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A mathematical model for a cubic nonlinear packaging system with a cantilever beam type critical component with concentrated
tip mass is proposed.The finite element method and the implicit finite difference method together with the Rung-Kutta method are
applied to study the dropping impact dynamics of the critical component and the effect of system parameters, such as the value of
the concentrated tip mass and the frequency of the main component, is discussed. The results show that the relative displacement
and acceleration change remarkably with the length of the cantilever beam, and the maximum internal stress occurs at the joint
end of the critical component. With the increase of the value of the concentrated tip mass and/or a higher frequency of the main
component, the amplitudes of the responses increase obviously.

1. Introduction

Investigation of dynamic models and dropping impact char-
acteristics of the packaging system is essential for the cush-
ioning packaging design. In 1945, the concept of critical
componentwas firstly presented byMindlin [1], and the drop-
ping impact characteristics of linear and nonlinear packaging
systems were studied by established two different dynamic
models, single degree of freedom and two degrees of free-
dom concentrated mass-spring models. Then, the dynamic
properties of the two degrees of freedom concentrated mass-
springmodel with the critical component, such as the damage
boundary curve and the three-dimensional shock spectrum,
have been discussed by many researchers [2–4]. Wang et al.
[5], Bernad et al. [6], andWuandChen [7] analyzed the vibra-
tion and shock characteristics of the multidegree of free-
dom packaging system, respectively. Suhir and Burke [8] and
Wong et al. [9–11] established dynamic models by using
systems with elastic plate part as object and the numerical
results showed that the products with elastic parts which
are described by concentrated mass-spring models are not
accurate for the infinite degree of freedom of elastic parts.

Therefore, the nonlinear coupling dynamics models, includ-
ing the bar, simply supported beam, and cantilever beam
type critical components, were suggested by Gao et al. [12–
14], the corresponding differential equations of motion were
derived and solved by using the explicit finite difference
method (EFDM), and the distribution of displacement, accel-
eration, and internal stress responses of critical components
were investigated. However, the cushion packaging of the
electromechanical products with elastic cantilever beamwith
complicated boundary conditions has not attracted enough
attention.

In this paper, a mathematical model for the packaging
systemwith a cantilever beam type elastic critical component
with concentrated tip mass is suggested, and two different
numericalmethods, the Runge-Kuttamethod combinedwith
the implicit finite difference method (IFDM) and the finite
element method (FEM), are applied to analyze the displace-
ment, acceleration, and internal stress responses. The effects
of the value of the concentrated tip mass and the frequency
of the main component on the dropping impact responses of
the critical component are discussed.
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Figure 1: The dropping model of packaging system with critical
component.

2. Modeling, Equations, and
Numerical Solution

Assuming the cantilever beam critical component as a uni-
form elastic body, the main component as a rigid body, the
connection between them as a rigid connection and the
cushioning material as a cubic nonlinear material, the model
of the nonlinear system with critical components under the
dropping impact is depicted in Figure 1, where 𝑚

1
and 𝑚

2

denote the mass of main component and critical component,
and 𝑦

1
(𝑡) and 𝑦

2
(𝑥, 𝑡) are the displacement response of

main component and critical component, respectively. The
cantilever beam has radius 𝑟 and length 𝐿. The resilience
function of cushioning material is 𝐹, 𝐹 = 𝑘

0
𝑦
1
+ 𝑒𝑦
3

1
, where

𝑘
0
and 𝑒 are the initial elastic constant and the nonlinear

constant, respectively.𝐻 is the dropping height of system.
In order to facilitate the numerical analysis, the coor-

dinate system is established, the static equilibrium position
is treated as the origin of coordinate, and the downward
direction is regarded as the positive direction. Because the
cantilever beam is a slender beam, in the dropping impact
process of the system, we will only consider the transverse
vibration and bending deformation, neglecting the influence
of transverse shearing distortion and the axial deformation.
Based on this, equations of motion are expressed with two
different methods and solved by FEM and FDM, respectively.

2.1. The Dynamic Model of Critical Component

2.1.1. Finite Element Method (FEM). Consider a cantilever
beam with concentrated tip mass as illustrated in Figure 2,
treating the joint between the critical component and the
main component as the original point and the length direc-
tion of the critical component as the 𝑥-axis direction. In the
finite element model, the beam is divided into 𝑛 elements of
equal length as shown in Figure 2(a), where element nodes
are marked as 1, 2, . . . , 𝑖, 𝑖 + 1, . . . , 𝑛, 𝑛 + 1 in turn, and 𝑢

𝑖

and 𝑢󸀠
𝑖
are the lateral displacement and the rotation about the

cross section of the node 𝑖. In arbitrary element 𝑖, the length
is 𝑙 = 𝐿/𝑛 and each node has two degrees of freedom (Fig-
ure 2(b)). Since there are four end displacements (or degree

of freedom), a cubic variation in displacement is assumed to
approximate the node displacements, in the form [15]:

𝑢 (𝑥) = 𝑎
0
+ 𝑎
1
(

𝑥

𝑙

) + 𝑎
2
(

𝑥

𝑙

)

2

+ 𝑎
3
(

𝑥

𝑙

)

3

. (1)

The four degrees of freedom corresponding to the displace-
ments 𝑢(𝑖)

1
, 𝑢(𝑖)
2
and the rotations 𝑢󸀠(𝑖)

1
, 𝑢󸀠(𝑖)
2

are given by

𝑢
(𝑖)

1
= 𝑢 (0) , 𝑢

(𝑖)

2
= 𝑢 (𝑙) ,

𝑢
󸀠(𝑖)

1
= 𝑢
󸀠
(0) , 𝑢

󸀠(𝑖)

2
= 𝑢
󸀠
(𝑙) .

(2)

Write the kinetic and strain energies of the elements as

𝑇
𝑖
=

1

2

∫

𝑙

0

𝜌𝐴(

𝜕
2
𝑢

𝜕𝑡
2
)

2

𝑑𝑥 =

1

2

u̇𝑖Tku̇𝑖, (3a)

𝑈
𝑖
=

1

2

∫

𝑙

0

𝐸𝐼(

𝜕
2
𝑤

𝜕𝑥
2
)

2

𝑑𝑥 =

1

2

w𝑖Tkw𝑖, (3b)

where 𝐸 is the elastic modulus, 𝐼 is the bending moment of
inertia, 𝜌 is the mass density, and𝐴 is the cross-sectional area
of the element. Here u𝑖 is the absolute displacement vector
of the 𝑖 element, w𝑖 = u𝑖 − 𝑦

1
(𝑡)E∗ (E∗ = [1 0 1 0]

T) is
the relative displacement vector of the 𝑖 element, and a dot
over u𝑖 represents time derivative of u𝑖. One can obtain,
after substituting (1) into (2) and (3a) and (3b), the element
stiffness k𝑖 matrix and the element massm𝑖 [15] matrix as

k𝑖 = 2𝐸𝐼

𝑙
3

[

[

[

[

6 3𝑙 −6 3𝑙

3𝑙 2𝑙
2
−3𝑙 2𝑙

2

−6 −3𝑙 6 −3𝑙

3𝑙 2𝑙
2
−3𝑙 2𝑙

2

]

]

]

]

,

m𝑖 = 𝜌𝐴𝑙

420

[

[

[

[

156 22𝑙 54 −13𝑙

22𝑙 4𝑙
2

13𝑙 −3𝑙
2

54 13𝑙 156 −22𝑙

−13𝑙 −3𝑙
2
−22𝑙 4𝑙

2

]

]

]

]

.

(4)

Then, the kinetic and strain energies of the critical component
are written as

𝑇 =

𝑛

∑

𝑖=1

𝑇
𝑖
=

1

2

𝑛

∑

𝑖=1

u̇𝑖Tm𝑖u̇𝑖,

𝑈 =

𝑛

∑

𝑖=1

𝑈
𝑖
=

1

2

𝑛

∑

𝑖=1

w𝑖Tk𝑖w𝑖,

(5)

where u̇𝑖T and w𝑖T are transposed matrices of u̇𝑖 and w𝑖,
respectively.

u and w are assumed as the absolute displacement vector
and the relative displacement vector of the critical compo-
nent, respectively, and are given by

u = [𝑢
1
𝑢
󸀠

1
⋅ ⋅ ⋅ 𝑢
𝑛+1

𝑢
󸀠

𝑛+1
]

T
,

w = [𝑤
1
𝑤
󸀠

1
⋅ ⋅ ⋅ 𝑤

𝑛+1
𝑤
󸀠

𝑛+1
]

T
.

(6)
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Figure 2: The finite element division of cantilever beam component with tip mass.

And, the relationship between u𝑖 and u and w𝑖 and w can be
expressed as

u𝑖 = C𝑖u, w𝑖 = C𝑖w, (7)

where C𝑖(4 × (2𝑛 + 2)) is the extraction matrix of element 𝑖
and written as

C𝑖 =
[

[

[

[

[

0 ⋅ ⋅ ⋅

the 𝑖 column
1 0 0 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 1 0 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 0 1 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 0 0 1 ⋅ ⋅ ⋅ 0

]

]

]

]

]

. (8)

By substituting (7) and C𝑖 into (5), the kinetic and strain
energies of the critical component can be rewritten as

𝑇 =

𝑛

∑

𝑖=1

𝑇
𝑖
=

1

2

u̇TMu̇,

𝑈 =

𝑛

∑

𝑖=1

𝑈
𝑖
=

1

2

wTKw,

(9)

whereM(2(𝑛+1)×2(𝑛+1)) andK(2(𝑛+1)×2(𝑛+1)) denote the
critical component mass matrix and the critical component
stiffness matrix and can be given by

M =

𝑛

∑

𝑖=1

C𝑖Tm𝑖C𝑖, K =
𝑛

∑

𝑖=1

C𝑖Tk𝑖C𝑖. (10)

Considering the effect of the concentrated tip mass on the
critical component mass matrix M, 𝑚

2
is added to the (2𝑛 +

1) × (2𝑛 + 1) element of theM.
The generalized force vector is the 0, since the cantilever

beam is not affected by the concentration or distribution
force. Neglecting the damping, substituting the mass matrix
M, the stiffness matrix K, and the generalized force vector
into Lagrange’s equations, the equation of motion for the
critical component can be represented as

Mü + Kw = 0, (11)

where w = u − 𝑦
1
(𝑡)E, E = [1 0 1 0 ⋅ ⋅ ⋅ 1 0 1 0]

T.
Thus, the dynamic response analysis can be transformed into
solving the relative displacement (deformation of the critical
component) response of the critical component under the
inertia force. Substituting u = w + 𝑦

1
(𝑡)E, (11) becomes

Mẅ + Kw = −𝑦̈
1
(𝑡)Mk. (12)

The initial conditions considered here are given by w|
𝑡=0

=

[0 0 ⋅ ⋅ ⋅ 0]
T and ẅ|

𝑡=0
= [0 0 ⋅ ⋅ ⋅ 0]

T, and the boundary
conditions are specified by 𝑤

1
= 0 and 𝑤󸀠

1
= 0. However,

(12) cannot be solved since the mass matrix M and the
stiffness matrix K are singular matrices with no considering
the boundary conditions. Hence, the boundary conditions
have to be introduced in the solution. Three methods, the
first method that is to eliminate the corresponding rows and
columns ofmatrices of known displacements, the second that
is to transform diagonal element into 1, and the third that is to
multiply a large number, are usually used to incorporate the
boundary conditions, in which the first method has a good
applicability to the boundary condition of zero displacement
[16]. Based on the first method, the effective mass matrix
M∗ and the effective stiffness matrix K∗ can be obtained by
deleting the first and second rows and columns of M and K.
And (12) can be rewritten as

M∗ẅ + K∗w = 𝑦̈
1
(𝑡)M∗k. (13)

Equation (13), a linear second-order differential equation
set with constant coefficient, can be solved theoretically by
the Runge-Kutta method. But the efficiency is low, because
the dimension of the dynamic equation set is often too high.
The effective methods can be divided into two classes: direct
integration methods and the mode superposition method,
in which direct integration methods mainly include central
difference, Houbolt, Wilson, and Newmark methods [15].
Considering the characteristic of equations, the Newmark
method is employed in the study to solve (13) and the
numerical procedure is implemented in aMATLABprogram.

In order to investigate natural frequencies and mode
shapes of the free vibration, (13) gives the following gener-
alized eigenvalue equation:

K∗𝜑 = 𝜔2M∗𝜑, (14)

where 𝜑 represents the amplitudes of the displacements
(called the mode shape) and the 𝜔 denotes the nature
frequency of vibration. Equation (14) can be solved by using
the subspace iteration method [16] effectively.

According to (13) and equations of motion of main
component (mentioned in Section 2.2), the responses ofmain
component and the relative displacement vector w∗

𝑘
and the

relative acceleration vector ẅ∗
𝑘
of the critical component at

any time 𝑡 = 𝑘𝜏 (where 𝜏 is the time interval and 𝑘 is the step



4 Shock and Vibration

y2(x, t)

x

x

dx

0

(a)

dx

M

Q+
𝜕Q

𝜕x

M+
𝜕M

𝜕x

Q

(b)

Figure 3: Force analysis of the critical component.

number) are obtained. Hence, ignoring the rotations in ẅ∗
𝑘
,

the transverse relative displacement matrix w
2
(𝑛 × 𝑁) (𝑁 is

the total step number) is written as

w
2
= J [w∗

0
w∗
1
⋅ ⋅ ⋅ w∗

𝑘
⋅ ⋅ ⋅] , (15)

where

J =
[

[

[

[

[

[

[

1 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 1 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 1 0 ⋅ ⋅ ⋅ 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

0 0 0 0 0 0 ⋅ ⋅ ⋅ 1 0

]

]

]

]

]

]

]

(16)

in which J(𝑛 × 2𝑛) is the extraction matrix of the relative
displacement vector.

Then, the transverse absolute displacement matrix is
given by

u
2
= w
2
+ y
1
(:, 𝑡) , (17)

where u
2
= [u0 u1 ⋅ ⋅ ⋅ u𝑘 ⋅ ⋅ ⋅ ], the relationship between

the absolute displacement vector u𝑘 of the critical compo-
nent, the displacement response of main component 𝑦

2
, and

the screen function 𝑢𝑘
𝑖
(mentioned in Section 2.1.2) can be

expressed as u𝑘(𝑖) = 𝑢𝑘
𝑖
= 𝑦
2
(𝑖𝑙, 𝑘𝜏), and y

1
(:, 𝑡) is expanding

matrix of 𝑦
1
(𝑡), giving

y
2
(:, 𝑡) =

[

[

[

[

[

𝑦
1
(0) 𝑦

1
(𝜏) ⋅ ⋅ ⋅ 𝑦

1
(𝑘𝜏) ⋅ ⋅ ⋅

𝑦
1
(0) 𝑦

1
(𝜏) ⋅ ⋅ ⋅ 𝑦

1
(𝑘𝜏) ⋅ ⋅ ⋅

.

.

.

.

.

. d
.
.
.

.

.

.

𝑦
1
(0) 𝑦

1
(𝜏) ⋅ ⋅ ⋅ 𝑦

1
(𝑘𝜏) ⋅ ⋅ ⋅

]

]

]

]

]

. (18)

At last, the internal stress of the critical component can be
obtained by

𝜎 = −𝐸𝑟

𝜕
2
𝑦
2

𝜕𝑥
2
. (19)

2.1.2. Finite Difference Method (FDM). As for the force
analysis, the cantilever beamcritical componentwith concen-
trated tip mass is depicted as in Figure 3, treating the joint
between the critical component and the main component

as the original point and the length direction of the critical
component as the 𝑥-axis direction, where 𝑦

2
(𝑥, 𝑡) is the dis-

placement distribution function along the 𝑥-axial. Consider
the representative elemental volume 𝑑𝑥 at the 𝑥 coordinates
as illustrated in Figure 3(b) and the force-balance equation is
derived by

𝑄 +

𝜕𝑄

𝜕𝑥

𝑑𝑥 − 𝑄 = 𝜌𝐴𝑑𝑥

𝜕
2
𝑦
2

𝜕𝑥
2
, (20)

simplified as

𝜕𝑄

𝜕𝑥

= 𝜌𝐴

𝜕
2
𝑦
2

𝜕𝑥
2
, (21)

where𝑄 is the cross-sectional shear force of the critical com-
ponent 𝜌 and 𝐴 are the mass density and the cross-sectional
area, respectively.

Treat the midpoint of the right section of the representa-
tive elemental volume as the center of moment. The torque
equilibrium equation is established as

(𝑀 +

𝜕𝑀

𝜕𝑥

𝑑𝑥 −𝑀) − 𝑄𝑑𝑥 = 0, (22)

simplified as

𝑄 =

𝜕𝑀

𝜕𝑥

, (23)

where 𝑀 = −𝐸𝐼(𝜕
2
𝑦
2
/𝜕𝑥
2
) is the cross-sectional bending

moment of the critical component.
Substituting the bending moment𝑀 and the shear force

𝑄 into (21), the bending vibration equation of the critical
component is given by

𝐸𝐼

𝜕
4
𝑦
2

𝜕𝑥
4
+ 𝜌𝐴

𝜕
2
𝑦
2

𝜕𝑡
2
= 0, (24)

where 𝐸 is the elastic modulus and 𝐼 is the bending moment
of inertia.

The initial conditions are considered here as

𝑦
2
(𝑥, 0) = 0,

𝜕𝑦
2
(𝑥, 𝑡)

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

= √2𝑔𝐻, (25)

where 𝑔 is the acceleration of gravity.
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The boundary conditions are also specified as

𝑦
2
(0, 𝑡) = 𝑦

1
,

𝜕𝑦
2
(𝑥, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=0

= 0,

𝜕
2
𝑦
2
(𝑥, 𝑡)

𝜕𝑥
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝐿

= 0, 𝐸𝐼

𝜕
3
𝑦
2
(𝑥, 𝑡)

𝜕𝑥
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝐿

= 𝑚
2

𝜕
3
𝑦
2
(𝑥, 𝑡)

𝜕𝑡
3

.

(26)

Solutions of the partial differential equation (24), with non-
linear boundary conditions, are not trivial. Turner et al. [17]
analyzed high-frequency response of microscope cantilevers
by using the explicit finite difference method (EFDM), which
also is presented by Lu et al. [12–14]. A new implicit finite
difference scheme is applied here to obtain the numerical
approximation, which is useful for boundary conditions (26).
Firstly, the solution domain is divided into rectangular net by
parallel lines, 𝑥 = 𝑥

𝑖
= 𝑖𝑙 (𝑖 = 0, 1, 2, . . . , 𝑁) and 𝑡 = 𝑡

𝑘
= 𝑘𝜏

(𝑘 = 0, 1, . . .), where 𝑙 = 𝐿/𝑁 and 𝜏 > 0. The node coordinate
is defined by (𝑥

𝑖
, 𝑡
𝑘
). Then, assuming 𝑢𝑘

𝑖
as the function of

the node (𝑥
𝑖
, 𝑡
𝑘
), (24) is discretized by the implicit difference

method as follows:

𝑎

(𝑢
𝑘+1

𝑖+2
+ 𝑢
𝑘+1

𝑖−2
) − 4 (𝑢

𝑘+1

𝑖+1
+ 𝑢
𝑘+1

𝑖−1
) + 6𝑢

𝑘+1

𝑖

𝑙
4

+

𝑢
𝑘+1

𝑖
− 2𝑢
𝑘

𝑖
+ 𝑢
𝑘−1

𝑖

𝜏
2

= 0,

(27)

simplified as

𝑏𝑢
𝑘+1

𝑖+2
− 4𝑏𝑢

𝑘+1

𝑖+1
+ (6𝑏 + 0.5) 𝑢

𝑘+1

𝑖

− 4𝑏𝑢
𝑘+1

𝑖−1
+ 𝑏𝑢
𝑘+1

𝑖−2
= 𝑢
𝑘

𝑖
− 0.5𝑢

𝑘−1

𝑖
,

(𝑖 = 2, . . . , 𝑁 − 2) ,

(28)

where the constants 𝑎 and 𝑏 are given by

𝑎 =

𝜌𝐴

𝐸𝐼

, 𝑏 =

𝑎𝜏
2

𝑙
4
. (29)

In addition, the truncation error of (28) is 𝑂(𝑙4 + 𝜏
2
).

Discretizing versions of the boundary conditions, the “real”
nodes, 𝑢𝑘+1

1
, 𝑢𝑘+1
𝑁−1

, and 𝑢𝑘+1
𝑁

, are given by

𝑏𝑢
𝑘+1

3
− 4𝑏𝑢

𝑘+1

2
+ (6𝑏 + 0.5) 𝑢

𝑘+1

1

= 𝑢
𝑘

1
− 0.5𝑢

𝑘−1

1
+ 3𝑏𝑢

𝑘+1

0
,

(30a)

2𝑏𝑢
𝑘+1

𝑁
+ (5𝑏 + 0.5) 𝑢

𝑘+1

𝑁−1
− 4𝑏𝑢

𝑘+1

𝑁−2
+ 𝑏𝑢
𝑘+1

𝑖

= 𝑢
𝑘

𝑖−1
− 0.5𝑢

𝑘−1

𝑁−1
,

(30b)

(𝑏𝑐 + 2𝑏 + 0.5) 𝑢
𝑘+1

𝑁
− 4𝑏𝑢

𝑘+1

𝑁−1
+ 2𝑏𝑢

𝑘+1

𝑁−2

= (1 + 2𝑏𝑐) 𝑢
𝑘

𝑁
− (0.5 + 𝑏𝑐) 𝑢

𝑘−1

𝑁
,

(30c)

where 𝑐 = 2𝑚
2
𝑙
3
/𝐸𝐼𝜏
2.

An equation of the 𝑖 = 0 node is not required since its
motion is given directly by the boundary condition in (26).
Hence, the approximation of (24) can be written by

AU = B, (31)

where A, U, and B are, respectively, given by

U = [𝑢
𝑘+1

1
, 𝑢
𝑘+1

2
, . . . , 𝑢

𝑘+1

𝑁−1
, 𝑢
𝑘+1

𝑁
]

T
,

A =

[

[

[

[

[

[

[

[

[

[

[

6𝑏 + 0.5 −4𝑏 𝑏 0 ⋅ ⋅ ⋅ ⋅

−4𝑏 6𝑏 + 0.5 −4𝑏 𝑏 0 ⋅ ⋅ ⋅

𝑏 −4𝑏 6𝑏 + 0.5 −4𝑏 𝑏 0 ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅

⋅ 0 𝑏 −4𝑏 6𝑏 + 0.5 −4𝑏 𝑏 0

⋅ ⋅ 0 𝑏 −4𝑏 6𝑏 + 0.5 −4𝑏 𝑏

⋅ ⋅ ⋅ 0 𝑏 −4𝑏 5𝑏 + 0.5 −2𝑏

⋅ ⋅ ⋅ ⋅ 0 2𝑏 −4𝑏 2𝑏 + 0.5 + 𝑏𝑐

]

]

]

]

]

]

]

]

]

]

]

,

B =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑢
𝑘

1
− 0.5𝑢

𝑘−1

1
+ 3𝑏𝑢

𝑘+1

0

𝑢
𝑘

2
− 0.5𝑢

𝑘−1

2
− 𝑏𝑢
𝑘+1

0

𝑢
𝑛

3
− 0.5𝑢

𝑘−1

3

.

.

.

𝑢
𝑘

𝑁−3
− 0.5𝑢

𝑘−1

𝑁−3

𝑢
𝑘

𝑁−2
− 0.5𝑢

𝑘−1

𝑁−2

𝑢
𝑛

𝑁−1
− 0.5𝑢

𝑘−1

𝑁−1

(1 + 2𝑏) 𝑢
𝑘

𝑁
− (0.5 + 𝑏𝑐) 𝑢

𝑘−1

𝑁
.

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(32)
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Figure 4: The dropping impact responses of the critical component.

Since (31) is a linear system, having 𝑁 − 1 equations and
𝑁− 1 unknowns, and the coefficient matrixA is nonsingular
matrix, the linear system has a unique solution. Then, the
absolute displacements of each node (excepted 𝑖 = 0 node)
of the critical component can be obtained iteratively.

The displacement responses of the critical component
relative to the main component are given by

𝑌
2
(𝑥, 𝑡) = 𝑦

2
(𝑥, 𝑡) − 𝑦

1
(𝑡) . (33)

And the relative acceleration of the critical component is
expressed as

𝑌̈
2
(𝑥, 𝑡) = 𝑦̈

2
(𝑥, 𝑡) − 𝑦̈

1
(𝑡) , (34)

where 𝑦̈
2
(𝑥, 𝑡) is the absolute acceleration response of the

critical component. At last, the internal stress of the critical
component is derived from (19).

2.2. The Dynamic Models of Main Component. Considering
the dynamic effect of the critical component, the dropping
equation of motion of the main component is given by

𝑚
1
𝑦̈
1
+ 𝐹 + 𝐸𝐼

𝜕
3
𝑦
2
(𝑥, 𝑡)

𝜕𝑥
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=0

= 0 (35)

and the initial conditions can be defined as 𝑦
1
(0) = 0,

𝑦̇
1
(0) = √2𝑔𝐻. However, sometimes the mass of the critical

component is much less than the main component, and the
effect of the critical component on the main component can
be ignored. Then, (35) can be rewritten as

𝑚
1
𝑦̈
1
+ 𝐹 = 0. (36)

We know the numerical solutions of the second-order dif-
ferential equation by using the Runge-Kutta method that
has a good accuracy [18]. So (36) can be solved directly by

the Runge-Kutta method. But (35) only can be solved after
discretizing the effect formula by the FDM.The effect formula
is discretized as

𝐸𝐼

𝜕
3
𝑦
2
(𝑥, 𝑡)

𝜕𝑥
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=0

= 𝐸𝐼

𝑢
𝑘

3
− 2𝑢
𝑘

2
+ 2𝑢
𝑘

0
− 𝑢
𝑘

−1

2𝑙
3

, (37)

where 𝑢𝑘
−1

is not actual location on the cantilever beam. This
“fictitious” node can be defined by the “real” nodes near the
end of the cantilever beam as

𝑢
𝑘

−1
= −

𝑢
𝑘+1

1
− 2𝑢
𝑘

1
+ 𝑢
𝑘−1

1

𝐵

− (𝑢
𝑘

3
− 4𝑢
𝑘

2
+ 6𝑢
𝑘

1
− 4𝑢
𝑘

0
) ,

(38)

where 𝐵 = 𝐸𝐼𝜏2/(𝜌𝐴𝑙4). Equation (37) is rewritten by coming
equation (38), shown as

𝐸𝐼

𝜕
3
𝑦
2
(𝑥, 𝑡)

𝜕𝑥
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=0

= 𝐸𝐼

2𝑢
𝑘

3
− 6𝑢
𝑘

2
+ 4𝑢
𝑘

1
+ (𝑢
𝑘+1

1
− 2𝑢
𝑘

1
+ 𝑢
𝑘−1

1
) /𝐵

2𝑙
3

.

(39)

3. Numerical Example

In the present study, a numerical example is cited to illustrate
the procedure, and the effects of some parameters are inves-
tigated. To validate the method, a small electromechanical
product with the mass of the main component 𝑚

1
= 10 kg,

the mass of the concentrated tip mass 𝑚
2
= 0.02 kg, and

the characteristics of the critical component as follows, cross-
sectional radius 𝑟 = 0.003m, length 𝐿 = 0.1m, density 𝜌 =
7850 kg/m3, elastic modulus 𝐸 = 200GPa, and elastic limit
𝜎
𝑒
= 180MPa, is analyzed. The allowable stress of the critical
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Table 1: The extremum values of dropping impact responses.

Absolute displacement
(mm)

Relative acceleration
(mm)

Absolute displacement
(m/s2)

Relative acceleration
(m/s2)

Internal stress
(Mpa)

Extremum 41.03 0.41 −554.05 −17.06 80.76
Time(s) 0.0158 0.0157 0.0157 0.0150 0.0157
Location Free end Free end Free end Free end Joint end
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Figure 5: The dropping impact responses of the critical component by using two different methods.

component is 150Mpa, since the material safety coefficient
is defined as 1.2. And the resilience function of cushioning
material is 𝐹, 𝐹 = 𝑘

0
𝑦
1
+ 𝑒𝑦
3

1
, where 𝑘

0
= 100N/cm, 𝑒 =

72N/cm3 [19]. The whole packaging system drops from the
height𝐻 = 0.6m.

The dropping impact responses, such as the absolute and
relative displacements, the absolute and relative accelerations,

and the internal stress and their extremums, are obtained
from the coupled equations of (13), (17), (19), and (35), as
shown in Figure 4 and Table 1, respectively. From Figures
4(a), 4(b), and 4(c), we can see that the absolute displacement
and acceleration do not obviously change along the cantilever
beam. Figures 4(d) and 4(e) show that the relative displace-
ment and acceleration vary significantly. Maximums of the
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Figure 6: The dropping impact responses of the critical component with different values of concentrated tip mass.

displacement and acceleration appear at the free end of the
cantilever beam, while the maximum internal stress occurs
at the joint end.

Discussing the difference between responses obtained
by the FEM and the IFDM, the relative displacement and
acceleration of the free end and the internal stress of the
joint end of the cantilever beam are depicted in Figure 5.
Compared with responses obtained by the FEM, the relative
errors of the relative displacement and acceleration and the
internal stress are 7.32%, 5.22%, and 3.42%, respectively, and
maximums occur at the similar time.Therefore, the FEM and
the IFDM have good adaptability for solving these problems.

Considering the effect of the critical component on the
main component, Figure 6 shows the difference between the

relative displacement and acceleration of the free end and
the internal stress of the joint end with various values of
concentrated tip mass (0.01, 0.02, 0.03, and 0.04 kg). Clearly,
with the value of the concentrated tip mass increasing,
maximums of the relative displacement and acceleration and
the internal stress move up. In addition, maximums occur at
the similar time.

In order to investigate the effect of the frequency of main
component (defined by (36)), the packaging system with
the same initial conditions and characteristics, mentioned in
this part firstly, is considered. The nonlinear constant 𝑒 of
the cushioning material changes in a large range. Then, the
corresponding frequency can be solved by the variational
iteration method [20], as shown in Table 2. And the five
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Figure 7: The dropping impact responses of the critical component with different frequencies.

frequencies of the critical component can be obtained by (14),
as shown in Table 3.The variation of the relative displacement
and acceleration of the free end and the internal stress of the
joint endwith different frequencies is presented in Figure 7. It
can be seen that amplitudes of the relative displacement and
acceleration increase significantly, when the frequency of the
main component is closer to the first frequency. And when
the frequency is 26.91 s−1, the internal stress has exceeded the
allowable stress. Therefore, the cushioning material needs to
be redesigned.

4. Conclusion

A finite element method and a finite difference method for
the dropping impact analysis of the nonlinear packaging

Table 2: The vibration frequencies of the main component.

Nonlinear constant 𝑒 (N/cm2) 72 216 500 1000
Frequency (s−1) 14.32 18.55 22.72 26.91

Table 3: The five frequencies of the critical component.

Order 1 2 3 4 5
Frequency (s−1) 195.63 1967.7 6144.4 12689 21613

system with a cantilever beam type critical component with
concentrated tip mass have been studied in this paper, having
good accuracy needed for comparisons with each other.
Considering the dropping impact responses of the critical
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component, the absolute displacement and acceleration do
not obviously change along the cantilever beam. However,
maximums of the relative displacement and acceleration
appear at the free end of the cantilever beam, while the
maximum internal stress occurs at the joint end. Therefore
the structure of elastic critical component cannot be ignored.

The effects of the concentrated tipmass and the frequency
ofmain component on the response also have been discussed.
Increasing the value of the concentrated tip mass and/or the
frequency of the main component can lead to the remarkable
rise of amplitudes of the displacement, acceleration, and the
internal stress, especially when the frequency of the main
component is closer to the first frequency of the critical com-
ponent. Therefore, the selected cushioning material should
make the frequency of themain component far away from the
nature frequency of the critical component. The results may
lead to a thorough understanding of the damage mechanism
of packaged product and design of cushioning packaging.
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