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Optimal sensor placement (OSP) is an important task during the implementation of sophisticated structural health monitoring
(SHM) systems for large-scale structures. In this paper, a comparative study between the genetic algorithm (GA) and the firefly
algorithm (FA) in solving the OSP problem is conducted. To overcome the drawback related to the inapplicability of the FA in
optimization problems with discrete variables, some improvements are proposed, including the one-dimensional binary coding
system, the Hamming distance between any two fireflies, and the semioriented movement scheme; also, a simple discrete firefly
algorithm (SDFA) is developed. The capabilities of the SDFA and the GA in finding the optimal sensor locations are evaluated using
two disparate objective functions in a numerical example with a long-span benchmark cable-stayed bridge. The results show that
the developed SDFA can find the optimal sensor configuration with high reliability. The comparative study indicates that the SDFA
outperforms the GA in terms of algorithm complexity, computational efficiency, and result quality. The optimization mechanism

of the FA has the potential to be extended to a wide range of optimization problems.

1. Introduction

The performance deterioration and the total collapse of large-
scale civil infrastructures induced by the environment and
service loads highlight the importance of structural health
monitoring (SHM) as a significant approach for the safe
operation and the reasonable maintenance of structures.
SHM, which involves an array of sensors to continuously
monitor structural behavior, along with the extraction of
damage-sensitive features from these measurements and the
evaluation of current system health by analysis methods,
can be used for rapid condition screening and aims to
provide reliable information regarding the integrity of the
structure in near real time [I-3]. At present, successful
deployment and operation of long-term SHM systems on
newly constructed structures and existing structures have
been reported throughout the world [4-7]. In an SHM
system, the sensor network provides original information
indicating structural behavior for further parameter iden-
tification; therefore, the efficiency of an SHM system relies

heavily on the reliability of the acquired data measured by
the sensor networks on the structure. For the complexity
of large-scale structures, such as long-span bridges and
high-rise buildings, the degrees of freedom (DOFs) used
to characterize structural performance count are on the
order of thousands to tens of thousands. It is impossible
to distribute sensors on all of the DOFs because of the
high costs of data acquisition systems (sensors and their
supporting instruments) and technology limitations [8, 9].
Therefore, selecting optimal sensor placement (OSP) is a
critical task before a sophisticated SHM system is designed
and implemented on a real structure [10].

The problem of determining OSP has been investigated
using a large number of interesting approaches and criteria in
the past few decades, which can be seen from the abundance
of literature. Among them, conventional gradient-based local
optimization methods were unable to efficiently handle mul-
tiple local optima and may present difficulties in estimating
the global minimum. They lack reliability in dealing with the
OSP problem, because convergence to the global minimum is



not guaranteed [11, 12]. Thus, the shift of OSP research away
from classical deterministic optimization methods toward
the use of combinatorial optimization methods based on
biological and physical analogues has been motivated by the
high computational efficiency and success rate of intelligent
optimization methods. Many contributions regarding the
adoption of intelligent optimization methods to the OSP
problem have been recently made. The genetic algorithm
(GA) based on the Darwinian principle of natural selection is
arepresentative example and has proved to be a powerful tool
for OSP. Yao et al. [13] demonstrated that the GA can replace
the effective independence (EflI) method when using the
determinant of the Fisher information matrix (FIM) as the
objective function. Subsequently, a number of improvements
have been employed to overcome drawbacks of the original
GA. To accelerate convergence, the simulated annealing
(SA) algorithm was integrated into the GA by Worden and
Burrows [14] and Hwang and He [15] to extract the OSP
in structural dynamic tests. To keep the sensor number
constant during the genetic operation, the coding system was
replaced by decimal two-dimensional array coding [16] or
dual-structure coding [17]. With the purpose of improving
the quality of solutions and convergence speed, two-quarter
selection was adopted by Yi et al. [18, 19]. The GA was also
extended to the optimal wireless sensor placement, which
has many constraints [20-22]. Particle swarm optimization
(PSO), which is inspired by the movement of organisms
in bird flocking or fish schooling, is another stochastic
search technique and was successfully applied to the OSP
problem [23, 24]. Furthermore, the monkey algorithm (MA),
which imitates the mountain-climbing process of monkeys,
is considered to be an effective numerical method in solv-
ing complex multiparameter optimization problems. Several
changes developed by Yi et al. made the MA excellent in
terms of generating optimal solutions, as well as providing
fast convergence in dealing with complicated OSP problems
[8, 25, 26].

Although the aforementioned methodologies demon-
strated a strong capability, to some extent, in finding the
acceptable solution for the OSP problem, the complex param-
eters and searching processes make those methods difficult
to operate and susceptible to the application environment.
The complexity of the optimal sensor configuration for large-
scale structures reveals the necessity for the development
of efficient and robust algorithms to accurately explore the
optimum solution. Recently, a new metaheuristic search
algorithm, which is referred to as the firefly algorithm (FA),
has been developed by Yang [27, 28]. The FA algorithm is
based on the idealized behavior of the flashing characteristics
of fireflies. A firefly tends to be attracted by other fireflies
with high flash intensities. Previous studies indicate that the
FA is particularly suited for parallel implementation and may
outperform existing algorithms, such as PSO, GA, SA, and
differential evolution, in terms of efficiency and success rates
[28,29]. At present, the FA has been applied to a large number
of optimization problems, including continuous, combinato-
rial, constrained, multiobjective, and dynamic optimization
[30].
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However, the coding system and the movement scheme
in the FA make it suitable only for global numerical optimiza-
tion problems with continuous variables. In this paper, some
improvements, including the coding system, the suitable
distance, and the movement scheme, are introduced, and a
simple discrete firefly algorithm (SDFA) is proposed based on
the FA such that the outstanding optimization mechanism of
the FA can be applicable in the OSP problem with discrete
variables. The remaining part of this paper is organized as
follows: Section 2 presents a detailed description of the SDFA
after an outline of the FA. Section 3 gives a brief introduction
to the GA with the aim of facilitating performance compar-
ison between the SDFA and the GA in the next numerical
simulations. Section 4 shows the comprehensive evaluation
of the SDFA for OSP with different criteria employing a long-
span benchmark cable-stayed bridge. Finally, conclusions are
drawn in Section 5.

2. Firefly Algorithm

2.1. Outline of Firefly Algorithm. The FA mimics the real
firefly’s swarm behaviors of communication, its search for
food, and its process of finding mates. The optimization
process of exploring the optimal solution is modeled in such
away that the firefly with low light intensity is attracted by the
firefly with high light intensity and moves toward to it, such
that the darker firefly has higher light intensity. Therefore, to
establish the mathematical model of this movement, three
hypotheses are adopted as follows: (1) the attractive action
between two fireflies is only governed by the light intensity;
(2) the light intensity of a firefly, which is deduced by the
firefly’s location, is proportional to the objective function; and
(3) the light intensity decreases with increasing distance, such
that the brighter firefly can only attract the fireflies within its
attractiveness range. Then, the movement of firefly i toward
firefly j is formulated as

2
X = X5+ Bye i (X; - Xf) +ae;, 1)

where X; and X ; represent the locations of firefly i and firefly
j» respectively, the superscript t denotes time, y means the
light absorption coefficient, r;; is the distance between any
two fireflies i and j, and f; is the attractiveness at r =
0. The third item in (1) is a random vector, where « is a
random parameter generated from the interval [0, 1] and ¢;
denotes a vector of random numbers drawn from a Gaussian
distribution. Thus, the movement of firefly i defined by (1) is
not always directed to firefly j. More details can be found in
references [25, 29, 31, 32].

The location of a firefly is simply coded using a spatial
coordinate, which consists of real vectors and continuous
variables. Subsequently, the distance between any two fireflies
i and j is generally defined by the Euclidean distance r;; =
I1X;, - X j||2 or the I,-norm. However, it is well known that,
from the view of mathematics, the OSP is a specialized
knapsack problem where some specified DOFs are selected
to be placed by sensors, such that the structural performance
can be described effectively. Thus, the parameters that are
used for optimizing are states in which those DOFs are
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distributed by sensors and are discrete variables. As a result,
the coding system and the movement strategies in the FA
are inapplicable in the OSP problem with discrete variables.
It is essential to do some modifications to the original FA,
such that the underlying optimization concept of the FA can
be moved to the OSP problem. Here, some improvements
are integrated into the FA, and the SDFA is proposed to
explore the optimal sensor configuration in structural health
monitoring.

2.2. Simple Discrete Firefly Algorithm. Being originated from
the FA, the SDFA is integrated by three parts: the coding
system, the definition of distance between two fireflies, and
the movement scheme. The coding system involves the code
of each firefly in feasible space. The distance definition is
responsible for describing the distance between two fireflies
so that the movement can be realized. And the movement
scheme gives the evolution rules of the SDFA. All of the three
parts are introduced in next three sections.

2.2.1. Coding System. In the community of applying GA in
finding the optimal sensor configuration, a widely used code
approach is the one-dimensional binary coding system. Each
individual in the population is coded by a one-dimensional
binary string. In this code system, all of the candidate DOFs
are putin aline. If the sth DOF is placed by a sensor, the value
of the sth element in the string is 1. In contrast, if the sth
DOF is not placed by a sensor, the value of the sth element
in the string is 0. The total number of ones in the string
is equal to the number of sensors that needs to be placed.
This coding system is intuitive and easy to be initialized and
operated. Here, in the SDFA, the one-dimensional binary
coding system is employed. Each firefly in the population
denotes a feasible sensor configuration, and the location of
each firefly is represented by a one-dimensional binary string,
as shown in Table 1. In the example of Table 1, it can be found
that the 2nd, 3rd, 6th, and 9th DOFs are occupied by sensors.
The total numbers of candidate DOFs and sensors are 10 and
4, respectively, because the length of the string is 10 and the
total number of ones is 4 in this firefly code. This coding
method is very simple and intuitive, which is beneficial for
the next optimization operation. When initializing the firefly
population, the first nth elements in a string are set to 1, and
the left elements are set to 0. Then, the shuffle algorithm is
applied five times, such that the fireflies can be distributed in
the feasible solution space uniformly as much as possible.

2.2.2. Distance between Two Fireflies. In the FA, the positions
of the fireflies are defined in a Cartesian coordinate system,
such that the distance between two fireflies can be easily cal-
culated by the [,-norm. However, in the SDFA, the positions
of the fireflies are represented by binary strings. As a result,
the I,-norm is no longer suitable for indicating the distance
between two fireflies. The Hamming distance [31], which
counts the number of positions at which the corresponding
symbols are different between two strings of equal length, has
many similarities with the problem at hand and is adopted
to indicate the distance between any two fireflies. Supposing

TABLE 1: An example of a firefly code.

DOF 1 2 3 4 5 6 7 8 9 10
Code —» 0 1 1 0 0 1 0 0 1 0

TABLE 2: Codes for firefly i and firefly j.

Fireflyi - 1 0 1 0 0 1 0 1 0 0
Fireflyj - 1 0 1 1 0 0 0 0

fireflies i and j with binary strings, the Hamming distance is
equal to the number of ones in firefly i XOR firefly j, which is

ri=X,eX; = (X, VX;) A~ (X;AX;), )

where X; and X; are vectors, ® means XOR, V is logical
disjunction, A represents logical conjunction, and — denotes
logical negation.

As a matter of fact, the Hamming distance represents
the number of incongruous sensors between two sensor
configurations and is equivalent to the number of elements in
two strings whose values are different on the corresponding
locations. Thus, the Hamming distance between firefly i and
firefly j can be rewritten as

d
rij = X; eBXj = Z 'xi,s - xj)s|. (3)

s=1

Generally, the number of sensors used for structural
monitoring is predetermined, such that the total number of
ones in any firefly is the same. If there is an incongruous
sensor in firefly i, which is located at the sth DOE it is not
placed by a sensor in firefly j. There must be an incongruous
sensor in firefly j, which is located at the pth DOF, which is
not placed by a sensor in firefly i. Then, the value of r;; is two.
As a result, the distance r;;, which is defined by (3), is always
a nonnegative even number and is two times the number of
incongruous sensors; this finding is beneficial for establishing
the movement scheme. Therefore, the maximum value of r;;
is 2w (where w is the total number of predetermined sensors),
which implies that the sensors of firefly i and the sensors
of firefly j are completely deployed on different DOFs in a
structure. The minimum value of r;; is zero, which indicates
that the sensors of firefly i and the sensors of firefly j occupy
the same DOFs. Thus, the distance r;; has the range of [0 2w].
Table 2 gives an example of two codes for firefly i and firefly
j. The number of ones in firefly i XOR firefly j is four, and
the number of incongruous sensors is two. Therefore, the
corresponding Hamming distance between firefly i and firefly
j is four.

2.2.3. Movement Scheme. The firefly movement in the Carte-
sian coordinate system is easily performed by changing
the coordinate values, as formulated by (1). The distance
of the movement is continuous and proportional to the
attractiveness. However, the positions of the fireflies in the
SDFA are defined by one-dimensional binary strings whose
values are 0 and 1. The firefly movement, which indicates that



the values in the string are varied, can only be realized by
changing 1to 0 or 0 to 1. On the other hand, the divergence of
two fireflies originates from the incongruous sensors. Thus,
replacing some incongruous sensors in a firefly may enhance
its light intensity. Therefore, in the SDFA, the movement of
firefly i is operated by changing some elements in the string
of firefly i from values of 1 to 0 and changing some elements
in the string of firefly i from values of 0 to 1, simultaneously.
Additionally, to keep the number of ones constant, the time
of changing 1 to 0 should be equal to the time of changing
0 to 1. For this reason, the time of changing 1 to 0 or the
time of changing 0 to 1 is defined as the movement distance.
Under this definition, the nearest and farthest movement
distance from firefly i to firefly j is 0 and 0.57;;, respectively.
By introducing stochastic searching, the movement distance
d;; from firefly i to firefly j is selected as

d;; = random (l,O.Srij). (4)

Generally, the contribution of a sensor located on a DOF
to the objective function cannot be predetermined. Therefore,
it is difficult to judge which a sensor should be relocated.
In the present paper, a semioriented movement scheme is
proposed as follows.

Step 1. Calculate the difference between the strings of firefly i
and firefly j:

AXj = X, - X,. )

Step 2. Randomly select d;; elements from AX ;; with a value
of 1 and change these elements to —1; again, randomly select
d;; elements from AX ; with a value of -1 and change these

elements to 1. The operated AX ; is represented by [AX ;].

Step 3. Replace the string of firefly i by
X, — X;+ [AX;]. (6)

In fact, the different light intensity between firefly i and
firefly j comes from the AX ;; term, which is also induced by
the incongruous sensors. The operated elements in the AX ;;
term are randomly selected, because it is difficult to predict
the influence of each element on the objective function.
Therefore, replacing part of the X; by [AX ;], which implies
relocating some incongruous sensors, would enhance the
light intensity of firefly i with a high probability. However,
the movement cannot guarantee that firefly i moves in a
desirable direction. Thus, the movement scheme is described
as a semioriented movement scheme. These random factors
in the movement scheme are also in accord with the random
term in (1).

3. Brief Description of Genetic Algorithm

The GA is briefly described here to facilitate a comparison in
next section. The GA, which was first proposed by Holland
in 1975 [32], tries to imitate natural evolution by assigning
a fitness value to each individual in the problem and by
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FIGURE 1: Overview of the cable-stayed bridge.

applying the principle of the survival of the fittest [33]. Each
individual has a set of chromosomes that can be mutated
and altered. Solutions can be represented by either one-
dimensional binary codes, dual-structure codes, or decimal
codes. In this paper, the dual-structure coding method
is employed to maintain a constant number of sensors.
The evolution, which usually starts from a population of
randomly generated individuals, is an iterative process and
advances towards the next generation by applying genetic
operators (crossover and mutation). An individual in the
new population is generated by performing the crossover
on two selected individuals from the current population
and mutation on this generated individual [34]. The two
individuals selected for crossover are chosen according to
their fitness values. The individual with a good fitness value
has a high probability of being chosen. The new generation
of individuals is then used in the next iteration of the
algorithm. Commonly, the iteration terminates when either
a maximum number of generations have been produced or
when a satisfactory fitness level has been reached for the
population. The GA has a distinct advantage over traditional
optimization techniques, which starts from a single point
in the solution space. The details about the GA have been
presented in references [16, 33, 34].

4. Numerical Example

4.1. Bridge Description. The bridge employed for numerical
simulation is a full-scale, cable-stayed bridge benchmark
problem organized by the Center of Structural Monitoring
and Control at the Harbin Institute of Technology [35], as
shown in Figure 1. The bridge was opened to traffic in Decem-
ber 1987 and completely retrofitted in 2007 It comprises a
main span of 260 m and two side spans of 25.15m and 99.85m
each. The total length and width of the bridge are 519 m
and 11m, respectively. The concrete bridge tower consists of
two transverse beams with a height of 60.5m. 74 precast
concrete girder segments are employed to integrate the main
girder, and a total of 88 pairs of cables containing steel wires
that are 5mm in diameter are adopted to transfer the loads
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FIGURE 2: Iteration progress of the objective function.

from main girder to the two towers [36]. To understand the
behavior of the bridge, an updated three-dimensional finite
element model is also provided by the Center of Structural
Monitoring and Control at the Harbin Institute of Technology
[35]. The towers and the main girder were simulated by three-
dimensional beam elements, and the cables were simulated by
linear elastic link elements. The concrete transverse beam at
every 2.9 m was simplified by a mass element. The main girder
was modeled as floating on the main tower, and all of the
towers were fixed to the ground. The longitudinal restriction
effect of the rubber supports was simulated by linear elastic
spring elements. The model consists of 564 beam elements,
88 link elements, 160 mass elements, and 8 spring elements.
Modal analysis has been conducted, and the results can be
found in [35].

4.2. Results and Discussion. The proposed SDFA is evaluated
by two frequently used, but quite different, objective func-
tions. The first objective function is the modal strain energy
(MSE). With this objective function, the OSP becomes a
maximal optimization problem. The second objective func-
tion involves the modal assurance criterion (MAC), which
induces the OSP to be a minimal optimization problem. More
importantly, a comparative study is conducted between the
SDFA and the GA, in terms of computational efficiency and
result quality. To achieve this goal, the GA is also applied
to find the optimal sensor configuration under the same
conditions.

4.2.1. Optimization Based on Modal Strain Energy. Generally,
it is desirable that most structural information is obtained
through a set of sensors deployed on a structure, such that
the structural behaviors can be described well. At present,
the structural condition evaluation approaches based on the

structural mode shapes and their derivations have been com-
prehensively explored. The MSE provides a rough measure
of the dynamic contribution of each candidate sensor to
the target mode shapes and implies that the DOFs capture
most of the relevant dynamic features of the structure. The
MSE helps to select those sensor positions with possible
large amplitudes, which can increase the signal-to-noise
ratio and improve the reliability of the mode identification
results [9, 16]. Therefore, the MSE is selected as the first
objective function. Supposing that the mode shape matrix of
a structure is @ = [¢;, ¢,,..., ¢, ] (w is the number of mode
shape vectors) and the number of measured points is w, the
MSE can be expressed as

H= Z Z_; Z;) Z l¢umkuv¢vn| >

m=1n veh

7)

where ¢, is the uth component in the corresponding
mth mode shape, ¢, denotes the vth component in the
corresponding nth mode shape, k,, represents the stiffness
coefficient between the uth DOF and the vth DOF, and u € 0
and v € 0O state that u and v are restricted to the locations
where the sensors are placed.

Indeed, the improvements applied in the SDFA further
simplify the FA algorithm, and only one parameter (i.e., the
number of fireflies) needs to be preset. After being explored
by a parametric study, the best value for firefly number is
selected as 100, which allows the algorithm to achieve the
best performance. Being different from the SDFA, the GA
has several problematic parameters, such as the population
size, the probabilities of selection, the crossover, and the
mutation. Parametric studies are also conducted, and the
appropriate values are determined. The simplicity and easy
implementation of the SDFA is apparent.
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TaBLE 3: Comparison of optimization results based on the MSE.
Sensor number 20 25 30 35
Methods SDFA GA SDFA GA SDFA GA SDFA GA
Maximum MAC off-diagonal value
Mean value (x10') 6.1416 6.1325 6.5271 6.5102 6.7232 6.7028 6.8195 6.8103
Maximal value (x10") 6.2613 6.2537 6.5657 6.5325 6.7382 6.7215 6.8314 6.8217
Standard deviation 0.0291 0.0475 0.0280 0.4652 0.0165 0.3924 0.0121 0.2917
25.12m 99.85m 260m 99.85m 25.12m

|

FIGURE 3: The optimal sensor configuration extracted by SDFA with the MSE.

99.85m 260 m

99.85m

F1GURE 4: The optimal sensor configuration extracted by GA with the MSE.

Four scenarios with 20, 25, 30, and 35 sensors are
simulated. In accordance with other heuristic optimization
methods, the results extracted by the SDFA and the GA
rely heavily on the randomly generated initial population.
Therefore, to reduce the influence of the initialized individ-
uals, the SDFA and the GA have been run 10 times with
different stochastic initial populations in each occasion. The
best iteration progress of the SDFA and the GA with 25
sensors are displayed in Figure 2, and the optimal locations
of 25 sensors extracted by the SDFA and the GA with the
aim of getting the maximal MSE value are illustrated in
Figures 3 and 4, respectively. The statistical results of 10 runs
for the four occasions are listed in Table 3. It can be seen
from Figure 2 that both the SDFA and the GA can converge
at the global optimum. In both Figures 2(a) and 2(b), the
values of the objective function in the population increase
with an increasing number of generations, and the average
and minimum values of the objective function simultane-
ously approach the maximum value, which indicates good
performance regarding optimum exploring. The effectiveness
of the improvements adopted in the SDFA is validated. In

the SDFA, the maximum MSE value tends to be a constant
after 62 generations with a high speed. However, in the
GA, converging to a constant spends 188 generations at an
unacceptably low speed. Although increasing the number of
individuals may reduce iteration generation, but the time of
each generation becomes longer. As a result, the GA spends
longer time finding the optimal solution than the SDFA.
The high computational efficiency of the SDFA is revealed.
Comparing Figures 3 and 4, it can be found that the optimal
sensor locations extracted by the SDFA distribute on the
span uniformly. However, the sensors in the optimal sensor
configuration found by the GA crowd near the left tower,
and the vibration and mode shapes of the right part of the
bridge cannot be described clearly. Thus, the sensors in the
optimal sensor configuration extracted by the SDFA are used
with high efficiency and the identified mode shapes are more
visual. The statistical results of each ten optimal solutions are
listed in Table 3. In the table, the mean value and the maximal
value represent the average and the maximal values of the ten
optimal solutions, respectively, which indicate the superiority
of the optimal solution; the standard deviation denotes
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FIGURE 5: Iteration progress of the objective function.

the variability of the ten best solutions, which indicates the
robustness of the algorithm. In every occasion, as listed in
Table 3, the mean and maximum values of the MSE searched
by the SDFA are larger than that explored by the GA. Thus, the
solutions found by the SDFA have better quality than those
extracted by the GA. Simultaneously, the standard deviation
of the 10 results found by the SDFA in all four occasions are
smaller than that searched by the GA, which shows that the
SDFA can solve the OSP problem with high reliability and
strong robustness.

4.2.2. Optimization Based on Modal Assurance Criterion. The
vibration-based structural condition assessment methodolo-
gies require that the measured mode shapes are discriminable
from each other, such that they can be reliably identified.
The modal assurance criterion (MAC) proposed by Carne
and Dohrmann [16] provides a simple metric to check the
linear dependence of the mode shapes. A small maximum
off-diagonal term of the MAC matrix implies less correlation
between corresponding mode shape vectors and high dis-
tinguishability among the identified mode shapes. Thus, the
MAC off-diagonal terms are adopted to evaluate the sensor
configuration. The MAC is defined as

_tub
T T ’ (8)
V(o) (¢56,)

where ¢,, and ¢, represent the mth and nth column vectors
in matrix @, respectively, and the superscript T' denotes the
transpose of the vector. With this definition, the values of the
MAC range from 0 to 1, where 0 indicates that the modal
vector is easily distinguishable and 1 indicates that the modal
vector is fairly indistinguishable [19].

MAC,,, =

Consulting the numerical simulation performed in
Section 4.2.1, the same parameters of the SDFA and the GA
are adopted. The same four occasions are investigated, and
each occasion is also calculated 10 times by the two methods.
The best convergence process for the two optimization
approaches are shown in Figure 5. The MAC values com-
puted by the best sensor configurations obtained by the two
methods are illustrated in Figure 6. To clearly show the MAC
values of each mode, the maximum MAC off-diagonal values
in each of the modes calculated by the SDFA and the GA
are compared in Figure 7. The optimal sensor configurations
found by the SDFA and the GA are displayed in Figures 8
and 9, respectively. The statistical data of the 10 runs in the
four occasions are also listed in Table 4. The mean value, the
minimal value, and the standard deviation have the similar
meaning as that in Table 3. From the convergence process in
Figure 5(a) and the optimal results in Figure 6(a), the strong
ability to search for the global optimal solution in the SDFA is
again demonstrated from the minimal optimization problem.
When comparing the iteration progress in Figure 5(a) with
that in Figure 5(b), the higher computational efficiency of
the SDFA is further validated. Investigating the optimization
results illustrated in Figures 6, 7, 8, and 9, a more desirable
sensor configuration can be acquired when using the SDFA.
The statistical results listed in Table 4 also indicate that the
SDFA has higher reliability and stronger robustness than the
GA.

5. Conclusions

Because finding the optimal sensor locations under a certain
evaluation criterion is a complicated nonlinear optimization
problem, traditional optimization methods often encounter
many insurmountable difficulties in solving this problem.
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TABLE 4: Comparison of optimization results based on the MAC.
Sensor number 20 25 30 35
Methods SDFA GA SDFA GA SDFA GA SDFA GA
Maximum MAC off-diagonal value
Mean value 0.0826 0.0937 0.0806 0.0904 0.0793 0.0854 0.0755 0.0796
Minimal value 0.0659 0.0783 0.0614 0.0727 0.0587 0.0657 0.0561 0.0593
Standard deviation 0.0128 0.0203 0.0129 0.0212 0.0116 0.0195 0.0113 0.0221

MAC value

(a) SDFA

MAC value

(b) GA

FIGURE 6: MAC values obtained from the optimal sensor configuration.

Maximum MAC off-diagonal value

0.02 : : : : - :
1 3 5 7 9 11 13 15
Mode number
—o— SDFA
-8 GA

FIGURE 7: Maximum MAC oft-diagonal values in each of the modes.

Intelligence optimization algorithms such as the GA and
the FA provide powerful approaches to overcome these
obstacles. Before implementing a comparative study between
the GA and the FA regarding their performance in finding
the optimal sensor configuration, some improvement are
developed based on the basic FA and the SDFA is proposed.
If all candidate DOFs can be accessible in real-word practice,
the developed sensor placement method is applicable in any
type of tethered sensor. The performance of the SDFA and the
GA is compared using a numerical example with a long-span

benchmark cable-stayed bridge. Some conclusions are drawn
as follows.

(1) The one-dimensional binary coding system and the
Hamming distance can rationally describe the sta-
tus of fireflies in the feasible sensor configuration
space. The semioriented movement scheme provides
an effective tool to move the original movement
defined in the Cartesian coordinate system to the one-
dimensional binary coding system. These improve-
ments make the underlying optimization mechanism
of the FA applicable in discrete optimization prob-
lems.

(2) In the case study, the improved SDFA shows good
performance, both in the maximal value problem and
the minimal value problem. The simulation results
indicate that the SDFA has smooth convergence
progress. The effectiveness of the proposed improve-
ments is validated, and the strong capability of FA in
finding the global optimization is also revealed.

(3) Compared with the widely accepted GA, the SDFA,
which has only one problematic parameter, can be
implemented more easily. Regarding both the MSE
and MAC criteria, the SDFA shows superior compu-
tational efficiency and robustness versus the GA. The
optimal solution extracted by the SDFA is also more
desirable than that provided by the GA.
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FIGURE 9: The optimal sensor configuration extracted by GA with the MAC.

It should be noted that all the analyses in this paper are
conducted based on the assumed theoretical models while
the real environment is more complex. The advanced SHM
requires a more versatile sensor configuration to comprehen-
sively understand the performance of a structure; therefore,
developing algorithms for multiobjective optimization may
be a good direction for future work.
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