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Ladder track, which has drawn increased attention in scientific communities, is an effective method for reducing vibrations from
underground railways. In order to optimize the vibration reduction ability of ladder track, a newmethod, that is, the finite element
method (FEM) coupled with ant colony optimization (ACO), has been proposed in this paper. We describe how to build the FEM
model verified by the vibration tests in the Track Vibration Abatement and Control Laboratory and how to couple the FEM with
ACO. The density and elasticity modulus of the sleeper pad are optimized using this method. After optimization, the vibration
acceleration level of the supporting platform in the 1–200Hz range was reduced from 102.8 dB to 94.4 dB.The optimized density of
the sleeper pad is 620 kg/m3, and the optimized elasticity modulus of the sleeper pad is 6.25 × 106N/m2.

1. Introduction

Vibrations generated by underground railways are one of the
most serious engineering problems of such systems. Waves
induced by the dynamic interaction between the train wheels
and the rails propagate from the surrounding soils to the
foundations of nearby buildings [1], resulting in structural
vibrations and reradiated noise. One effective method for
reducing vibrations from underground railways is to use
ladder tracks.

The idea for ladder track was originally from the baulk
road system and was then applied in the Leeds and Selby
Railway in 1830. From the middle of the 20th century,
systematic research on ladder track was started in Japan,
Russia, and France. In the last 10 years, the vibration reduc-
tion performance of ladder track by the Railway Technical
Research Institute of Japan has attracted great attention from
Asian researchers, especially in China.

In the early 1990s, Wakui et al. [2] reported its new devel-
opment in Japan. Oyado et al. [3] analyzed running perfor-
mance and dynamic settlement test results of a ballasted lad-
der track. Initially, the ladder track was usually used as a bal-
lasted track. Hosking andMilinazzo [4] built a simple mathe-
matical model to study ladder track responses under steadily

moving loads by employing the periodic discrete elastic sup-
port of the combined floating rails. This model was extended
to include the support mass and viscous damping [5]. Hui
andNg [6]measured the vibration velocity level at the station
using the ladder track. The results showed that the ladder
track has better mitigation properties above 35Hz, compared
with ballast track.The first bending resonance of ladder track
is 31.5Hz under a moving train load. In the Beijing subway
system, Xia et al. [7–9] and Inoue et al. [10] compared the
dynamic response of an elevated bridge having ordinary non-
ballasted slab track with a bridge having ladder track. Theo-
retical analysis and experimental study proved that the ladder
track has good vibration reduction characteristics. Jin et al.
performed a modal analysis of the ladder track with different
bearing forms by a numerical method [11] and a laboratory
test [12].The results showed that the first natural frequency of
ladder track occurs at 33–36Hz. To solve the problem of rail
corrugation, the dynamic properties of the ladder track used
in the Beijing subway were optimized by Yan et al. [13, 14].

The present contribution aims to optimize vibration
reduction ability of ladder track by FEM coupled with
ACO. This paper is organized as follows. Section 2 describes
a vibration test of ladder track performed in the Track
Vibration Abatement and Control Laboratory. In Section 3,
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Table 1: Properties of the ladder track.

Part Density (kg/m3) Elasticity modulus (N/m2) Poisson’s ratio
Rail 7.85 × 103 2.14 × 1011 0.3
Longitudinal sleeper 2 × 103 5 × 1010 0.167
Supporting platform 2.6 × 103 3.6 × 1010 0.167
Connecting beam 7.85 × 103 2.14 × 1010 0.3
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Figure 1: Section plan of the laboratory.

a description is given of an FEM model that was built using
the commercial software LS-DYNA and verified based on the
tested ladder track.Then, the FEMmodel coupled with ACO
is introduced in Section 4. In Section 5, the optimization
of the vibration reduction performance of ladder track is
explained. Conclusions are given in Section 6.

2. Vibration Testing in the Laboratory

The Track Vibration Abatement and Control Laboratory
of Beijing Jiaotong University is a two-story underground
structure for researching track vibration and is the only such
facility in Asia. The buried depth of Lab #1 is 6m, and the
buried depth of Lab #2 is 14m. Figure 1 shows the ground
conditions around the laboratory.

One unit of ladder track was constructed in Lab #2
(Figure 2). The cross section of Lab #2 is in the shape of a
horseshoe. The height is 4m, and the width is 4m.

The test track used 60 kg/m rail, which was 6.15m in
length. Ten WJ-2 fasteners were employed to fix each rail
in place. The size of the longitudinal sleeper was 6.15m ×
0.46m × 0.185m. The size of the connecting beam, which
was designed to connect the two longitudinal sleepers, was
0.975m× 0.06m× 0.06m.Therewere five sleeper pads under
each longitudinal sleeper. The size of the sleeper pad was
0.46m × 0.25m × 0.03m.The size of the supporting platform
was 0.86m × 0.4m × 0.28m. Ten supporting platforms were
used for the test ladder track. Figure 3 shows the plan of the
test ladder track. Figure 4 illustrates the cross section of the
test ladder track.

Connecting beam

Rail 

Sleeper pad

Longitudinal sleeper

Fastener 

Supporting platform

Figure 2: Ladder track located in Lab #2.

As the vibration source, an automatic falling weight
machine, shown in Figure 5, was designed and was employed
to provide impulse to the rail. By changing the number of
mass blocks and the drop height, different impulse forces
could be obtained. The material of the hammer head could
also be changed to aluminum, rubber, nylon, or steel. To avoid
influencing the sleeper by themass of the setup, a scaffold was
installed to support the automatic falling weight machine.

For this test, fivemass blocks, 73 kg in total, were installed.
The aluminum hammer head was used and the drop height
was 10 cm. A force sensor was installed in the hammer head.
The impulse site is the middle of one rail (see Figure 3). The
sampling frequency of the force signal was 12.8 kHz.The time
history of the average impulse force, with a peak value of
55 kN, is shown in Figure 6.The vibration acceleration sensor
was fixed on the middle supporting platform to measure
the vertical vibration, as shown in Figure 3. The sampling
frequency of the acceleration signal was 1600Hz.

3. FEM Model Building and Verification

3.1. Building the FEM Model. The commercial software LS-
DYNA was employed to build the FEM model of the test
ladder track. The geometry of the longitudinal sleepers,
the connecting beams, and the supporting platforms are
described in Section 2. Considering the calculation time of
the LS-DYNA software, the cross section of the rail was
simplified, as demonstrated in Figure 7.

The properties of the rails, the longitudinal sleepers,
the supporting platforms, and the connecting beams are
presented in Table 1.
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Figure 5: Automatic falling weight machine.

Springs were used to simulate the fasteners and the
sleeper pads. The vertical stiffness of the fastener was
60MN/m. The vertical stiffness of the sleeper pad was
18.055MN/m. Figure 8 shows the FEM model established
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Figure 6: Time history of the average impulse force.

by LS-DYNA. The bottom of all supporting platforms was
constrained in all directions.

3.2. FEM Model Verification. The impulse force shown in
Figure 6, which was obtained from laboratory testing, was



4 Shock and Vibration

120

30

30

120

30

60

Figure 7: Simplified cross section of the rail (unit: mm).

Impulse

Accelerometer

Figure 8: FEMmodel established by LS-DYNA.

used in the FEM model. Then, the vibration acceleration
of the middle supporting platform was calculated. Figure 9
shows the calculated result and the test result. From Figure 9,
we see that the calculated and the test results are almost the
same.Therefore, the FEMmodel is accurate for the following
calculation in Section 4.

4. FEM Coupled with ACO

4.1. Ant Colony Algorithm. With the development of com-
puter technology, swarm intelligence optimization algo-
rithms, including ant colony optimization (ACO) andparticle
swarm optimization (PSO), have attracted increased atten-
tion. ACO is one of the most successful swarm intelligence
optimization algorithms. It was proposed by Colorni et al.
[15] to solve the traveling salesman problem in 1991. It
was named the ant system (AS), inspired by the foraging
behavior of the Argentine ants [16–18]. In recent years, ACO
has been used to successfully solve many combinatorial
optimization problems [19, 20] and is being extended to
obtain the solutions of continuous problems [21]. There are
many different ACOs based on the AS. In this paper, Chen’s
ACO [22] was employed to solve the continuous function.
Here is a function of one variable describing Chen’s ACO.
𝑓(𝑥) is the original objective function, and 𝑥 is the

original design variable whose minimum (maximum) value
is a (b). Let 𝑓(𝑥) be 𝑓(𝑥󸀠) by simple mathematical transform,
in which 𝑥󸀠 = (𝑥 − 𝑎)/(𝑏 − 𝑎), 𝑥󸀠 ∈ (0, 1).
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Figure 9: Time history of the vibration acceleration of the middle
supporting platform.
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Therefore, the optimization process for function 𝑓(𝑥󸀠) is
simplified to an artificial ant that makes a selection from ten
decimal numbers whenever it takes a step, except for the first
place and the last place (see Figure 10).

Each artificial ant goes from the first floor (the nest)
toward the last floor (the food source). 𝑇(𝑗, 𝑘 − 1) is the
decimal number when ant 𝑗 is at floor (𝑘 − 1). Ant 𝑗 selects
the decimal number of the next floor according to

𝑇 (𝑗, 𝑘) =

{

{

{

max {𝜏𝑘
𝑖−(𝑇(𝑗,𝑘−1),𝑇(𝑗,𝑘))

} , 𝑞 < 𝑄
0

randperm, 𝑞 ≥ 𝑄
0

(1)

in which 𝑞 is a real random variable uniformly distributed in
the internal array [0, 1],𝑄

0
is a tunable parameter controlling

the influence of the pheromone, randperm is a number
randomly selected from (0, 1, . . . , 9), and 𝜏𝑘

𝑖−(𝑇(𝑗,𝑘−1),𝑇(𝑗,𝑘))
is

the pheromone intensity laid on the path between the number
𝑇(𝑗, 𝑘 − 1) to 𝑇(𝑗, 𝑘).

When an ant finishes one step, that is, an ant arrives at
floor 𝑘 from floor (𝑘 − 1), the strength of the pheromone
𝜏
𝑘−1

𝑖−(𝑇(𝑗,𝑘−1),𝑇(𝑗,𝑘))
laid on the path between the number
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Figure 11: Program flow of FEM coupled with ACO.

𝑇(𝑗, 𝑘−1) and the number 𝑇(𝑗, 𝑘) by ant 𝑗 should be updated
as follows:

𝜏
𝑘−1

𝑖−(𝑇(𝑗,𝑘−1),𝑇(𝑗,𝑘))
←󳨀 (1− 𝜌) 𝜏

𝑘−1

𝑖−(𝑇(𝑗,𝑘−1),𝑇(𝑗,𝑘))
+𝛼, (2)

where 𝛼 is the modified coefficient of the pheromone inten-
sity and 𝜌 is the local evaporation factor of the pheromone.

After all the ants have arrived at the last place, the best
solution for a given interior can be obtained. Through all
interiors, the best solution of the function can be obtained.

According to the function tests, Chen’s ACO parameters
are 𝛼 = 𝜌 = 0.3, 𝑄0 = 0.55. The interior number In is 10, and
the ant number An is 10.

4.2. FEMCoupled with ACO. The calculation code for Chen’s
ACO was written in Matlab. The FEMmodel was carried out
through the DOS functions in Matlab. The detailed program
flow is demonstrated in Figure 11.

5. Optimization

5.1. Optimization Objective. Vibrations induced by the inter-
action between the wheels and the rails are transferred from
the rails to the invert and then propagate to the foundations
of nearby buildings, resulting in structure vibrations and
reradiated noise. Therefore, the vibration of the supporting
platform reflects the structure vibration. To reduce the
structure vibration, the platform vibration should first be
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Figure 12: Vibration acceleration comparison between nonopti-
mization and optimization.

reduced. Consequently, platform vibration acceleration was
set as the optimization objective. The objective function was

min𝑉
𝑎
𝐿
𝑚
= 20× log

√(1/𝑁) × ∑𝑁
𝑖=1 𝑎
2

𝑖-rms

𝑎0
,

(3)

where 𝑉
𝑎
𝐿
𝑚

is the vibration acceleration level of the sup-
porting platform, 𝑁 is the tested number ranging from
1Hz to 200Hz, 𝑎2

𝑖-rms is the effective value of the vibration
acceleration at the frequency point, and 𝑎0 = 1× 10

−6 m/s2 is
the reference value of the vibration acceleration.

5.2. Optimization Variables. In engineering, the density and
the elasticity modulus of the sleeper pad are always modified
for the optimizing reduction in vibrations. Consequently,
the density of the sleeper pad and the elasticity modulus of
the sleeper pad were set as the optimization variables. In
practical applications, the density of the sleeper pad ranges
from 500 kg/m3 to 1500 kg/m3. The elasticity modulus of the
sleeper pad varies from 2.6 × 106N/m2 to 7.8 × 106N/m2.

5.3. Optimization Results. The optimization results were
obtained by the program presented in Section 4. The
optimized density of the sleeper pad is 620 kg/m3 and
the optimized elasticity modulus of the sleeper pad is
6.25 × 106N/m2. Before optimization, the vibration acceler-
ation level of the middle supporting platform, ranging from
1Hz to 200Hz,was 120.8 dB.After optimization, the vibration
acceleration level of the middle supporting platform was
94.4 dB.Thevibration acceleration level decreased by 26.4 dB.

Figure 12 shows the frequency spectrum of the vibra-
tion acceleration of the middle supporting platform. Before
optimization, the maximum vibration acceleration was
10.7 × 10−4m/s2. After optimization, the maximum vibration
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acceleration was 3.99 × 10−4m/s2. From Figure 12, the vibra-
tion accelerationwas reduced across the frequency range after
optimization.

6. Conclusion

To optimize the vibration reduction ability of ladder track,
a new method, that is, the finite element method coupled
with ant colony optimization, was proposed. We introduced
how to build the FEM model and how to couple the FEM
with ACO. The density of the sleeper pad and the elasticity
modulus of the sleeper pad were optimized using this
method. After optimization, the vibration acceleration level
of themiddle supporting platformwas reduced from 102.8 dB
to 94.4 dB. The optimized density of the sleeper pad was
620 kg/m3. The optimized elasticity modulus of the sleeper
pad was 6.25 × 106N/m2.
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