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Effects of curvature upon the vibration characteristics of doubly curved shallow shells are assessed in this paper. Boundary
conditions of the shell are generally specified in terms of distributed elastic restraints along the edges. The classical homogeneous
boundary supports can be easily simulated by setting the stiffnesses of restraining springs to either zero or infinite. Vibration
problems of the shell are solved by a modified Fourier series method that each of the displacements is invariably expressed as a
simple trigonometric series which converges uniformly and acceleratedly over the solution domain. All the unknown expansion
coefficients are treated equally as a set of independent generalized coordinates and solved using the Rayleigh-Ritz technique.
The current method provides a unified solution to the vibration problems of curved shallow shells involving different geometric
properties and boundary conditions with no need of modifying the formulations and solution procedures. Extensive tabular and
graphical results are presented to show the curvature effects on the natural frequencies of the shell with various boundary conditions.

1. Introduction

Vibration problems of shell structures have long been of con-
siderable attention by the researchers and engineers because
they are widely used in structural, mechanical, and aerospace
engineering applications. Leissa [1] wrote amonograph about
the vibration of shells and summarized approximately 1000
related publications which had been done before 1973. Earlier
investigations also have been reviewed by Qatu [2, 3] and
Liew et al. [4].

Shallow shells can be considered as plates having small
curvature in two perpendicular directions. It has three
familiar types, spherical (Figure 1(a)), circular cylindrical
(Figure 1(b)), and hyperbolic paraboloidal (Figure 1(c)) when
the Gaussian curvature (1/𝑅

𝑎
𝑅
𝑏
) is positive, zero, and nega-

tive. The first theoretical study on the frequency analysis of
shallow cylindrical shells was reported by Palmer [5]. Using
cylindrical shell element, Olson and Lindberg [6] studied
the vibratory behaviors of a cantilevered curved fan blade.
They also investigated the dynamic characteristics of shallow
shell structures using the conforming triangular shaped shell
elements [7, 8]. Nath [9] determined the natural frequencies

of a fully clamped cylindrical shell. Kantorovich’s method for
reducing the partial differential equations to a set of ordinary
differential equations was applied by Petyt and Nath [10] to
study the free vibration characteristics of a singly curved rect-
angular plate. Petyt [11] also collected four theoretical meth-
ods for the vibration analysis of a singly curved rectangular
plate and compared numerical results with the experimental
results [9]. An approximate solution for the vibration analysis
of open shallow cylindrical shells was presented by Elishakoff
andWiener [12].The doubly curved right helicoidal shell ele-
ments were used byWalker [13] to investigate curved twisted
fan blades. Although the finite element method has been
widely used in solving various shell vibration problems, it is
sometimes less desired as compared with an analytical solu-
tion because the parameters of concern are all digitized and
their significance can be easily lost in the numerical or dis-
cretization process. From practical point of view, when a shell
is elastically restrained, the springs will have to be manually
created in a finite elementmodel, which can easily become an
overwhelming task, especially when spring rates vary along
an edge. This concern will become more remarked when a
stochastic process or field will have to be taken into account.
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Figure 1: Shells of positive, zero, and negative Gaussian curvature: (a) spherical, (b) circular cylindrical, and (c) hyperbolic paraboloidal.

The Ritz method with algebraic polynomial trial func-
tions was used by Leissa and his coworkers [15, 18, 19] to
study the vibration characteristics of different types of shallow
shells with various boundary conditions. Narita and Leissa
[20] studied the vibration of corner point supported shallow
shells. Lee et al. [21] compared the shallow and deep shell
theories using cantilevered circular cylindrical shells with
rectangular planform. In [15, 18–21], the boundary condi-
tions had been imposed explicitly because the built-in basic
function to satisfy the kinematic shell boundaries was not
specified. Qatu and Leissa [16, 22–24] also used the Ritz
method based on algebraic polynomial displacement func-
tions to investigate the effects of edge constraints on the vibra-
tions of shallow shells.

A numerical approximation with 𝑝𝑏-2 functions was
employed by Liew and Lim [14, 17, 25–27] to solve vibratory
behaviors of shallow shells with different complicating fac-
tors. The limits of the shallow shell theory were investigated
by Liew et al. [28] using the𝑝-Ritzmethod. It was determined
that the shallow shell theory was accurate enough if the sub-
tended angle of a shell is no more than 40∘. Recently, the
spline finite strip method [29] and differential quadrature
method (DQM) [30] were used to study the vibrations of cir-
cular curved panels.

Although vibration problems of shallow shells have been
extensively studied for many years, most of the existing
investigations are specifically dealt with shells having partic-
ular type and classical boundary conditions, while curvature
effects on the vibration characteristics of doubly curved
shallow shells with general elastic boundary supports have
received little attention. Vlasov [31] pointed out that shells
having negative Gaussian curvature will have the lowest
frequencies, but he made no further study of this problem.
For a shell that has a rectangular planform supported by
shear diaphragms [32], it is shown that the frequencies of
all modes became larger with positively increasing values of
𝑅
𝑏
/𝑅
𝑎
, whereas negatively changing values of 𝑅

𝑏
/𝑅
𝑎
cause

first decreasing, then increasing frequencies. The primary
objective of the present work is to assess the effects of
curvature upon the natural frequencies of shallow shells with
arbitrary elastic boundary conditions. For this purpose, four
types of uniformly distributed elastic springs are specified
along each edge to realize various boundary conditions. It
represents a situation which will be much more practical in
engineering applications. A modified Fourier series method
in which all the displacements are expressed in the form of
trigonometric functions is used in this investigation. Since
the trigonometric functions are sufficient completeness and
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Figure 2: Geometrical parameters and coordinate system of a
doubly curved shallow shell with elastically restrained edges.

smoothness in the solution domain, Rayleigh-Ritz method
is employed here instead of solving the series coefficients
which simultaneously satisfy both the governing differential
equations and boundary conditions. Extensive tabular and
graphical results are presented to show the effects of curvature
upon the natural frequencies of shallow shells with different
boundary conditions.The changing trends of the frequencies
varying with the curvatures are explained in detail.

2. Theoretical Formulations

A doubly curved shell on rectangular planform with uniform
thickness ℎ is illustrated in Figure 2. The shell is described in
a curvilinear coordinate system and considered shallow for
its small rise compared to the minimum radii of curvature.
The curvilinear lengths of edges are denoted as 𝑎 and 𝑏 while
𝑙
𝑎
and 𝑙
𝑏
are the lengths of planform. 𝑅

𝑎
and 𝑅

𝑏
are constant

principal radii of curvature in 𝑥 and 𝑦 direction, respectively.
Boundary conditions of the shallow shell are specified as
general elastic restraints which are described in terms of
flexural, longitudinal, tangential, and rotational springs of
arbitrary stiffnesses. For simplicity, it is assumed that the
restraining springs have uniform stiffness distributions along
each edge. All the classic homogeneous boundary conditions
can be obtained by setting the stiffness coefficients equal
to either zero or infinity. Other more complex boundary
conditions, such as partial and nonuniform elastic supports,
can be readily dealt with [33].

Vibration of the doubly curved shallow shell is considered
three-dimensional: 𝑢(𝑥, 𝑦), V(𝑥, 𝑦), and 𝑤(𝑥, 𝑦), respectively,
denotes the displacement at a given point on the middle
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surface of the shell in 𝑥, 𝑦, and 𝑧 directions. The strain-dis-
placement relationships for thin shells which are based on
Love’s first approximation assumptions are adopted in the
present study. Strain components in an arbitrary point on the
shell are defined by the relations

𝜀
𝑥
= 𝜀
𝑥0
+ 𝑧𝜏
𝑥
, 𝜀

𝑦
= 𝜀
𝑦0
+ 𝑧𝜏
𝑦
, 𝜀

𝑥𝑦
= 𝜀
𝑥𝑦0
+ 𝑧𝜏
𝑥𝑦
,

(1)

where 𝑧 is the distance of the shell from the middle surface,

𝜀
𝑥0
=
𝜕𝑢

𝜕𝑥
+
𝑤

𝑅
𝑎

, 𝜀
𝑦0
=
𝜕V
𝜕𝑦
+
𝑤

𝑅
𝑏

, 𝜀
𝑥𝑦0
=
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥

(2)

are the middle surface strain-displacement relationships, and

𝜏
𝑥
= −

𝜕
2

𝑤

𝜕𝑥
2
, 𝜏

𝑦
= −

𝜕
2

𝑤

𝜕𝑦
2
, 𝜏

𝑥𝑦
= −2

𝜕
2

𝑤

𝜕𝑥𝜕𝑦
(3)

are the changes in the curvature and torsion of the middle
surface. Neglecting 𝜎

𝑧
, the strain potential energy of the

deformed shallow shell is given as

𝑉sh =
1

2
∫

𝑎

0

∫

𝑏

0

∫

ℎ/2

−ℎ/2

(𝜎𝜀) × (
𝑅
𝑎
+ 𝑧

𝑅
𝑎

)(
𝑅
𝑏
+ 𝑧

𝑅
𝑏

) d𝑥 d𝑦 d𝑧,

(4)

where

𝜎 = {𝜎
𝑥
𝜎
𝑦
𝜎
𝑥𝑦
} , 𝜀 = {𝜀

𝑥
𝜀
𝑦
𝜀
𝑥𝑦
}
T
, (5)

𝜎 = 𝜀
TE, and the material constitutive matrix E of the shell is

E = 𝐸

1 − 𝜇
2

[
[
[

[

1 𝜇 0

𝜇 1 0

0 0
(1 − 𝜇)

2

]
]
]

]

, (6)

where 𝐸 and 𝜇 are Young’s modulus and Poisson ratio of the
shell material, respectively.

Combining (1)–(6), one can obtain

𝑉sh =
1

2
𝐷∫

𝑎

0

∫

𝑏

0

[(
𝜕
2

𝑤

𝜕𝑥
2
)

2

+ (
𝜕
2

𝑤

𝜕𝑦
2
)

2

+ 2𝜇(
𝜕
2

𝑤

𝜕𝑥
2
)(

𝜕
2

𝑤

𝜕𝑦
2
)

+
1 − 𝜇

2
(2

𝜕
2

𝑤

𝜕𝑥𝜕𝑦
)

2

] d𝑥 d𝑦

+
1

2
𝐺∫

𝑎

0

∫

𝑏

0

[(
𝜕𝑢

𝜕𝑥
+
𝑤

𝑅
𝑎

)

2

+ (
𝜕V
𝜕𝑦
+
𝑤

𝑅
𝑏

)

2

+ 2𝜇(
𝜕𝑢

𝜕𝑥
+
𝑤

𝑅
𝑎

)(
𝜕V
𝜕𝑦
+
𝑤

𝑅
𝑏

)

+
1 − 𝜇

2
(
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥
)

2

] d𝑥 d𝑦

− 𝐷(
1

𝑅
𝑎

+
1

𝑅
𝑏

)

× ∫

𝑎

0

∫

𝑏

0

[(
𝜕𝑢

𝜕𝑥
+
𝑤

𝑅
𝑎

)(
𝜕
2

𝑤

𝜕𝑥
2
+ 𝜇

𝜕
2

𝑤

𝜕𝑦
2
)

+ (
𝜕V
𝜕𝑦
+
𝑤

𝑅
𝑏

)(
𝜕
2

𝑤

𝜕𝑦
2
+ 𝜇

𝜕
2

𝑤

𝜕𝑥
2
)

+
1 − 𝜇

2
(
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥
)(2

𝜕
2

𝑤

𝜕𝑥𝜕𝑦
)] d𝑥 d𝑦

+ 𝑂 (ℎ
4

) ,

(7)

where 𝑂(ℎ4) is a higher-order in ℎ and can be neglected here
and𝐷 = 𝐸ℎ

3

/[12(1−𝜇
2

)] and𝐺 = 𝐸ℎ/(1−𝜇2) are the bending
rigidity and extensional rigidity of the shell, respectively.
Equation (7) includes three terms which can be interpreted
as bending energy, membrane energy, and coupling energy.

The potential energies stored in the boundary springs can
be written as

𝑉sp

=
1

2
∫

𝑎

0

[𝑘
𝑓

𝑦0

𝑤
2

+ 𝑘
𝑙

𝑦0

𝑢
2

+ 𝑘
𝑡

𝑦0

V2 + 𝐾
𝑦0
(
𝜕𝑤

𝜕𝑦
)

2

]

𝑦=0

d𝑥

+
1

2
∫

𝑎

0

[𝑘
𝑓

𝑦𝑏

𝑤
2

+ 𝑘
𝑙

𝑦𝑏

𝑢
2

+ 𝑘
𝑡

𝑦𝑏

V2 + 𝐾
𝑦𝑏
(
𝜕𝑤

𝜕𝑦
)

2

]

𝑦=𝑏

d𝑥

+
1

2
∫

𝑏

0

[𝑘
𝑓

𝑥0

𝑤
2

+ 𝑘
𝑙

𝑥0

𝑢
2

+ 𝑘
𝑡

𝑥0

V2 + 𝐾
𝑥0
(
𝜕𝑤

𝜕𝑥
)

2

]

𝑥=0

d𝑦

+
1

2
∫

𝑏

0

[𝑘
𝑓

𝑥𝑎

𝑤
2

+ 𝑘
𝑙

𝑥𝑎

𝑢
2

+ 𝑘
𝑡

𝑥𝑎

V2 + 𝐾
𝑥𝑎
(
𝜕𝑤

𝜕𝑥
)

2

]

𝑥=𝑎

d𝑦.

(8)

The definitions for all the boundary springs are given in the
Nomenclature.

The total kinetic energy of the doubly curved shallow
shell, by neglecting rotary inertia, is given as

𝑇 =
1

2
𝜌ℎ∫

𝑎

0

∫

𝑏

0

[(
𝜕𝑢

𝜕𝑡
) + (

𝜕V
𝜕𝑡
) + (

𝜕𝑤

𝜕𝑡
)] d𝑥 d𝑦, (9)

where 𝜌 is the mass density of the shell.
The displacements of a doubly curved shallow shell can

be expressed as [34]

𝑢 (𝑥, 𝑦) =

∞

∑

𝑚=−2

∞

∑

𝑛=−2

𝑈
𝑚,𝑛
𝜑
𝑚
(𝑥) 𝜑
𝑛
(𝑦) , (10)

V (𝑥, 𝑦) =
∞

∑

𝑚=−2

∞

∑

𝑛=−2

𝑉
𝑚,𝑛
𝜑
𝑚
(𝑥) 𝜑
𝑛
(𝑦) , (11)

𝑤 (𝑥, 𝑦) =

∞

∑

𝑚=−4

∞

∑

𝑛=−4

𝑊
𝑚,𝑛
𝜑
𝑚
(𝑥) 𝜑
𝑛
(𝑦) , (12)



4 Shock and Vibration

Table 1: Frequency parameters for a completely clamped doubly curved shallow shell.

Mode number
Mode frequencies

M = N FEM∗ FEM#
[14]6 7 8 9 10 11 12

1 102.17 102.15 102.14 102.13 102.13 102.13 102.13 102.11 102.12 102.22
2 103.02 103.01 103.00 103.00 103.00 103.00 103.00 103.00 103.01 103.08
3 118.73 118.65 118.64 118.62 118.61 118.60 118.60 118.56 118.59 118.76
4 144.73 144.72 144.71 144.71 144.71 144.71 144.71 144.63 144.66 144.82
5 145.47 145.45 145.38 145.37 145.36 145.35 145.35 145.26 145.30 145.64
6 158.54 158.53 158.52 158.51 158.51 158.51 158.51 158.43 158.46 158.67
Time (s) 4.41 6.11 8.71 12.11 16.35 22.31 28.35 23.20 134.60
∗100 × 100 elements, #200 × 200 elements.

where𝑈
𝑚,𝑛

,𝑉
𝑚,𝑛

, and𝑊
𝑚,𝑛

denote the unknown trigonomet-
ric series coefficients to be determined and the basis functions
are defined as

𝜑
𝑚
(𝑥) = cos 𝜆

𝑎𝑚
𝑥 𝑚 ≥ 0,

𝜑
𝑚
(𝑥) = sin 𝜆

𝑎𝑚
𝑥 𝑚 < 0,

𝜑
𝑛
(𝑦) = cos 𝜆

𝑏𝑛
𝑦 𝑛 ≥ 0,

𝜑
𝑛
(𝑦) = sin 𝜆

𝑏𝑛
𝑦 𝑛 < 0,

(13)

where 𝜆
𝑎𝑚

= 𝑚𝜋/𝑎 and 𝜆
𝑏𝑛

= 𝑛𝜋/𝑏. Since trigono-
metric series are “invariants” under differential and integral
operations, the current displacement expressions are much
more attractive. It can be mathematically proven that the
trigonometric series expansions, (10)–(12), are better suited
for expanding a sufficiently smooth function defined over a
compact interval, respectively, and converge uniformly over
the solution domain. As amatter of fact, (10) is able to expand
to any function 𝑓(𝑥, 𝑦) ∈ 𝐶

3 for ∀(𝑥, 𝑦) ∈ 𝐷 : ([0, 𝑎] ⊗

[0, 𝑏]). So the current displacement solutions are simply those
elements in the vector space which simultaneously satisfy
both the governing differential equations and the boundary
conditions on a point-wise basis. It can be seen that the in-
plane displacements 𝑢(𝑥, 𝑦) and V(𝑥, 𝑦) have less sine terms
than the out-of-plane displacement 𝑤(𝑥, 𝑦) because they are
only required to have 𝐶1 continuity over the shell.

The Lagrangian 𝐿 for the doubly curved shallow shell can
be generally expressed as

𝐿 = 𝑉 − 𝑇 = 𝑉sh + 𝑉sp − 𝑇, (14)

where𝑉 is the total potential energy of the shell. Substituting
(7)–(9) into (14) and minimizing Lagrangian with respect to
all the unknown series coefficients, one can obtain a system
of linear algebraic equations in matrix form

(K − 𝜔2M)A = 0, (15)

where A is a vector that contains all the unknown series
expansion coefficients and is defined as

A = [UT VT WT
]
T
, (16)

where
U = {𝑈

−2,−2
, 𝑈
−2,−1

, . . . , 𝑈
−2,𝑛
, . . . , 𝑈

−2,𝑁
, 𝑈
−1,−2

, . . . ,

𝑈
−1,𝑁

, . . . , 𝑈
𝑚,𝑁
, . . . , 𝑈

𝑀−1,𝑁
, 𝑈
𝑀,−2

, . . . , 𝑈
𝑀,𝑁

}
T
,

V = {𝑉
−2,−2

, 𝑉
−2,−1

, . . . , 𝑉
−2,𝑛
, . . . , 𝑉

−2,𝑁
, 𝑉
−1,−2

, . . . ,

𝑉
−1,𝑁

, . . . , 𝑉
𝑚,𝑁
, . . . , 𝑉

𝑀−1,𝑁
, 𝑉
𝑀,−2

, . . . , 𝑉
𝑀,𝑁

}
T
,

W = {𝑊
−4,−4

,𝑊
−4,−3

, . . . ,𝑊
−4,𝑛
, . . . ,𝑊

−4,𝑁
,𝑊
−3,−4

, . . . ,

𝑊
−3,𝑁

, . . . ,𝑊
𝑚,𝑁
, . . . ,𝑊

𝑀−1,𝑁
,𝑊
𝑀,−4

, . . . ,𝑊
𝑀,𝑁

}
T
.

(17)

𝑀 and 𝑁 are truncation numbers of the trigonometric
expansion series. K and M stand for the stiffness and mass
matrices, respectively. The detailed expressions for these
matrices are given in the Appendix.

By solving a standard matrix eigenvalue problem, modal
properties of the doubly curved shallow shell can be readily
and directly determined. Since each of the eigenvectors
actually contains the trigonometric series coefficients, the
corresponding physical mode shape of the shell can be simply
obtained by using the displacement expressions, (10)–(12). It
should be pointed out that although this paper is focused on
the free vibration of doubly curved shallow shells, its response
to an applied load can be easily calculated by including
the work done by this load in the Lagrangian, eventually
leading to a force term on the right side of (15). Once the
primary solution variables, displacements, are determined
over the shell, other dynamic variables of interest can be
readily calculated by directly apply appropriate mathematical
operations to the displacement functions.

3. Results and Discussions

Accuracy and convergence of the current method will be
demonstrated in this section by numerical results firstly.
Consider a doubly curved shallow shell with fully clamped
along four edges (C-C-C-C). The clamped edge can be
regarded as a special case when the stiffnesses for all the
boundary restraining springs become infinitely large (which
is actually represented by a very lager number, 2.0 × 1012,
in the numerical calculations). The first six nondimensional
frequency parameters, Ω = 𝜔𝑙

𝑎
𝑙
𝑏
√𝜌ℎ/𝐷, which are deter-

mined using different numbers of expansion terms𝑀 and𝑁
are listed in Table 1 with the following geometric parameters:
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(a) (b) (c)

(d) (e) (f)

Figure 3:Themode shapes (above: out-of-planemode shapes; below: in-planemode shapes) for a doubly curved shallow shell with completely
clamped edges: The (a) first, (b) second, (c) third, (d) fourth, (e) fifth, and (f) sixth mode.

𝑅
𝑏
/𝑅
𝑎
= 1, 𝑅

𝑏
/𝑙
𝑏
= 10, 𝑙

𝑎
/𝑙
𝑏
= 2, 𝑙

𝑏
/ℎ = 100, and

𝜇 = 0.3. The results compare very well with those obtained
from the finite element method and [14]. Since it can be seen
that the current results converge rapidly with a small number
of expansion terms and have great numerical stability, the
displacement series expansions will be truncated to𝑀 = 𝑁 =

12 in all the following calculations. The corresponding mode
shapes are plotted in Figure 3. It is shown that the in-plane
two directional displacements are coupled together at any
field point. The solution times between the current method
and finite element method are also compared in Table 1. Due
to the models that are both small, the time given in Table 1
is not conclusive regarding which method is more effective
computationally. However, the effectiveness of the current
method over the FEA has been adequately demonstrated in
a previous support [35] in which the modified Fourier series
method is shown to cut computing time by two orders of
magnitude as comparedwith the FEMmodel used to simulate
a box-like structure in frequency response analysis.

Next example concerns completely free (F-F-F-F) shallow
shells having square and rectangular planform. The com-
pletely free boundary condition represents a classical, but
quite challenging, case for testing a shell solution. Under the

current framework, the free edge condition is easily realized
by setting all the stiffness constants to zero. Eight frequency
parameters,Ω = 𝜔𝑙

2

𝑎
√𝜌ℎ/𝐷, are listed in Table 2 for different

curvature ratios (where S or A is used to indicate that a
vibration mode is symmetric (S) or antisymmetric (A) with
respect to the 𝑥- or 𝑦-axis). Two sets of reference results
are also given there for comparison, and these three sets of
solutions agree well with each other.

To further validate the accuracy and reliability of the
proposed analyticalmethod, Table 3 shows frequency param-
eters Ω = 𝜔𝑙

2

𝑎
√𝜌ℎ/𝐷 for a few more classical cases (F-

F-F-F, C-F-F-F, C-C-F-F, C-F-C-F, C-C-C-F and C-C-C-C).
The reference results from [16] and FEM models are also
given there for comparison. Traditionally, the displacement
expressions and the subsequent solution algorithms and
implementations are dictated by the intended boundary
condition. Consequently, most studies are specifically related
to a particular type of boundary conditions. In the above
examples, it has been demonstrated that the proposed analyt-
ical method can be universally applied to different boundary
conditions with no need of making any algorithm or proce-
dural modifications; the modifying boundary conditions are
as simple as changing shell parameters such as geometrical
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Table 2: Frequency parameters of completely free shallow shells having square and rectangular planform (𝑙
𝑎
/𝑅
𝑎
= 0.2, 𝑙

𝑎
/ℎ = 100, and

𝜇 = 0.3).

𝑅
𝑎
/𝑅
𝑏

Mode 𝑙
𝑎
/𝑙
𝑏
= 1 𝑙

𝑎
/𝑙
𝑏
= 2

Current [15] FEM Current [15] FEM

1

SS-1 19.691 19.757 19.733 22.721 22.794 22.709
SS-2 42.235 42.353 42.127 98.601 99.041 98.593
SA-1 35.764 35.880 35.790 58.439 58.574 58.450
SA-2 73.624 73.890 73.544 160.51 172.23 160.53
AS-1 35.764 35.880 35.790 62.120 62.345 62.126
AS-2 73.624 73.890 73.544 110.65 110.83 110.58
AA-1 13.480 13.524 13.491 26.521 26.577 26.531
AA-2 69.342 69.598 69.480 101.68 102.00 101.69

0

SS-1 21.831 21.904 21.810 21.559 21.631 21.538
SS-2 38.495 38.473 38.510 100.28 100.55 100.28
SA-1 34.771 34.852 34.737 58.310 58.425 58.252
SA-2 75.278 75.298 75.281 159.78 171.56 159.74
AS-1 37.625 37.643 37.623 59.613 59.845 59.585
AS-2 60.914 61.154 60.886 109.53 109.60 109.53
AA-1 13.461 13.483 13.467 26.517 26.562 26.520
AA-2 70.765 70.952 70.740 101.24 101.53 101.20

−1

SS-1 24.659 24.741 25.216 25.294
SS-2 52.538 52.574 102.11 102.19
SA-1 36.842 36.957 58.407 58.543
SA-2 76.865 77.063 160.72 172.64
AS-1 36.842 36.957 66.341 66.576
AS-2 76.865 77.063 108.95 109.07
AA-1 13.418 13.425 26.508 26.564
AA-2 77.349 77.647 101.69 102.00

and material properties. Consider the simply supported case
(SSSS) for example. It can be produced easily by letting the
stiffnesses of the three linear springs be infinitely large and
the stiffness of the rotational spring zero. Similarly, singly
curved shells can be considered as special cases when one of
curvatures becomes zero, as illustrated in Table 4 for various
boundary conditions.

All the examples considered thus far have been limited
to the classical boundary conditions which are viewed as
the special cases of elastically restrained edges. We now turn
to elastically restrained shells. The stiffnesses of the linear
and rotational restraints are set equal to 𝑘 = 10

6 and 𝐾 =

10
7, respectively. The first eight frequency parameters Ω =

𝜔𝑙
2

𝑎
√𝜌ℎ/𝐷 are listed in Table 5 with the following geometric

parameters: 𝑅
𝑎
/𝑅
𝑏
= 1, 𝑅

𝑎
/𝑙
𝑎
= 10, 𝑙

𝑎
/𝑙
𝑏
= 1, 𝑙

𝑏
/ℎ = 200,

and 𝜇 = 0.3. The corresponding mode shapes are plotted in
Figure 4. It can be seen from Figure 4 that these lower order
modes exhibit complicated spatial patterns.Moreover, the in-
plane patterns tend to be more local and are typically more
complicated than their out-of-plane counterpart. Through
those modes, one can easily understand the “unpredictable”
behaviors of a doubly curved shallow shell and the effects of
curvatures and boundary conditions.

Effects of curvature on the vibration characteristics of
shallow shells are studied in this section. It is assumed that the

geometric parameters of the shell are 𝑙
𝑎
/𝑙
𝑏
= 1 and 𝑙

𝑏
/ℎ = 100

and Poisson’s ratio 𝜇 = 0.3 in the following calculations.
Tables 6, 7, 8, 9, and 10 show the first frequency parameters
Ω of shallow shells having different 𝑥-direction curvature
(1/𝑅
𝑎
) and 𝑦-direction curvature (1/𝑅

𝑏
) with C-C-C-C, C-

C-C-F, C-F-C-F, C-F-F-F, and F-F-F-F boundary conditions.
The free edge condition (F) is easily simulated by setting the
stiffnesses for the boundary restraining springs to zero.

Figures 5(a)–5(e) show the changes in the frequency
parameters Ω = 𝜔𝑙

𝑎
𝑙
𝑏
√𝜌ℎ/𝐷 for the first modes of shallow

shells with five different boundary conditions, which are
listed in Tables 6–10, as the curvature ratio 𝑅

𝑏
/𝑅
𝑎
is varied

from −1 to 1, respectively. The curves are drawn beginning
with a flat plate (𝑙

𝑏
/𝑅
𝑏
= 0) and changing the 𝑦-direction

curvature. Thus, the change in circular frequency 𝜔 with
changing 1/𝑅

𝑏
is observed for fixed 𝑙

𝑎
, 𝜌, ℎ, 𝐸, and 𝜇 (𝐷 =

𝐸ℎ
3

/[12(1 − 𝜇
2

)]) and fixed 𝑙
𝑏
(𝑙
𝑎
/𝑙
𝑏
= 1) by changing 𝑙

𝑏
/𝑅
𝑏
.

It can be seen from Figure 5(a) that, for a C-C-C-C shell,
increasing 𝑦-direction curvature can causes a considerable
increase in the first mode frequency, and giving the shell
significant additional𝑥-direction curvature, either positive or
negative, can cause an increase in the first mode frequency
too. It also can be found from Figure 5(a) that the first mode
frequency for the shell of positive Gaussian curvature is
greater than that having negative Gaussian curvature with
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Table 3: Frequency parameters of shallow shells with different boundary conditions (𝑙
𝑎
/𝑅
𝑏
= 0.2, 𝑙

𝑎
/𝑙
𝑏
= 1, 𝑙
𝑎
/ℎ = 20, and 𝜇 = 0.3).

𝑅
𝑎
/𝑅
𝑏

Mode number Boundary conditions
F-F-F-F C-F-F-F C-C-F-F C-F-C-F C-C-C-F C-C-C-C

1

1
13.41 3.739 7.860 25.28 26.79 40.27

(13.46a) (3.754) (7.894) (25.30) (26.62) (40.26)
[13.43b] [3.756] [7.891] [25.32] [26.84] [40.25]

2
19.50 8.456 23.80 25.28 42.58 74.43

(19.56a) (8.492) (23.90) (25.30) (42.71) (74.17)
[19.54b] [8.467] [23.84] [25.32] [42.57] [74.39]

3
25.92 21.44 27.83 45.44 63.39 74.43

(25.99a) (21.53) (27.92) (45.53) (63.56) (74.17)
[25.82b] [21.46] [27.78] [45.45] [63.41] [74.39]

4
34.72 28.17 49.08 61.32 77.62 108.7

(34.85a) (28.26) (49.27) (61.34) (77.64) (108.7)
[34.73b] [28.12] [49.09] [61.33] [77.60] [108.7]

∞

1
13.44 3.802 7.201 22.72 24.44 37.75

(13.46a) (3.806) (7.218) (22.36) (24.34) (37.56)
[13.45b] [3.807] [7.216] [22.73] [24.46] [37.75]

2
20.08 8.507 24.23 26.46 40.47 73.31
(20.12a) (8.526) (24.30) (26.43) (40.53) (72.59)
[20.07b] [8.509] [24.23] [26.47] [40.46] [73.30]

3
24.74 21.96 27.03 43.63 63.65 74.28

(24.77a) (21.98) (27.08) (43.59) (62.56) (72.66)
[24.73b] [21.96] [27.02] [43.63] [63.69] [74.30]

4
34.70 27.21 48.09 61.67 76.58 108.3

(34.79a) (27.29) (48.21) (61.59) (76.47) (108.4)
[34.67b] [27.19] [48.08] [61.70] [76.57] [108.3]

−1

1 13.41 3.794 7.041 25.06 26.68 38.59
(13.46a) (3.814) (7.071) (25.07) (26.78) (38.51)

2 21.84 8.444 25.47 28.57 41.54 74.02
(21.90a) (8.480) (25.58) (28.62) (41.60) (74.09)

3 24.16 22.28 26.92 44.82 63.48 74.02
(24.24a) (22.38) (27.03) (44.92) (63.92) (73.97)

4 34.81 27.80 48.02 61.44 77.31 108.1
(34.94a) (27.89) (48.22) (61.47) (77.26) (108.0)

aResults from [16].
bResults are obtained from FEMmodels.

the same absolute value.With increasing the 𝑦-direction cur-
vature, difference of the first mode frequencies between
spherical shell (𝑅

𝑏
/𝑅
𝑎
= 1) and hyperbolic paraboloidal shell

(𝑅
𝑏
/𝑅
𝑎
= −1) becomes more and more large. Figure 5(a)

also shows that the minimum value of the first mode fre-
quency occurs for the shell having slightly negative Gaussian
curvature and the point of minima is shifted to the left with
decreasing 𝑙

𝑏
/𝑅
𝑏
.

For a C-C-C-F shallow shell, which means that the stiff-
ness constants of the restraining springs at edge 𝑦 = 0

are equal to zero, the first mode frequency increases grad-
ually with increasing the 𝑦-direction curvature as shown in
Figure 5(b). Frequency of the firstmode also increases rapidly
through adding the 𝑥-direction curvature. But the increase
trend of the first mode frequency becomes slow when the
absolute value of curvature ratio𝑅

𝑏
/𝑅
𝑎
is comparatively large.

It is more obvious if the Gaussian curvature is positive. The
curvature effects on the first mode frequency for the C-F-C-F
shell and the C-C-C-F shell are almost the same, which can
be seen in Figure 5(c).

The shapes of curves in Figure 5(d) are different.
Although the first mode frequency of a C-F-F-F shell
increases gradually with the increasing of 𝑦-direction cur-
vature, it decreases if giving the shell significant additional
𝑥-direction curvature, which is just the opposite of the
three boundary conditionsmentioned above. Figure 5(d) also
shows that, with 𝑙

𝑏
/𝑅
𝑏
decreasing from 0.5 to 0.1, the differ-

ence of the first mode frequencies between spherical shell
(𝑅
𝑏
/𝑅
𝑎
= 1) and hyperbolic paraboloidal shell (𝑅

𝑏
/𝑅
𝑎
= −1)

is varied gradually from positive number to negative number.
Figure 5(e) shows the first mode frequency as a function

of curvature ratio for an F-F-F-F shell. It can be seen that
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Table 4: Frequency parameters for different boundary condition singly curved shallow shells with thickness ratio ℎ/𝑙
𝑏
= 100 (𝜇 = 0.3).

BC 𝑙
𝑎
/𝑙
𝑏

𝑙
𝑏
/𝑅
𝑏

Mode number
1 2 3 4 5 6

S-F-S-F

0.5
0.1 22.199 24.194 36.289 55.883 79.506 83.045

(22.194a) (24.178) (36.262) (55.824) (79.487) (83.002)

0.2 26.397 27.512 39.769 56.755 82.575 84.809
(26.375a) (27.487) (39.788) (56.783) (82.540) (84.756)

1.0

0.1 15.704 17.062 37.872 43.834 48.108 72.459
(15.693a) (17.042) (37.853) (43.811) (48.065) (72.396)

0.2
19.498 24.284 42.410 51.796 53.554 75.946

(19.460a) (24.234) (42.446) (51.713) (53.469) (76.087)
[19.446b] [24.240] [42.378] [51.695] [53.464] [75.851]

C-F-C-F

0.5
0.1 45.776 47.172 55.584 71.384 97.130 123.52

(45.782a) (47.176) (55.602) (71.414) (97.187) (123.53)

0.2 48.365 48.688 57.865 72.110 97.314 125.52
(48.373a) (48.697) (57.905) (72.210) (97.514) (125.53)

1.0

0.1 25.463 26.982 44.584 64.445 68.153 79.963
(25.463a) (26.982) (44.608) (64.437) (68.152) (80.016)

0.2
28.587 31.671 48.595 70.853 71.644 80.405

(28.589a) (31.667) (48.653) (70.850) (71.626) (80.608)
[28.576b] [31.673] [48.580] [70.813] [71.617] [80.372]

S-S-S-S

0.5
0.1 29.363 41.242 64.852 85.445 99.035 99.911

(29.351a) (41.161) (64.753) (85.406) (98.912) (99.747)

0.2 40.018 45.813 66.603 89.807 99.491 102.93
(40.053a) (45.810) (66.625) (89.789) (99.568) (102.83)

1.0

0.1 36.804 51.608 58.413 82.449 99.526 103.72
(36.841a) (51.576) (58.383) (82.302) (99.527) (103.66)

0.2
57.644 63.712 79.167 91.551 102.61 117.24
(57.708a) (63.834) (79.217) (91.542) (102.84) (117.23)
[57.581b] [63.799] [79.184] [91.414] [102.53] [117.19]

C-S-C-S

0.5
0.1 50.190 59.063 78.651 109.62 128.06 139.39

(50.200a) (59.082) (78.688) (109.69) (128.07) (139.41)

0.2 57.074 62.404 80.129 110.05 131.02 141.58
(57.107a) (62.467) (80.267) (110.31) (131.04) (141.64)

1.0

0.1 42.398 56.809 76.001 97.409 102.95 132.92
(42.445a) (56.845) (76.022) (97.448) (103.03) (132.94)

0.2
62.563 67.119 92.949 105.38 105.88 143.75

(62.678a) (67.233) (93.012) (105.52) (106.18) (143.80)
[62.559b] [67.201] [92.982] [105.40] [105.87] [143.76]

aResults from [17].
bResults are obtained from FEMmodels.

Table 5: Frequency parameters of an elastically supported shallow
shell.

Mode number
1 2 3 4 5 6 7 8
33.008 41.067 41.067 46.364 46.364 57.091 58.083 64.769

changing the curvature of a completely free shell does not
have much effect on the first mode frequency. The difference
between the maximum frequency and minimum frequency
is no more than 0.35Hz. In general, increasing 𝑦-direction

curvature causes a decreasing in the first mode frequency,
which is different from the other four boundary conditions.
The maximum value of the first mode frequency occurs for
the shell having significant positive Gaussian curvature.

It is known that the value of the mode frequency depends
on the mode stiffness and mode mass

𝜔
2

𝑚
=
𝐾
𝑚

𝑀
𝑚

, (18)

where 𝜔
𝑚
, 𝐾
𝑚
, and 𝑀

𝑚
denote the 𝑚th mode frequency,

mode stiffness, and mode mass, respectively. The mode
frequency can be directly calculated since the mode stiffness
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: The mode shapes (left: out-of-plane mode shapes; right: in-plane mode shapes) for a doubly curved shallow shell with elastic
restraints, 𝑘 = 106 and 𝐾 = 10

7, along each edge. The (a) first, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth (g) seventh, and (h) eighth
mode.

and mode mass are the corresponding diagonal elements of
the diagonal stiffness matrix and mass matrix of the shell
which can be easily obtained through mathematical opera-
tions. Differentiating the square of mode frequency 𝜔2

𝑚
with

respect to curvature ratio 𝑅
𝑏
/𝑅
𝑎
,

𝜕𝜔
2

𝑚

𝜕 (𝑅
𝑏
/𝑅
𝑎
)
=
𝜕 (𝐾
𝑚
/𝑀
𝑚
)

𝜕 (𝑅
𝑏
/𝑅
𝑎
)
. (19)

When (19) is equal to zero, one can obtain

𝐾
𝑚

𝑀
𝑚

=
𝜕𝐾
𝑚

𝜕𝑀
𝑚

. (20)

So, one can say that the extremum value of the 𝑚th mode
frequency occurs when𝐾

𝑚
/𝑀
𝑚
is equal to 𝜕𝐾

𝑚
/𝜕𝑀
𝑚
.

Two examples are given here to verify the conclusion.
The first example is one case in Figure 5(a). The change in
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Figure 5: The first mode frequency as a function of curvature ratio for shells with different boundary conditions: (a) C-C-C-C, (b) C-C-C-F,
(c) C-F-C-F, (d) C-F-F-F, and (e) F-F-F-F.

the first frequency parameter of a fully clamped shell with
𝑙
𝑏
/𝑅
𝑏
= 0.5 is shown in Figure 6, as the curvature ratio 𝑅

𝑏
/𝑅
𝑎

is varied from −0.3 to 0.1. The first mode frequency of the
shell gets its minimal (minimum value of the discrete data)
when the curvature ratio 𝑅

𝑏
/𝑅
𝑎
is equal to −0.12, and the

frequency increases with either increasing or decreasing the
𝑥-direction curvature. The changes in 𝐾

1
/𝑀
1
and 𝜕𝐾

1
/𝜕𝑀
1

of this shell are shown in Figure 7. It can be seen that these
two curves have an intersection point when curvature ratio
𝑅
𝑏
/𝑅
𝑎
is approximately equal to −0.12. The error is caused by

numerical computation.
The second example is one case in Figure 5(e).The change

in the first frequency parameter of an F-F-F-F shell with
𝑙
𝑏
/𝑅
𝑏
= 0.5 is shown in Figure 8, as the curvature ratio 𝑅

𝑏
/𝑅
𝑎
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Table 6: The first frequency parameters of C-C-C-C shallow shells.

𝑅
𝑏
/𝑅
𝑎

𝑙
𝑏
/𝑅
𝑏

0 0.1 0.2 0.3 0.4 0.5

−1.0 50.707 79.487 110.59 135.19 155.65
(50.750) (110.80) (157.35)

−0.9 49.523 76.526 106.07 127.62 147.57
−0.8 48.480 73.848 101.82 120.15 138.48
−0.7 47.589 71.504 97.941 113.01 129.39
−0.6 46.862 69.540 93.579 106.44 120.72

−0.5 46.305 67.999 89.835 100.65 112.89
(46.335) (90.225) (113.65)

−0.4 45.926 66.921 86.814 95.871 106.27
−0.3 45.730 66.332 84.612 92.317 101.26
−0.2 45.719 66.250 83.309 90.176 98.185
−0.1 45.894 66.678 82.958 89.578 97.291

0 35.985 46.253 67.607 83.577 90.571 98.675
(35.985a) (46.281) (83.923) (99.263)

0.1 46.791 69.014 85.151 93.116 102.27
0.2 47.502 70.867 87.629 97.095 107.85
0.3 48.377 73.128 90.937 102.34 115.14
0.4 49.408 75.751 94.986 108.66 123.82

0.5 50.583 78.693 99.680 115.87 133.60
(50.618) (100.00) (134.13)

0.6 51.892 81.906 104.93 123.80 144.22
0.7 53.323 85.346 110.64 132.30 155.48
0.8 54.867 88.969 116.74 141.23 167.19
0.9 56.511 92.732 123.15 150.48 179.18

1.0 58.247 96.593 129.81 159.95 191.28
(58.297) (130.16) (191.99)

aResults from [14].
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Figure 6: The first mode frequency as a function of curvature ratio
for a C-C-C-C shell.

is varied from 0.3 to 0.5. The first mode frequency of the
shell gets its maximal when the curvature ratio𝑅

𝑏
/𝑅
𝑎
is equal

to 0.36, and the frequency decreases with either increasing
or decreasing the 𝑥-direction curvature. The 𝐾

1
/𝑀
1
and

𝜕𝐾
1
/𝜕𝑀
1
of this shell as functions of curvature ratio are

shown in Figure 9. The value of horizontal ordinate for the

Table 7: The first frequency parameters of C-C-C-F shallow shells.

𝑅
𝑏
/𝑅
𝑎

𝑙
𝑏
/𝑅
𝑏

0 0.1 0.2 0.3 0.4 0.5
−1.0

23.931

38.344 63.123 84.048 94.427 105.48
−0.9 36.441 58.579 80.959 92.572 102.83
−0.8 34.643 54.101 74.174 90.733 100.16
−0.7 32.971 49.744 67.323 84.768 97.506
−0.6 31.446 45.573 60.539 75.735 90.829
−0.5 30.093 41.670 53.971 66.684 79.600
−0.4 28.937 38.139 47.805 57.919 68.363
−0.3 28.005 35.111 42.294 49.825 57.684
−0.2 27.320 32.739 37.783 42.954 48.332
−0.1 26.901 31.180 34.701 38.086 41.478
0 26.762 30.563 33.463 36.095 38.603
0.1 26.906 30.945 34.266 37.441 40.566
0.2 27.3293 32.284 36.958 41.755 46.668
0.3 28.017 34.461 41.134 48.161 55.387
0.4 28.951 37.315 46.347 55.819 65.426
0.5 30.106 40.689 52.223 64.112 75.889
0.6 31.456 44.446 58.483 72.595 86.092
0.7 32.976 48.473 64.917 80.907 88.735
0.8 34.640 52.683 71.352 83.633 90.079
0.9 36.428 57.004 77.637 84.550 91.489
1.0 38.318 61.376 78.413 85.521 92.934

×10
6

2.5

2

1.5

1

0.5
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Figure 7: The value of 𝐾
1
/𝑀
1
and 𝜕𝐾

1
/𝜕𝑀
1
as functions of cur-

vature ratio for a C-C-C-C shell.

intersection point of these two curves is approximately equal
to 0.36.

4. Conclusions

The primary purpose of the current work is to assess the
effects of curvature on the natural frequencies for the shallow
shells with elastic edge restraints. Each of the displacement
fields is generally expressed as amodified Fourier series func-
tion. The sine function is used to remove the potential dis-
continuities in related spatial partially differentials. Although
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Table 8: The first frequency parameters of C-F-C-F shallow shells.

𝑅
𝑏
/𝑅
𝑎

𝑙
𝑏
/𝑅
𝑏

0 0.1 0.2 0.3 0.4 0.5

−1.0 37.096 61.134 79.890 88.221 97.623
(37.125) (80.303) (98.611)

−0.9 35.166 56.586 78.103 86.839 95.828
−0.8 33.343 52.092 71.450 85.579 94.183
−0.7 31.647 47.709 64.679 82.005 92.660
−0.6 30.103 43.503 57.930 73.143 88.445

−0.5 28.735 39.560 51.359 64.192 77.442
(28.737) (51.411) (77.473)

−0.4 27.572 35.993 45.163 55.473 66.370
−0.3 26.643 32.944 39.611 47.389 55.807
−0.2 25.972 30.583 35.084 40.527 46.549
−0.1 25.580 29.090 32.067 35.734 39.817

0 22.176 25.481 28.607 31.029 33.973 37.170
(22.171a) (25.463) (30.979) (36.952)

0.1 25.676 29.183 32.166 35.703 39.464
0.2 26.160 30.757 35.252 40.439 45.888
0.3 26.915 33.178 39.803 47.205 54.850
0.4 27.918 36.264 45.335 55.140 65.061

0.5 29.141 39.848 51.472 63.644 75.653
(29.129) (51.478) (75.723)

0.6 30.557 43.789 57.945 72.297 85.965
0.7 32.138 47.977 64.559 80.756 87.010
0.8 33.858 52.329 71.154 81.636 87.562
0.9 35.695 56.778 75.744 81.814 88.035

1.0 37.629 61.270 75.682 81.957 88.407
(37.636) (76.008) (89.358)

aResults from [14].
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Figure 8: The first mode frequency as a function of curvature ratio
for an F-F-F-F shell.

the current solution is sought in a weak form by using the
Rayleigh-Ritz method, it is mathematically equivalent to the
strong from through solving the governing equations and
the boundary conditions because the displacement functions
represented by the series expansions are adequately smooth
throughout the entire solution domain. The effectiveness

Table 9: The first frequency parameters of C-F-F-F shallow shells.

𝑅
𝑏
/𝑅
𝑎

𝑙
𝑏
/𝑅
𝑏

0 0.1 0.2 0.3 0.4 0.5

−1.0
4.9390 6.4878 7.3699 7.8426 8.0919
(4.9410) (7.4051) (8.2255)
[4.9440] [6.5038] [7.4128] [8.2429]

−0.9 4.9825 6.6661 7.6655 8.2239 8.5387
−0.8 5.0252 6.8587 7.9971 8.6576 9.0487
−0.7 5.0663 7.0653 8.3697 9.1546 9.6369
−0.6 5.1048 7.2840 8.7874 9.5269 9.8504

−0.5
5.1396 7.5104 9.2176 9.6185 10.010
(5.1385) (9.2357) (10.056)
[5.1414] [7.5071] [10.062]

−0.4 5.1694 7.7375 9.2555 9.7052 10.170
−0.3 5.1931 7.9543 9.2880 9.7834 10.322
−0.2 5.2095 8.1458 9.3140 9.8483 10.456
−0.1 5.2176 8.2943 9.3323 9.8949 10.556

0
3.4719 5.2167 8.3822 9.3424 9.9193 10.608

(3.4714a) (5.2146) (9.3516) (10.589)
[3.4730b] [5.2174] [8.3683] [10.595]

0.1 5.2066 8.3962 9.3441 9.9203 10.606
0.2 5.1873 8.3318 9.3379 9.8996 10.557
0.3 5.1596 8.1954 9.3246 9.8612 10.472
0.4 5.1241 8.0020 9.3052 9.8097 10.365

0.5
5.0823 7.7709 9.2807 9.7488 10.246
(5.0815) (9.3020) (10.284)
[5.0840] [7.7655] [10.295]

0.6 5.0354 7.5207 9.2520 9.6815 10.121
0.7 4.9848 7.2667 9.0767 9.6096 9.9934
0.8 4.9318 7.0193 8.5747 9.5342 9.8641
0.9 4.8777 6.7852 8.1283 8.9808 9.5183

1.0
4.8234 6.5675 7.7347 8.4410 8.8618
(4.8259) (7.7733) (9.0054)
[4.8282] [6.5854] [7.7836] [9.0327]

aResults from [14].
bResults from [18].

of current method is verified through the comparison of
numerical results.Thefirstmode frequencies of shallow shells
with various𝑥-direction and𝑦-direction curvature under five
kinds of boundary conditions are calculated.The results show
that increasing 𝑦-direction curvature causes a considerable
increase in the first mode frequency for the shell at least hav-
ing one clamped edge while the other edges are free; increas-
ing 𝑦-direction curvature causes a decrease in the first mode
frequency of a completely free shell when 𝑙

𝑏
/𝑅
𝑏
is greater than

0.2; giving significant𝑥-direction curvature, either positive or
negative, can cause an increase in the first mode frequency
for the shell at least having two clamped edges while the
other edges are free, which is just the opposite for a can-
tilever shell; the minimum value of the first mode frequency
occurs for a completely clamped shell with negative Gaussian
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Table 10: The first frequency parameters of F-F-F-F shallow shells.

𝑅
𝑏
/𝑅
𝑎

𝑙
𝑏
/𝑅
𝑏

0 0.1 0.2 0.3 0.4 0.5
−1.0

13.468

13.456 13.419 13.356 13.267 13.151
−0.9 13.457 13.423 13.367 13.287 13.182
−0.8 13.458 13.428 13.377 13.305 13.211
−0.7 13.459 13.433 13.387 13.322 13.237
−0.6 13.461 13.437 13.397 13.338 13.261
−0.5 13.462 13.442 13.406 13.354 13.283
−0.4 13.463 13.446 13.415 13.368 13.304
−0.3 13.464 13.450 13.423 13.382 13.323
−0.2 13.465 13.454 13.431 13.394 13.341
−0.1 13.466 13.458 13.439 13.406 13.356
0 13.467 13.462 13.446 13.416 13.369
0.1 13.468 13.465 13.453 13.425 13.380
0.2 13.469 13.468 13.458 13.432 13.388
0.3 13.470 13.471 13.463 13.437 13.392
0.4 13.471 13.474 13.466 13.440 13.392
0.5 13.472 13.476 13.469 13.440 13.389
0.6 13.473 13.478 13.470 13.438 13.381
0.7 13.474 13.480 13.469 13.433 13.369
0.8 13.474 13.481 13.467 13.425 13.352
0.9 13.475 13.481 13.464 13.414 13.330
1.0 13.476 13.481 13.459 13.400 13.304

K1/M1

𝜕K1/𝜕M1

Rb/Ra
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Figure 9: The value of 𝐾
1
/𝑀
1
and 𝜕𝐾

1
/𝜕𝑀
1
as functions of cur-

vature ratio for an F-F-F-F shell.

curvature and the maximal value of the first mode fre-
quency occurs of a completely free shell with positive Gaus-
sian curvature.

Appendix

Matrix Definitions

The stiffness matrix in (15) can be expressed as

K = Kbe + Kin + Kco + Ksp, (A.1)

where Kbe, Kin, Kco, and Ksp are stiffness matrix of the
shell corresponding to the bending energy, the membrane
energy, the coupling energy between out-of-plane and in-
plane motions, and potential energy stored in the boundary
restraining springs

Kbe =
[
[

[

0 0 0
.
.
. 0 0
S ⋅ ⋅ ⋅ K𝑤,𝑤be

]
]

]

,

Kin =
[
[

[

K𝑢,𝑢in K𝑢,Vin K𝑢,𝑤in
.
.
. KV,V

in KV,𝑤
in

S ⋅ ⋅ ⋅ K𝑤,𝑤in

]
]

]

,

Kco =
[
[

[

0 0 K𝑢,𝑤co
.
.
. 0 KV,𝑤

co
S ⋅ ⋅ ⋅ K𝑤,𝑤in

]
]

]

,

Ksp =
[
[
[

[

K𝑢,𝑢sp 0 0
.
.
. KV,V

sp 0
S ⋅ ⋅ ⋅ K𝑤,𝑤sp

]
]
]

]

.

(A.2)

The shell mass matrix in (15) is given by

M =
[
[

[

M𝑢 0 0
.
.
. MV 0
S ⋅ ⋅ ⋅ M𝑤

]
]

]

. (A.3)

Nomenclature

𝐾
𝑥0
, 𝐾
𝑥𝑎
(𝐾
𝑦0
, 𝐾
𝑦𝑏
): Stiffnesses for rotational springs,
respectively, at 𝑥 = 0 and 𝑎 (𝑦 = 0 and
𝑏)

𝑘
𝑓

𝑥0

, 𝑘
𝑓

𝑥𝑎

(𝑘
𝑓

𝑦0

, 𝑘
𝑓

𝑦𝑏

): Stiffnesses for flexural springs,
respectively, at 𝑥 = 0 and 𝑎 (𝑦 = 0 and
𝑏)

𝑘
𝑙

𝑥0

, 𝑘
𝑙

𝑥𝑎

(𝑘
𝑙

𝑦0

, 𝑘
𝑙

𝑦𝑏

): Stiffnesses for longitudinal springs,
respectively, at 𝑥 = 0 and 𝑎 (𝑦 = 0 and
𝑏)

𝑘
𝑡

𝑥0

, 𝑘
𝑡

𝑥𝑎

(𝑘
𝑡

𝑦0

, 𝑘
𝑡

𝑦𝑏

): Stiffnesses for tangential springs,
respectively, at 𝑥 = 0 and 𝑎 (𝑦 = 0 and
𝑏)

𝜔: Frequency in radian.
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