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Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults.
There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not
as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on
the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-
frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the
startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG), the time-frequency Morlet
scalogram (TFMS), multiple signal classification (MUSIC), and fast Fourier transform (FFT). The analyzed vibration signals are
one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting
faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology
is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors
that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current
signal quality.

1. Introduction

Induction motors are one of the most used machines in
the world. The applications are varied and the advantages
of their use are numerous. About half of the electricity
consumed by the industry in the U.S. is used by induction
motors; in fact, 89% of the engines in manufacturing are
electric motors [1]. They are also present in various modes
of transportation. As a result, they are basic elements in the
modern industrial world. From this arises the need for quick

and accurate fault diagnosis for anticipating work stoppage
in the processes where these machines are used. Failures
in induction motors can occur in any of their three major
components: rotor, stator, and bearings [2]. Actually, 38% of
failures occur in the stator, 10% are located in the rotor, and
around 40% represent mechanical failures including bearing
damage, misalignment, eccentricity, and shaft bending [3].
The most popular techniques for fault detection in induc-
tion motors are the motor current signature analysis (MCSA)
and the vibration analysis. MCSA allows noninvasive fault



diagnosis online [4]. This technique uses a Hall-effect sensor
to measure signals of stator current and a data acquisition
system to acquire the signal [5]. This current signal is
then analyzed to determine the signature and characteristic
features of components associated with different faults, which
can be magnified during the startup transient because the
motor operates in stressed conditions [6]. Vibration analysis
techniques, on the other hand, are used to make the diagnosis
of faults in induction motors using vibration signals from
three spatial axes [7]; this technique is particularly suited for
determining mechanical faults. The measurement of vibra-
tions is made using accelerometers as primary sensors. The
vibration signals are then registered with the data acquisition
system [5]. Vibrations in an induction motor are affected by
variations in the magnetomotive forces caused by faults in
the machine or faults that cause abnormal motor rotation.
This technique is noninvasive and does a very feasible job at
finding the location of faults [8]. These two techniques can
be used both during the startup transient and steady-state
operating regimes. Depending on which operating regime is
used for monitoring the motor condition, there are certain
characteristics associated with different fault conditions.

The set of techniques for fault diagnosis of induction
motors, by analyzing the startup transient vibration signals, is
not as widely used compared with those that analyze current
signals. Vibration analysis and MCSA give a fault diagnosis
focused on the location of spectral components associated
with faults, using the Fourier transform which translates
a signal from the time domain to the frequency domain,
displaying the entire frequency content of a signal, but does
not allow observing of the evolution of the signal frequency
content over time. This is the reason for extending the
Fourier transform capabilities such as linear time-frequency
decompositions (short-time Fourier transform and wavelet
transform), quadratic time-frequency decompositions, and
distributions of time-frequency energy, which allow the evo-
lution of frequency content throughout the duration of the
signal in time. This is very useful for nonstationary signals,
such as those obtained from the motor startup transient,
because signatures associated with faults evolve over time and
their frequency content does not remain constant but varies
along the startup transient. To locate the signatures associated
with motor faults, different tools have been used on MCSA
for time-frequency decomposition, allowing tracing of the
evolution of such frequencies in time. Examples of these
decompositions are the short-time Fourier transform [9-
12], discrete wavelet transform [12-15], continuous wavelet
transform [16-19], the Hilbert transform [20, 21], the Hilbert-
Huang Transform [20, 21], the Wigner-Ville distribution [22-
27], the Choi-Williams distribution [26-28], and multiple
signal classification (MUSIC) [5]. Some of these tools work
together with artificial intelligence classifiers for decision-
making about the components or signatures that are present
in the signals for identifying faults and their severity, such as
artificial neural networks (ANN), fuzzy logic, fuzzy neural
networks, and genetic algorithms [6, 10, 14, 16, 17, 24, 29].
Garcia-Perez et al. [5] presented a study for the detection of
multiple faults in an induction motor by applying MUSIC

Shock and Vibration

to a current signal during the steady-state regime. After-
wards, Garcia-Perez et al. [30] extended the fault detection
method of multiple faults in an induction motor with MUSIC
including sound signals along with vibration signals, also
during the steady-state regime. Rodriguez-Donate et al. [31]
developed a method for the identification of multiple faults in
an induction motor directly fed to the power grid, based on
the discrete wavelet transform (DWT) applied to the startup
vibration transient. Pilloni et al. [19] presented a comparative
study of different methodologies including the fast Fourier
transform (FFT), Hilbert transform (HT), DW'T, continuous
wavelet transform (CW'T), and the Wigner-Ville distribution
(WVD) applied to the stator current signal in induction
motors for fault detection in both steady-state and transient
regimes. Garcia-Perez et al. [32] presented an experimental
study of the time-frequency evolution characteristics during
the startup transient of the current signal in an induction
motor with a partially broken rotor bar when fed directly to
the power grid applying MUSIC. Most of these techniques
have been used to analyze stator current signals. In the case
of vibration signals, there is not much research done to
apply time-frequency decomposition techniques for analysis,
where mostly the FFT [33] and the Zhao-Atlas-Marks (ZAM)
distribution [34] for time-frequency decomposition have
been used. Consequently, there is a need to investigate
the suitability of time-frequency decomposition techniques
to identify motor faults during the startup transient using
vibration signals, applying a high-resolution spectral analysis
as the MUSIC method.

The contribution of this work is a comparative study
of different time-frequency analysis methodologies that can
be used for detecting faults in induction motors analyzing
vibration signals during the startup transient. The proposed
methodologies are the time-frequency distribution of Gabor
(TFDG), the time-frequency Morlet scalogram (TFMS),
MUSIC, and FFT. The choice of TFDG and TEMS is based
on their ability to reduce interferences, also known as cross-
terms between parallel evolving harmonics. MUSIC is the
technique used in MCSA that has provided the best results,
due to its very good frequency resolution. FFT is used as refer-
ence for comparison purposes with the other methodologies.
The analyzed vibration signals in this paper are associated
with the following motor faults: one broken rotor bar, two
broken bars, unbalance, and bearing defects.

2. Description of the Treated Faults

Three common faults in induction motors are treated in this
paper: unbalance condition (UNB), bearing faults (BDF), and
broken rotor bars (BRB).

2.1. Unbalance (UNB). Mechanical balance in an induction
motor involves the entire rotor structure which is made up
of a multitude of parts including shaft, rotor laminations,
end heads, rotor bars, end connectors, retaining rings, and
fans. These many items must be designed and manufactured
for an end assembly that achieves stable precision balance.
When a motor is properly balanced and aligned, the fre-
quency amplitude associated with the unbalance fault barely
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changes and remains bounded to a certain level. However,
a mechanical unbalance in the induction motor involves a
small radial vibration of the stator structure. The vibration
level takes its maximum when the rotational speed equals the
system natural frequency defined by w, = +/k/m, where k
is the stiffness factor and 1 is the unbalance mass [35, 36].
In addition, this vibratory signal oscillates at the rotational
frequency, the vibration level is increased as well as the
amplitude of the rotation frequency, and the same happens
with its harmonics [37]. The analysis of vibration signals can
provide a quick and easy way to extract information that
permits the diagnosis about the presence of unbalance in
an induction motor. The rated speed of the motor, normally
expressed in revolutions per minute, is provided by the
manufacturer. In asynchronous motors, this speed is slightly
below the synchronous speed, n,, that is related to the
electrical supply frequency f; as follows:

120
n, = Ts’ )
where P is the number of poles of the motor and the constant

“120” is used to express the motor synchronous speed 7, in
revolutions-per-minute units.

2.2. Bearing Faults (BDF). Some authors [38] give a review
of the causes and expected frequencies of vibration due to
rolling element bearings. A variety of frequencies associated
with the rotation of the motor can be calculated from the
geometry of the bearing, such as the inner and outer race
elements pass frequencies, the frequency of rotation for the
cage, and rolling element spin frequency. A defect on the
outer race causes an impulse each time rolling elements
contact the defect. The rotor speed (f,) is the frequency at
which the inner raceway rotates, which must be the frequency
of the shaft. The physical phenomenon of the vibration
generated in rolling elements such as bearings under the
healthy condition can be explained as a combination of
different sources such as modulation due to nonuniform
loading, flexural bearing modes, and machinery-induced
vibrations and noise. The bearing load is assumed to be an
unbalanced force. Therefore, the radial load moves around
the circumference of the outer ring as the shaft rotates. The
single radial load transforms to a distributed load because
the inner ring is in contact with more than one ball during
the rotation. However, for the bearing fault condition when a
defect in one surface of a bearing strikes a mating surface, an
impulse is produced which excites resonances in the system.
At time t = 0, the defect is in contact with one of the rolling
elements and lies at the center of the load zone on the line
of action of the applied radial load. The mechanical system
is symmetrical about the line of the applied load. As the
bearing rotates, impacts occur at the ball-pass outer raceway

frequency (fgpor) given by [39]
Jeror = %fr(l_g_iwse)’ )

where 0 is the contact angle between the bearing surfaces, D
is the cage diameter of the bearing and is measured from a ball

center to the opposite ball center, Dy is the ball diameter, and
N is the number of balls in the bearing.

2.3. Broken Rotor Bars (BRB). In the case of rotor bars, it
is known that symmetrical currents in a symmetrical rotor
of an induction motor induce a resultant forward rotating
magnetic field at synchronous speed with healthy rotor bars.
The broken rotor bars result in rotor asymmetries; then
there results a backward rotating field at slip frequency sf;
with respect to the rotor. Interactions of the rotor backward
rotating field with the stator field induce oscillating torque
and oscillating velocity, and the frequency of this oscillation
is 2sf,, where this oscillation acts as a frequency modulation
on the rotation frequency and a fault frequency ( fzz) appears
around f, in the vibration spectrum [40]:

fBB = kfr —ZT’leS, (3)

where f; is the supply frequency, s is the per-unit motor slip,
f, is the rotor speed, and k and n are positive integers. The slip
s is defined as the relative mechanical speed of the motor #,,
with respect to the motor synchronous speed n, as follows:

- (4)

3. Theoretical Background

3.1. Music Algorithm. The subspace methods are known as
high-resolution methods that detect frequencies with low
signal-to-noise ratio. The subspace methods assume that the
discrete-time signal x[n] can be represented by m complex
sinusoids in noise e[n] [5] as

m
x[n]:ZB_ieJZ”f"”+e[n], n=0,1,2,...,N-1 (5
=1

with
B; = |Bi| &%, (6)

where N is the number of sample data, B; is the complex
amplitude of the ith complex sinusoid, f; is its frequency, and
e[n] is a sequence of white noise with zero mean and a vari-
ance o°. This method uses the eigenvector decomposition of
x[n] to obtain two orthogonal subspaces. The autocorrelation
matrix R of the noisy signal x[#] is the sum of signal and noise
autocorrelation matrices (R, and R,,, resp.):

P

R=R.+R, = B[ e(f)e" (f)+o;L. ()
i=1

where P is the number of frequencies and the exponent H
denotes the Hermitian transpose. I is the identity matrix, and
e’ (f,) is the signal vector given by

o (f,) _ [1 e 2 L. e—j2nf,-(N—1)] . (8)



From the orthogonality condition of both subspaces, the
MUSIC pseudospectrum Q is given by

S S
|e (f)HVm+1 '2

where V, ., is the noise eigenvector. This expression exhibits
the peaks that are exactly at frequencies of principal sinu-
soidal components, where e( f)V,,,, = 0.

QMUSIC (f) — (9)

3.2. Time-Frequency Distribution of Gabor. An extended
version of the STFT (short-time Fourier transform) is the
time-frequency distribution of Gabor (TFDG), which uses
a Gaussian window type and a FT (Fourier transform) to
achieve the time-frequency analysis [41]. The TFDG has a
tradeoft drawback as the STFT, caused by the fixed width of
the window, but it has better resolution in frequency than the
STFT.
The TFDG is described by the following equation:

e gmianfr (1) dr. (10)

Get.)= [

00

As in the continuous case, the discrete TFDG is identical
to discrete STFT, with the particular characteristic of the
Gaussian window. The discrete TFDG can expand as a linear
combination of Gabor coefficients and basic functions [42,
43]. For a finite set of data x[n], the Gabor expansion is
obtained from

Mz

N
x[n] = Zam,kg (n-mN) /™", (11)
k=0

0

3
I

where the array a,, is periodic in k and with period K. The
sequence g(r) is known as the synthesis window. The array of
Gabor coeflicients a,, ;. can be found via the TFDG:

N-1
Qe = Z x [n)w" (n—mN) e 7K (12)
n=0

where the sequence w(n) is the analysis window. The Zak
transform is used to obtain the Gabor coefficients. The
discrete Zak transform of a periodized window is defined as
one-dimensional discrete Fourier transform of the sequence
W(n+mN):

N-1
Z =Y W(n-mN)e i, (13)

m=0

where n and [ are adjustment parameters, M is the period, and
N is the sample length.

3.3. Morlet Scalogram. Since the continuous wavelet trans-
form behaves like an orthonormal basis decomposition, it can
be shown that it preserves energy:

” T, (t, a5 \P)|2dtd—‘j =E,, (14)
00 a
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where E, is the energy of x. This leads us to define the
scalogram of x as the squared modulus of the continuous
wavelet transform. It is an energy distribution of the signal in
the time-scale plane, associated with the measure dt(da/a®).

As for the wavelet transform, time and frequency res-
olutions of the scalogram are related via the Heisenberg-
Gabor principle: time and frequency resolutions depend on
the considered frequency [44].

The frequency resolution is clearly a function of the
frequency as it increases with w. The interference terms of
the scalogram are restricted to those regions of the time-
frequency plane where the corresponding autoscalograms
(signal terms) overlap. Hence, if two signal components are
sufficiently far apart in the time-frequency plane, their cross-
scalogram is essentially zero.

The Morlet wavelet is the most popular complex wavelet
used in practice, whose mother wavelet is defined as

1 jw, —w} -t
1//(t)=4—\/ﬁ(ej of _ ¢ O/Z)et/z, (15)

where w, is the central frequency of the mother wavelet. Note
2
that the term e /2 is used for correcting the nonzero mean
of the complex sinusoid, and it can be negligible when w, > 5.
Therefore, in some research the mother wavelet definition of
the Morlet wavelet is given by
41 elt —t2/2’

Y = gmee (16)

where the central frequency w, > 5. The Morlet wavelet has
a form very similar to the Gabor transform. The important
difference is that the window function is also scaled by
the scaling parameter, while the size of window in Gabor
transform is fixed [45].

4. Validation of the Proposed Techniques

To validate the proposed methodology a synthetic signal is
generated as stated in (17) with the aim to emulate some
vibration harmonics, present in real signals of an electric
motor. The synthetic signal has three pure sinusoidal signals
with constant frequency at 80, 670, and 700 Hz, plus a
sinusoidal signal with variable frequency ranging from 0 Hz
to 56.7 Hz from 0 to 2s and then remaining with constant
frequency. Normally distributed random noise is also added
to the signal. The constant frequency components located at
670 and 700 Hz are used to evaluate the method performance
to discriminate close components. The sinusoid with variable
frequency emulates a startup transient reaching the steady
state at 56.7 Hz, which is closely located to a constant
frequency component at 80 Hz. Finally, Gaussian noise (r;)
is added to evaluate the behavior of the treated method to low
signal-to-noise ratio signals. The synthetic signal is quantized
at a sampling frequency of 1.5 kHz, comprising 4096 samples
for a total running time of 2.73 s. Also the synthetic signal has
a signal-to-noise ratio equal to SNR = —3.6 dB:

x (t) = sin (w;t) + sin (w,t) + sin (wst) + sin (w,t) W)
17

+1g, for h=1,2,3,4,

wy, = 27f),
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where x(t) is the synthetic signal, f, = 80, f, = 670, f5 = 700,
and

56.7
2y 0<t<2

fa=q 2 18)
56.7 2<t.

Figure1 shows the results of the validation process for
the synthetic signal in the time domain and the time-
frequency decomposition obtained with the treated methods.
In Figure 1(a) the time-domain synthetic signal is depicted.
The true (theoretical) time-frequency decomposition is
shown in Figure 1(b). The time-frequency decompositions
of the treated methods are depicted in Figure 1(c) for the
STFT, Figure 1(d) for the TFDG, Figure 1(e) for the TFMS,
and Figure 1(f) for MUSIC.

As it can be seen from Figure 1(c), the behavior of the
STFT is not a good method for time-frequency decom-
position when the signal-to-noise ratio is low; it is also
very difficult to distinguish the two close frequencies at
670 and 700 Hz, whereas the variable-frequency sinusoid is
barely visible and at the steady state it is indistinguishable
from the 80 Hz spectral component. On the other hand, the
other proposed methods are able to distinguish the spectral
components from the background noise. The three methods
clearly detect the time evolution of the variable-frequency
sinusoid and the 80 Hz component is also clearly visible. Yet,
the TFDG and MUSIC methods detect the close spectral
componentslocated at 670 and 700 Hz, but the TFMS method
is unable to give a clear result in this region, and MUSIC
is able to show the three frequencies without any noise in
its spectrum. Finally, it is concluded that MUSIC is the best
time-frequency decomposition from the four tested methods
where the obtained spectrum is less susceptible to low signal-
to-noise ratio.

5. Experimental Setup

The test bench used for testing the motors with different types
of faults and the data acquisition system used to capture the
signals is shown in Figure 2. Several squirrel-cage induction
motors, model WEG 00136APE48T, of 1hp (745.7 W) are
used for testing the treated healthy and faulty conditions
on the motor. The motors have two poles, 28 bars, they
are fed with a voltage of 220 Vac at 60 Hz, and the applied
load is a conventional alternator. The vibration signals are
acquired using a microelectromechanical-systems-based tri-
axial accelerometer (model LIS3L02AS4) from STMicroelec-
tronics. A 12-bit four-channel serial-output analog-to-digital
converter (ADS7841) is used for data acquisition (DAS). This
data acquisition system uses a sampling frequency f, of
1.5kHz, and 4096 samples are obtained during the startup
transient. Figures 2(b) and 2(c) present a frontal and lateral
view of the induction motor, respectively, indicating the
position of the accelerometer and the orientation of its axes.

5.1. Motor Faults. The UNB condition is present when the
induction motor mechanical load is not uniformly dis-
tributed, taking the center of mass out of the motor shaft.

Figure 3 shows a pulley with an off-centered mass used for
generating the UNB condition on the induction motor. The
signature of UNB in a vibration signal normally has the
form of increased amplitude along the rotor frequency, being
located in this case at 56.7 Hz.

To carry out the faulty bearing test, the bearing is
artificially damaged by drilling a hole with 1.191mm of
diameter on its outer race using a tungsten drill bit. Figure 4
shows the artificially damaged bearing model 6203-2ZNR
used in this experimentation. The vibration characteristic-
defect frequency of the rolling element bearing outer race is
calculated by using (2). The tested induction motor has a rotor
frequency f, = 56.7Hz, and a test bearing having eight
balls of 6.5 mm diameter and a cage diameter of the bearing
of 28 mm with contact angle & = 0; thus, the ball-pass outer
raceway frequency defect ( fgporp) is found to be at 174.1 Hz.

As aforementioned, the BRB-fault-specific frequencies
depend on the speed oscillation with frequency 2sfs. The
broken bar condition is produced artificially by drilling
one hole with 7938 mm of diameter without harming the
rotor shaft. Figure 5 depicts the utilized rotor with one BRB.
The motor is running at 3402 rpm in a 60 Hz system. The
harmonics, specific to the BRB fault, are obtained by first
incorporating the actual motor speed data values into (4) to
find the slip value (s = 0.055) which can be used in (3) to
obtain the harmonic frequencies associated with the BRB.

5.2. Methodology. Figure 6 depicts a block diagram of the
proposed methodology. First, the test bench is set with the
induction motor at different conditions: healthy, one and two
broken rotor bars, unbalanced pulley, and bearing fault in
the outer race. Then, the data acquisition process is started
to acquire the startup transient of the vibrations through
the triaxial accelerometer. During the startup transient, 4096
samples are acquired at 1.5kHz for an acquisition time of
2.73 s. After the acquisition process of the startup transient is
completed, the acquired vibration signals are processed and
analyzed. At this stage the TFDG, TEMS, and MUSIC time-
frequency decomposition methodologies are applied and
compared to the STFT. Finally, from the results of the time-
frequency decomposition spectrograms a motor condition is
determined. Also, a qualitative and quantitative evaluation of
the distributions used to assess their performance is made,
compared to the STFT.

6. Results and Discussion

This section provides the results obtained after analyzing
the vibration signals with the time-frequency decomposition
techniques, TFDG, TEMS, and MUSIC, including a com-
parison with the STFT. These vibration signals are captured
from the startup transients of the motors under the five
different conditions, that is, healthy, one broken rotor bar,
two broken rotor bars, unbalance, and bearing defects. The
best results are obtained from the vibration signal in the z-
axis, A, and this is because vibrations in an induction motor
are typically radial vibrations (vertical or A, axis) due to the
radial forces acting on the stator and the rotor associated
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FIGURE 1: Validation of the proposed time-frequency decomposition methods. (a) Synthetic signal in the time domain. (b) Theoretical time-
frequency decomposition of the synthetic signal. (c) STFT. (d) TEDG. (e) TEMS. (f) MUSIC.
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Mechanical
load

FIGURE 2: Test bench used for testing motors. (a) General view. (b) Frontal view of the motor showing the orientation of the accelerometer
axes. (c) Lateral view of the motor showing the orientation of the accelerometer axes.

FIGURE 4: Outer race damaged bearing.

FIGURE 5: One broken rotor bar.
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A A, A, BDF

Vibration signals
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Vibration data

| TFDG | | TEMS | |MUSIC|

Motor condition

FIGURE 6: Block diagram of the proposed methodology.

with the magnetic fluxes entering or leaving the iron surfaces
in the induction motor, and the presence of spectral flux
components produced by the current density distributions,
stator and rotor slotting, and also the magnetic saturation that
introduces additional undesired components in the radial
forces [7]. The results are provided in four cases of study and
a qualitative analysis about the motor operation condition is
given.

Case of Study: Healthy. Figure 7 presents the STFT, TFDG,
TFMS, and MUSIC time-frequency decomposition of the
A, signal for the healthy case. For this case of study, the
frequency band between 400 Hz and 700 Hz has some barely
perceptible variations associated with preexistent eccentric-
ities in the motor, which are only perceptible after the
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FIGURE 7: Time-frequency decomposition spectrograms for a healthy motor. (a) STFT. (b) TEDG. (c) TEMS. (d) MUSIC.

startup transient when the steady-state regime is reached.
There are no other significant frequency components in
the spectrograms for the healthy case of study, and these
spectrograms become the reference for comparing the faulty
conditions on the motor.

Case of Study: Broken Rotor Bars. As previously mentioned,
the fault of broken rotor bars can be detected by observing
the frequency evolution in the spectrogram. From (3), and
the obtained spectrograms, it is observed for k = 11
and n = 1 that there is a harmonic (6171Hz) of the
BRB frequency fault close to the 640 Hz frequency showed
in the healthy case spectrograms. Figure 8(a) shows the
STFT spectrogram, and there is a significant frequency
bandwidth around 620-655 Hz, but the harmonic (6171 Hz)
of the BRB frequency fault is not clearly detected. Figure 8(b)

presents the TFDG spectrogram, and the significant fre-
quency is around 640 Hz, so the harmonic is not detected.
Figure 8(c) displays the TFMS spectrogram, and this is the
worst method because the significant frequency bandwidth is
located around 610-690 Hz, so the BRB frequency fault is not
detected. Figure 8(a) shows the MUSIC spectrogram where
the harmonic (6171 Hz) of the BRB frequency fault is clearly
detected when the startup-regime is ending and the steady
state starts (remarked in white).

Figure 9 shows the STFT, TFDG, TEMS, and MUSIC
time-frequency decomposition spectrograms for the two-
broken-rotor-bar case. For this case of study, the BRB fre-
quency fault when k = 2 and n = 4 (87 Hz) and the other
harmonic k = 5 and n = 3 (263.7 Hz) are present in most of
the obtained spectrograms (remarked in white). Figure 9(a)
shows the STFT spectrogram; however, the BRB frequency
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FIGURE 8: Time-frequency decomposition spectrograms for one broken rotor bar. (a) STFT. (b) TFDG. (c) TEMS. (d) MUSIC.

fault and the harmonics in 87 Hz and 263.7 Hz are not clearly
observed as in the other methods. Figure 9(b) displays the
TFDG spectrograms, but in this method, both frequencies
are better observed with less noise interference, and these
frequencies show better resolution as STFT. Figure 9(c) shows
the TEMS spectrogram, where just the BRB frequency fault
is slightly observed during the steady state start. Figure 9(d)
presents the MUSIC spectrogram, and this method provides
the best viewing for the studied case with the BRB frequency
fault and its harmonics (87 Hz and 263.7Hz) during the
startup end and steady starts. But also the harmonic in
6171Hz is slightly detected during the beginning of the
steady-state regime.

Case of Study: Unbalance. Figure 10 shows the STFT, TFDG,
TEMS, and MUSIC analysis for the unbalanced case. In this

case the motor speed in revolutions per minute corresponds
to a frequency component located at f, = 56.7 Hz.

As seen from Figure 10, there is a frequency component
around 56.7 Hz which is clearly defined. This frequency com-
ponent is associated with the rotor speed and its increased
value points towards the presence of unbalance in the
operating condition. Notice that in the healthy case there are
no significant frequency components at 56.7 Hz in the time-
frequency spectrograms, demonstrating the presence of this
fault. For all the analysis methods: STFT, TFDG, TEMS, and
MUSIC, the associated frequency with this fault is clearly
visible (remarked in white). This fault also contributes to the
formation of peaks in the frequency band associated with the
eccentricity of the motor, but what makes the identification
possible is an increase in the amplitude of the spectral
component that is associated with the rotation of the rotor,
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FIGURE 9: Time-frequency decomposition spectrograms for two broken rotor bars. (a) STFT. (b) TEDG. (c) TEMS. (d) MUSIC.

and MUSIC provides the best visualization of the fault-related
frequency component.

Case of Study: Bearing Defects. Figure 11 depicts the STFT,
TFDG, TEMS, and MUSIC time-frequency decomposition
spectrograms for the bearing defects case. As previously
mentioned, a defect on the outer race causes an impulse
each time a rolling element contacts the defect. Thus, the
related frequency to this fault is associated with the rotation
of the shaft, and the fault-related frequency of the ball-
pass outer raceway (fgpor) is located at 174.1 Hz. MUSIC
is the only method able to detect this frequency in the 3rd
harmonic (522 Hz) at the ending of the startup transient and
the beginning of the steady-state regime (remarked in white).

In order to quantitatively evaluate the efficiency of the
different spectral estimation methods, a detectability compar-
ison in decibels is presented. The detectability is calculated
as the average in the amplitude ratio between the peak

amplitude for the healthy and faulty conditions of the spectral
frequencies that are present in the region of evolution. The
comparative study is summarized in Table1 and the study
assesses the effectiveness of the MUSIC spectral estimation
method in the detection of the broken rotor bar, mechanical
unbalance, and bearing faults over the other methods.

Table1 shows that MUSIC provides a better fault
detectability for the three studied faults in an induction motor
during the startup transient regime because it presents greater
detectability for all conditions.

7. Conclusions

The feasibility of detecting faults in induction motors using
the time-frequency spectral analysis techniques proposed
in this paper has been shown, applied to vibration signals.
The methodology proposed in this paper is applicable when
it does not have current signals and only has vibration
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TaBLE 1: Detectability in decibels of the comparative study of differ-
ent techniques for identifying faults in an induction motor.

Condition STFT TFDG TEMS MUSIC
Healthy 10 7 1 12
Broken rotor bar 12 9 13 21
Mechanical unbalance 15 10 6 28
Bearing fault 16 12 21 32

signals. This methodology also has applications in motors
that are not fed directly to the supply line; in such cases
the analysis of current signals is not recommended due to
poor current signal quality. Similarly with the use of this
methodology can be detected faults as MCSA performed
on induction motor current monitoring. The time-frequency
decomposition method that provides better results is the
MUSIC, which has higher frequency resolution and is able

to detect the frequencies and their harmonics associated
with the treated faults in highly noisy vibration signal. For
further development, a classification system for the automatic
detection of faults can be included. Also, the analysis applied
to the fusion of data from the acceleration and current sensors
could produce an improved methodology for fault detection
in induction motors.
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