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The scientific and accurate prediction for state of bearing is the key to ensure its safe operation. A multiple-kernel relevance vector
machine (MkRVM) including RBF kernel and polynomial kernel is proposed for state prediction of bearing in this study; the
proportions of RBF kernel and polynomial kernel are determined by a controlled parameter. As the selection of the parameters of
the kernel functions and the controlled parameter has a certain influence on the prediction results ofMkRVM, nonlinear decreasing
inertia weight PSO (NDIWPSO) is used to select its kernel parameters and controlled parameter.The RBF kernel RVMmodel with
NDIWPSO (NDIWPSO-RBFRVM) and the polynomial kernel RVM model with NDIWPSO (NDIWPSO-PolyRVM) are used,
respectively, to compare with the multiple-kernel RVM model with NDIWPSO (NDIWPSO-MkRVM). The experimental results
indicate that NDIWPSO-MkRVM is more suitable for the state prediction of bearing than NDIWPSO-RBFRVM and NDIWPSO-
PolyRVM.

1. Introduction

The scientific and accurate prediction for state of bearing is
the key to ensure its safe operation [1]. Artificial neural net-
works (ANNs) [2, 3] and support vector machine (SVM)
algorithm [4] have been used as efficient alternative tools
to solve the nonlinear prediction problems. Practicability of
artificial neural networks is limited due to the shortcomings
of overfitting and falling into local extremum easily existed in
ANNs. Support vector machine is a kind of machine learn-
ing method based on the statistical learning theory, which
has better generalization performance than artificial neural
networks, particularly under the condition of small training
samples [5, 6].

Relevance vector machine (RVM) is an intelligent learn-
ing technique based on sparse Bayesian framework, as the
number of relevance vectors in RVM is much smaller than
that of support vectors in SVM, which makes RVM have a
sparser representation compared with SVM [7]. Thus, RVM
has better generalization ability than SVM. In order to
improve the generalization ability of RVM, a multiple-kernel
relevance vector machine including RBF kernel and polyno-
mial kernel is proposed for state prediction of bearing in this

study; the proportions of RBF kernel and polynomial kernel
are determined by a controlled parameter. As the selection
of the parameters of the kernel functions and the controlled
parameter has a certain influence on the prediction results of
MkRVM, nonlinear decreasing inertia weight PSO is used to
select its kernel parameters and controlled parameter. Particle
swarm optimization is inspired by the social behavior of bird
flocking or fish schooling [8]. Compared with traditional
PSO, nonlinear decreasing inertiaweight PSOhas a nonlinear
decreasing inertia weight instead of fixed inertia weight. The
RBF kernel RVM model and the polynomial kernel RVM
model are used, respectively, to compare with the multiple-
kernel RVMmodel, and the kernel parameters of theRBFker-
nel RVM model and the polynomial kernel RVM model are
also selected by NDIWPSO. The experimental results indi-
cate that NDIWPSO-MkRVM is more suitable for the
state prediction of bearing than NDIWPSO-RBFRVM and
NDIWPSO-PolyRVM.

2. Multiple-Kernel Relevance Vector Machine

Let 𝑇 = {x𝑙, 𝑡𝑙}𝑁𝑙=1 be a set of the training data, where x𝑙
denotes the input vector and 𝑡𝑙 denotes the corresponding
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output target and the target 𝑡𝑙 includes the additive noise [9],
which can be expressed as follows:

𝑡𝑙 = 𝑦 (x𝑙,w) + 𝜀𝑙, (1)
where 𝜀𝑙 is assumed to be mean-zero Gaussian noise with
variance 𝜎2.

The regression function of relevance vector machine
which consists of a linear combination of the weighted kernel
functions can be described as follows:

𝑦 (x,w) =
𝑁

∑

𝑖=1

𝑤𝑖𝐾(x, x𝑖) + 𝑤0, (2)

where𝐾(x, x𝑖) is the kernel function, w = [𝑤1, 𝑤2, . . . , 𝑤𝑁] is
the weight vector, and 𝑤0 is the bias.

As different kernel functions will obtain different regres-
sion functions of RVM, which can determine the operation
performance of RVM, it is very important to choose a suitable
kernel function of relevance vector machine. Here, two
kinds of kernels including local kernel and global kernel are
employed to construct the regression function of relevance
vector machine. A typical local kernel is radial basis function
kernel (RBF); in this study, Gaussian kernel is used as radial
basis function kernel, which can be defined as follows:

𝐾RBF (x𝑖, x𝑗) = exp(−
󵄩󵄩󵄩󵄩󵄩
x𝑖 − x𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝛾2
) , (3)

where 𝛾 denotes the kernel parameter of the RBF kernel.
A typical global kernel is the polynomial kernel, which

can be defined as follows:

𝐾Poly (x𝑖, x𝑗) = (x𝑖 ⋅ x
𝑇

𝑗
+ 1)
𝑑

, (4)

where 𝑑 denotes the kernel parameter of the polynomial
kernel.

In order to improve the generalization ability of RVM, a
multiple-kernel relevance vector machine is constructed by
the local kernel function (RBF kernel𝐾RBF) and global kernel
function (polynomial kernel 𝐾Poly); the proportions of RBF
kernel and polynomial kernel are determined by the con-
trolled parameter 𝑢. Thus, the multiple-kernel function can
be expressed as follows:

𝐾mix(RBF,Poly) (x𝑖, x𝑗) = 𝑢𝐾RBF (x𝑖, x𝑗) + (1 − 𝑢)𝐾Poly (x𝑖, x𝑗) ,
(5)

where 𝑢 (0 ≤ 𝑢 ≤ 1) denotes the controlled parameter.
When 𝑢 = 1, relevance vectormachine only employs RBF

kernel function, and when 𝑢 = 0, relevance vector machine
only employs polynomial kernel function. It is obvious that
the multiple-kernel function integrates all characters of inde-
pendent kernel and has better data distribution performance.

3. State Prediction Method of Bearing
Based on Multiple-Kernel Relevance Vector
Machine with Nonlinear Decreasing
Inertia Weight PSO

State prediction process of bearing based on multiple-
kernel relevance vector machine with nonlinear decreasing

inertia weight PSO can be described in this section. The
experimental data are normalized to the range [0, 1] in order
to improve the generalization ability of the prediction model.
Assume that the normalized experimental data are 𝑎1, 𝑎2, . . . ,
𝑎𝑚, . . . , 𝑎𝑛, . . . , 𝑎𝑛+𝑘, among which 𝑎1, 𝑎2, . . . , 𝑎𝑚, . . . , 𝑎𝑛 are
used to establish the training sample sets, and 𝑎𝑛+1, . . . , 𝑎𝑛+𝑘
are used to test the predictionmodel.The training sample sets
can be described by the formula:

X =
[
[
[
[
[
[

[

𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑚

𝑎2 𝑎3 ⋅ ⋅ ⋅ 𝑎𝑚+1

.

.

.
.
.
. d

.

.

.

𝑎𝑛−𝑚 𝑎𝑛−𝑚+1 ⋅ ⋅ ⋅ 𝑎𝑛−1

]
]
]
]
]
]

]

,

Y =
[
[
[
[
[
[

[

𝑎𝑚+1

𝑎𝑚+2

.

.

.

𝑎𝑛

]
]
]
]
]
]

]

,

(6)

where 𝑚 denotes the embedding dimension, X denotes the
set of input vectors, and Y denotes the set of corresponding
outputs.

In this paper, we use nonlinear decreasing inertia weight
particle swarm optimization to select the kernel parameters
𝛾 and 𝑑 and controlled parameter 𝑢. In NDIWPSO, the
particle is composed of the kernel parameters 𝛾 and 𝑑 and
controlled parameter 𝑢; each parameter has its value range.
We perform the validation for each training sample by the
MkRVM models with the different particles and obtain the
corresponding validation error of each training sample.Mean
validation error of all training samples can be used to evaluate
the performance of the MkRVM models with the different
particles.Theprocess of the selection of the kernel parameters
𝛾 and 𝑑 and controlled parameter 𝑢 of MkRVM by NDIW-
PSO can be described as follows.

Step 1. Perform the setting of the parameters of NDIWPSO
and initialization of the particles.

Step 2. Evaluate the fitness of each particle. The mean
validation error of all the training samples is used to create
the fitness function, which is defined as follows:

𝑒 =
1

𝐺

𝐺

∑

𝑞=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦𝑞 − 𝑦𝑞

𝑦𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (7)

where 𝑦𝑞 is the actual value and 𝑦𝑞 is the validation value; 𝐺
is the number of the training samples in training sample sets.

Step 3. Update the global and personal best according to the
fitness evaluation results.
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Figure 1: The kurtosis data of bearing vibration signal.

Step 4. Theparticle flies toward a new position by calculating
the velocity of position change, and the velocity of each
particle is calculated by the following formula:

V𝑖𝑗 (ℎ + 1) = 𝜔 (ℎ) ⋅ V𝑖𝑗 (ℎ)

+ 𝑐1 ⋅ rand ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖𝑗 (ℎ) − 𝑝𝑖𝑗 (ℎ))

+ 𝑐2 ⋅ rand ⋅ (𝑔𝑏𝑒𝑠𝑡𝑗 (ℎ) − 𝑝𝑖𝑗 (ℎ)) ,

(8)

where ℎ denotes the iteration counter, V𝑖𝑗 is the velocity of
particle 𝑖 on the 𝑗th dimension, 𝑝𝑖𝑗 is the position of particle
𝑖 on the 𝑗th dimension, 𝑝𝑏𝑒𝑠𝑡𝑖𝑗 is the personal best (pbest)
position of particle 𝑖 on the 𝑗th dimension, 𝑔𝑏𝑒𝑠𝑡𝑗 is the
global best (gbest) position of the swarm, rand means the
random value in the range [0, 1], and the positive constants
𝑐1 and 𝑐2 are personal learning factor and social learning
factor, respectively. 𝜔 is the inertia weight, which is used to
balance the global exploration and local exploitation, 𝜔(ℎ) =
𝜔max−((𝜔max−𝜔min)/√𝐻 − 1)×√ℎ − 1 (𝜔max is themaximum

inertia weight, 𝜔min is the minimum inertia weight, and𝐻 is
the maximum iteration).

Step 5. Each particle moves to its next position according to
the following formula:

𝑝𝑖𝑗 (ℎ + 1) = 𝑝𝑖𝑗 (ℎ) + 𝛽 ⋅ V𝑖𝑗 (ℎ + 1) , (9)

where 𝛽 is constraint factor used to control the velocity
weight.

Step 6. The same procedures from Step 2 to Step 5 are
repeated until the maximum iteration is reached.

Then, the MkRVMmodel is trained with obtained kernel
parameters 𝛾 and 𝑑 and controlled parameter 𝑢. Finally, the
proposed NDIWPSO-MkRVMmodel is tested by the testing
data.
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Table 1: The comparison of the mean absolute percentage
errors among NDIWPSO-MkRVM, NDIWPSO-RBFRVM, and
NDIWPSO-PolyRVM.

Prediction model MAPE (%)

Case 1
NDIWPSO-MkRVM 11.32
NDIWPSO-RBFRVM 11.99
NDIWPSO-PolyRVM 12.08

Case 2
NDIWPSO-MkRVM 6.44
NDIWPSO-RBFRVM 6.63
NDIWPSO-PolyRVM 7.41

Case 3
NDIWPSO-MkRVM 12.79
NDIWPSO-RBFRVM 13.93
NDIWPSO-PolyRVM 12.96

4. Experimental Analysis

Kurtosis of bearing vibration signal can excellently reflect
the state of bearing; that is, kurtosis prediction of bearing
vibration signal can excellently reflect the future state of
bearing. In this paper, the kurtosis data can be calculated and
obtained from bearing vibration signal in “Bearing Data Set”
[10]. As shown in Figure 1, the kurtosis data of bearing vibra-
tion signal of three cases are given, and 100 numbers of kurto-
sis data of bearing vibration signal are employed in each case.
In each case, numbers 1∼90 of kurtosis data of bearing vibra-
tion signal are used as the training data, and numbers 91∼100
of kurtosis data of bearing vibration signal are used as the
testing data.

The experimental data are normalized to the range [0, 1]
in order to improve the generalization ability of the prediction
model. And we use nonlinear decreasing inertia weight
particle swarm optimization to select the kernel parameters 𝛾
and 𝑑 and controlled parameter 𝑢. In NDIWPSO, 𝜔max is set
to 0.9, 𝜔min is set to 0.4, 𝛽 is set to 1/1.3, and the positive
constants 𝑐1 and 𝑐2 are set to 2. Here, the value range of 𝛾
is [0.5, 5], the value range of 𝑑 is [0, 5], and the value range
of 𝑢 is [0, 1]. We set the embedding dimension 𝑚 to 5 to
establish the training sample sets. The RBF kernel RVM
model and the polynomial kernel RVM model are used,
respectively, to compare with the multiple-kernel RVM
model, and the kernel parameters of the RBF kernel RVM
model and the polynomial kernel RVM model are also
selected by NDIWPSO.

In case 1, Figure 2 gives the comparison of the prediction
results for kurtosis of bearing vibration signal among the
multiple-kernel RVM model with NDIWPSO (NDIWPSO-
MkRVM), the RBF kernel RVM model with NDIWPSO
(NDIWPSO-RBFRVM), and the polynomial kernel RVM
modelwithNDIWPSO (NDIWPSO-PolyRVM); andFigure 3
gives the comparison of the absolute percentage predic-
tion errors for kurtosis of bearing vibration signal among
NDIWPSO-MkRVM,NDIWPSO-RBFRVM, andNDIWPSO-
PolyRVM. As shown in Table 1, themean absolute percentage
error (MAPE) of NDIWPSO-MkRVM in case 1 is 11.32%, the
MAPE of NDIWPSO-RBFRVM in case 1 is 11.99%, and the
MAPE of NDIWPSO-PolyRVM in case 1 is 12.08%. It can
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Figure 2: The comparison of the prediction results for kurtosis of
bearing vibration signal among NDIWPSO-MkRVM, NDIWPSO-
RBFRVM and NDIWPSO-PolyRVM in case 1.
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Figure 3: The comparison of the absolute percentage prediction
errors for kurtosis of bearing vibration signal among NDIWPSO-
MkRVM, NDIWPSO-RBFRVM and NDIWPSO-PolyRVM in case
1.

be seen that NDIWPSO-MkRVM has smaller MAPE than
NDIWPSO-RBFRVMandNDIWPSO-PolyRVM in this case.

In case 2, Figure 4 gives the comparison of the pre-
diction results for kurtosis of bearing vibration signal
among NDIWPSO-MkRVM, NDIWPSO-RBFRVM, and
NDIWPSO-PolyRVM; and Figure 5 gives the comparison
of the absolute percentage prediction errors for kurtosis
of bearing vibration signal among NDIWPSO-MkRVM,
NDIWPSO-RBFRVM, and NDIWPSO-PolyRVM. As shown
in Table 1, the MAPE of NDIWPSO-MkRVM in case 2 is
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Figure 4: The comparison of the prediction results for kurtosis of
bearing vibration signal among NDIWPSO-MkRVM, NDIWPSO-
RBFRVM and NDIWPSO-PolyRVM in case 2.
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Figure 5: The comparison of the absolute percentage prediction
errors for kurtosis of bearing vibration signal among NDIWPSO-
MkRVM, NDIWPSO-RBFRVM and NDIWPSO-PolyRVM in case
2.

6.44%, theMAPEofNDIWPSO-RBFRVMin case 2 is 6.63%,
and the MAPE of NDIWPSO-PolyRVM in case 2 is 7.41%.
It can be seen that the MAPE of NDIWPSO-RBFRVM is
near to that of NDIWPSO-MkRVM in case 2; however, the
MAPE of NDIWPSO-PolyRVM is obviously higher than that
of NDIWPSO-MkRVM in case 2.

In case 3, Figure 6 gives the comparison of the predic-
tion results for kurtosis of bearing vibration signal among
NDIWPSO-MkRVM,NDIWPSO-RBFRVM, andNDIWPSO-
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Figure 6: The comparison of the prediction results for kurtosis of
bearing vibration signal among NDIWPSO-MkRVM, NDIWPSO-
RBFRVM and NDIWPSO-PolyRVM in case 3.
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Figure 7: The comparison of the absolute percentage prediction
errors for kurtosis of bearing vibration signal among NDIWPSO-
MkRVM, NDIWPSO-RBFRVM and NDIWPSO-PolyRVM in case
3.

PolyRVM; and Figure 7 gives the comparison of the absolute
percentage prediction errors for kurtosis of bearing vibration
signal among NDIWPSO-MkRVM, NDIWPSO-RBFRVM,
and NDIWPSO-PolyRVM. As shown in Table 1, the MAPE
of NDIWPSO-MkRVM in case 3 is 12.79%, the MAPE of
NDIWPSO-RBFRVM in case 3 is 13.93%, and the MAPE of
NDIWPSO-PolyRVM in case 3 is 12.96%. It can be seen that
the MAPE of NDIWPSO-PolyRVM is near to that of
NDIWPSO-MkRVM in case 3; however, the MAPE of
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NDIWPSO-RBFRVM is obviously higher than that of
NDIWPSO-MkRVM in case 3.

The experimental results show that the MAPE of
NDIWPSO-RBFRVM is near to that of NDIWPSO-MkRVM
in case 2, but theMAPEofNDIWPSO-RBFRVMis obviously
higher than that of NDIWPSO-MkRVM in case 3; in addi-
tion, the MAPE of NDIWPSO-PolyRVM is near to that of
NDIWPSO-MkRVM in case 3, but theMAPEofNDIWPSO-
PolyRVM is obviously higher than that of NDIWPSO-
MkRVM in case 2. It is indicated that kurtosis prediction
performance of bearing vibration signal of NDIWPSO-
RBFRVM and NDIWPSO-PolyRVM is less stable than that
of NDIWPSO-MkRVM. Thus, NDIWPSO-MkRVM is more
suitable for the state prediction of bearing than NDIWPSO-
RBFRVM and NDIWPSO-PolyRVM.

5. Conclusion

In this paper, multiple-kernel relevance vector machine with
nonlinear decreasing inertia weight PSO is proposed for state
prediction of bearing.Themultiple-kernel function including
two kinds of kernels, RBF kernel and polynomial kernel, is
employed to improve the generalization ability of RVM, and
we use nonlinear decreasing inertia weight PSO to select
the kernel parameters and controlled parameter of MkRVM.
The experimental results show that NDIWPSO-MkRVM
has more stable kurtosis prediction performance of bearing
vibration signal than NDIWPSO-RBFRVM and NDIWPSO-
PolyRVM. Thus, NDIWPSO-MkRVM is more suitable
for the state prediction of bearing thanNDIWPSO-RBFRVM
and NDIWPSO-PolyRVM.
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