑇

𝑅
−1
1 𝐶𝑋𝐹 +𝑄1 = 0,

𝐴
𝑇

𝑋
𝑅
+𝑋

𝑅
𝐴− (𝐶

𝑇

𝑄𝐷+𝑋
𝑅
𝐵) (𝑅+𝐷

𝑇

𝑄𝐷)
−1

⋅ (𝐵
𝑇

𝑋
𝑅
+𝐷

𝑇

𝑄𝐶)+𝐶
𝑇

𝑄𝐶 = 0,

(27)

where 𝑄
1
and 𝑅

1
are the intensity matrices of the gust

input and the Gaussian white noise process of measurement,
respectively. For the LQG control law, the gain matrix𝐾

𝑅
can

be determined firstly by choosing theweightingmatrices as𝑄
being 6𝑁 unitarymatrix and𝑅 = 0.001.Then the gainmatrix
𝐾
𝐹
of the Kalman state estimator is determined via 𝑄

1
= 1

and 𝑅
1
being 6𝑁 unitary matrix.

The LQG control problem is to find the optimal control
𝑢(𝑡) which minimizes

𝐽 = 𝐸{ lim
𝑇→∝

1
𝑇
∫

𝑇

0
[𝑌
𝑇

𝑄𝑌+𝑢
𝑇

𝑅𝑢] 𝑑𝑡} (28)

and the required solution to the LQG problem is then found
by replacing 𝑌 by𝑋

𝐶
, to give the expression

𝑢 (𝑡) = −𝐾
𝑅
𝑋
𝐶
(𝑡) . (29)

4. Results and Discussion

To testify the validity of active flutter suppression, numerical
results of time responses at blade tip for LQG controllers
are presented, compared with related results of other cases.
Generally, rotating blades have specific rotating speed, ply
angle, and tip speed ratio for operation. Here basic testing
parameters are ply angle 𝜃

𝑝
= 30

∘; tip speed ratio of wind
turbine 𝜆 = 3; blade length 𝐿 = 1.5m.

In general, the critical wind speed of a 2D section can
be determined by v-g method [4] by eigenvalue analysis.
However, the object of present research is a 3D entity with
bending-twist-transverse shear coupling. After decoupling
the number of subequations in (17) reaches 3𝑁 (here𝑁 ≥ 5),
with the number of eigenvalues being 6𝑁. V-g method has
lost the utility. However, we can use another approximate
method by the eigenvalue analysis. For different wind speeds,
the maximum value of all the eigenvalues of each wind speed
is determined, and then the critical wind speed is determined
from the fluctuation of the largest eigenvalues. Figure 2(a)
displays maximum real parts of eigenvalues versus velocities
from 20∼45m/s. It can be obviously demonstrated that the
critical wind speed is 𝑈 = 34.69m/s.

For flutter analysis, an approximate critical state range
based on𝑈 = 34.69m/s∼34.695m/s is considered.When𝑈 <
34.69m/s, the system is convergent with smaller amplitude.
When𝑈 > 34.695m/s, the systempresents the divergent state
with a large amplitude.

In general, the damping ratio increases constantly as the
feedback control gain increases. However feedback control
gain cannot be increased infinitely because the applied
voltage must be limited for the sake of breakdown voltage
of actuators [16]. According to the requirements of blade
structure and actual control hardware here, the fixed feedback
gains of 𝑘V = 1 and 𝑘𝑎 = 1 are applied.

Figure 2(b) shows the time responses of vertical bending
(V), twist (𝜙), and transverse shear (𝜃

𝑥
) motions under

situation of without piezoelectricmaterials. Two critical wind
speed values are considered at the same time; one is 𝑈 =

34.69m/s (in blue mark) and the other one is𝑈 = 34.695m/s
(in green mark).

From the whole response trend in the case of 𝑈 =

34.69m/s, the three displacements seem to be convergent. In
fact for the vertical bending displacement V, within 2 s time,
the amplitude of the vibration quickly exceeds the length
of the blade 𝐿, so actually the vertical bending (V) motion
has been in the state of divergence, so do twist (𝜙) and
transverse shear (𝜃

𝑥
) motions. The instability also can be

testified by Imag.-Real plot of eigenvalues of homogeneous
equation system in Figure 3(a), where some closed-loop poles
lie in the right-half plane, resulting in an unstable system.

As for another case of 𝑈 = 34.695m/s in Figure 2(b),
the three displacements rapidly diverge from the start with
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Figure 2: Maximum real parts of eigenvalues versus velocities (a) and the responses for both 𝑈 = 34.69m/s and 𝑈 = 34.695m/s under
situation of without piezoelectric materials (b).



8 Shock and Vibration

0 1 2 3 4 5

0

1

2

3

4

Real

Im
ag

.

−4

−3

−2

−1

−4−5 −3 −2 −1

×105

×10−12

(a) Without piezoelectric materials

0 2 4
Real

0

1

2

3

Im
ag

.

−3

−2

−1

−8−14 −12 −10 −6 −4 −2

×105

×10−11

(b) With gains of 𝑘V = 1 and 𝑘𝑎 = 1, but without optimal controller

0
Real

0

1

2

3

4

Im
ag

.

−4

−3

−2

−1

−40 −35 −30 −25 −20 −15 −10 −5

×105

(c) With LQG controller

Figure 3: Imag.-Real plot of homogeneous equation system for 𝑈 = 34.69m/s defined in state-space.

larger amplitude. These two cases in Figure 2(b) both can be
regarded as the unstable states.

Take the case of𝑈 = 34.69m/s; for example, analysis and
discussion for active control and flutter suppression will be
carried out in the following in Figures 3∼5.

Figure 3 shows Imag.-Real plot of homogeneous equation
system (only concerning the characteristic matrices of 𝐴 and
𝐴
𝐶
) for𝑈 = 34.69m/s defined in state-space: (a) without pie-

zoelectric materials; (b) with gains of 𝑘V = 1 and 𝑘𝑎 = 1, but
without optimal controller; (c) with LQG controller. Figures
3(a)∼3(b) show the system instability. Some closed-loop poles
lie in the right-half plane, and others are in the left-half plane.
It can be seen from the Imag.-Real plot of Figure 3(c) that the
homogeneous equation system obtained by control of LQG

controller is stable, with all the closed-loop poles being in the
left-half plane.

Figure 4 shows comparisons of the three displacements
responses for𝑈 = 34.69m/s with fixed feedback gains of 𝑘V =
1 and 𝑘

𝑎
= 1, which are characterized by the state without

optimal controller (in blue mark) and LQG controller (in red
mark).

It can be seen that piezoelectric actuation based on fixed
feedback gains of 𝑘V = 1 and 𝑘𝑎 = 1 and without optimal con-
troller (blue mark in Figure 4) can greatly suppress the
flutter, compared with the results in Figure 2(b). However,
the results of these three displacements still maintain a larger
vibration amplitude, and what is more, combined with the
eigenvalue analysis in Figure 3(b), the system (with bluemark
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Figure 4: The responses of the three displacements under condition of fixed feedback gains of 𝑘V = 1 and 𝑘𝑎 = 1, which are characterized by
the state without optimal controller (in blue mark) and LQG controller (in red mark) for 𝑈 = 34.69m/s.

in Figure 4) might be conditionally stable. In practice, condi-
tionally stable systems are not desirable. If system parameter
assumes a value corresponding to unstable operation, the
system may break down or may become nonlinear due to
a saturation nonlinearity that may exist. Therefore, further
active control based on theoretical algorithm, such as LQG
algorithm, is necessary.

As far as the trend of response is concerned, the three dis-
placements based on LQG controller in Figure 4 are rapidly
convergent from the start. Figure 4 (redmark) also shows that
the flutter amplitudes of all the three displacements decrease
rapidly with the change of time and tend to be steady within

2 s. It shows obvious effect of LQG flutter suppression on
aeroelastic instability.

In contradistinction with the trends without feedback
control occurring in Figure 2(b) for𝑈 = 34.69m/s, the results
displayed in Figure 4 reveal that LQG algorithm and active
feedback control law have positive effects on classical flutter
suppression. In order to verify the LQG law of universal,
a further validation of LQG controller concerns the case
of rapidly divergent state characterized by wind velocity of
𝑈 = 38m/s without piezoelectric materials in Figure 5 (blue
mark). From this figure it becomes apparent that when the
wind speed is greater than the critical value, with increase of
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Figure 5: The time responses of the three displacements for wind velocity of 𝑈 = 38m/s, which are characterized by the state without
piezoelectric materials and actuation by LQG controller.

time (within 1 s), the magnitudes of the vibration amplitudes
of the three displacements increase rapidly, even to unbeliev-
able extent.

The effect of LQG controller on flutter suppression is
illustrated in Figure 5 (green mark). The results show an
expected conclusion, namely, that, for wind speed beyond
the critical value, even in the adverse circumstances, the
effect of LQG controller on flutter suppression is prominent.
As a matter of fact, all the three responses under LQG
controller are always stabilized to a constant value with
smaller deviation when the time is extended beyond 2 s;
meantime the three velocities at the blade tip are stabilized
to zero within 2 s (see Figure 6), which verify the control
performance for the state variables of (29).

It should be stated that the purpose of present study is
to investigate the validity of piezoelectric actuation under
extreme conditions for 𝑈 ⩾ 34.69m/s as mentioned in
Figures 2(b)∼6. Of course, in general, the LQG algorithm
is effective. A further validation of LQG controller concerns
that the cases of low velocity for 𝑈 = 10m/s and 𝑈 =

5m/s are displayed in Figure 7. The results show the same
conclusion as Figure 5, namely, that, for wind speed in low
area, the effect of LQG controller on flutter suppression is
obvious. Simultaneously all the three responses under LQG
controller are always stabilized to constant values when the
time is extended beyond 3 s.

In addition, the cost of piezoelectric materials is high
with the mass of the system increasing as more actuator is
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used, with greater length and thickness being applied. Hence,
adequate flutter suppression performance with LQG con-
troller might be obtained through the proper arrangement
and distributed size of sensor/actuator pair.

5. Conclusions

The purpose of present research is to investigate the validity
of piezoelectric actuation under extreme conditions. An
analytical study devoted to the mathematical modeling of
single-cell thin-walled composite wind turbine blade beam
is presented in the paper. Simultaneously classical flutter and
active control based on piezoelectric actuation are investi-
gated. The validity of the piezoelectric actuation is tested and
illustrated by time domain response analysis. Since the related
research onwind turbine is scarce, only numerical simulation
technology is investigated here. The numerical illustrations
reveal validation of the solution methodology and control
algorithm used in the paper. Some concluding remarks can
be drawn from the results as follows:

(1) Flutter suppression for classical flutter blade with
vertical bending-twist-transverse shear coupling is
investigated and discussed. Galerkin method is used
to solve the coupling aeroelastic equations.

(2) Piezoelectric actuation is realized by active controller
with feedback gains. It is obviously demonstrated that
the LQG controller is robust and the effect on flutter
suppression is apparent.

(3) It should be stated that the performance of LQG reg-
ulation depends on the choice of weighting matrices
𝑄, 𝑅, and 𝑄

1
, 𝑅

1
which have no analytic solution.

Hence in some sense, the LQG controller in fact is
man-made.

Appendix

Structural Parameters and Rigidity Quantities
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Figure 7: The time responses of the three displacements for wind velocities of 𝑈 = 10m/s (a) and 𝑈 = 5m/s (b), which are characterized by
the state without piezoelectric materials and actuation by LQG controller.
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