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The longitudinal dynamic governing equation of the viscoelastic belt with one end subjected to concentrated mass was established
based on the Kelvin-Voigt viscoelastic partial-differential constitutive law. The generalized coordinate method was adopted to solve
dynamic displacement and dynamic tension. And then it was reduced to be a nonhomogeneous partial-differential equation where
the analytical solutions with a constant acceleration were obtained. The effects of damping coefficient, the loading radio, and the
constant acceleration of the belt on the dynamic response of the belt were investigated using the established dynamic model. The
results show that the longitudinal vibration frequency of the viscoelastic moving belt increases with an increasing of the mass at
the end. The increasing value of the loading radio, damping coefficient, and decreasing the acceleration will lead to a deceasing in
dynamic tension. Moreover, the method of solution can be applied to axially moving viscoelastic materials with different boundary

conditions.

1. Introduction

Viscoelastic belts have been widely used in power trans-
mission system, especially in conveyors, and replace more
expensive and complicated cars and trains. With the devel-
opment of engineering materials, belts are usually composed
of some metallic reinforcement materials such as steel-cords
and polymeric materials such as rubbers, which makes the
belts exhibit viscoelastic properties. To accurately describe
the characters of the viscoelastic belt, its vibration analysis
has been carried out to be studied extensively based on
the viscoelastic constitutive law [1, 2]. Wickert and Mote
analyzed the nonlinear vibrations and the dynamic stability
of the axially moving materials and obtained the response
to arbitrary excitation and initial conditions in closed form
[3, 4]. Chen and Ding used the finite difference method
to investigate the steady-state response of transverse forced
vibration of an axially moving beam under the fixed bound-
ary condition [5]. Ding and Chen used multiple scales to
study the nonlinear partial-differential equation and the
integropartial differential equation of transverse vibration of
axially moving viscoelastic beams subjected to external trans-
verse loads via steady-state periodical response [6, 7]. Zhang
and Zu investigated the nonlinear vibration and stability

of the parametrically excited viscoelastic string by multiple
scales. In their paper, the constitutive law of the Kelvin model
was used and the governing equation was obtained [8, 9].
Pakdemirli and Ozkaya obtained a boundary layer solution
for an axially moving string using multiple scales [10]. Shin
et al. discretized the governing equations and investigated
the effects of system parameters on the natural frequencies,
mode shapes, and stability [11]. Chen and Yang studied the
time-variant velocity of the axially moving viscoelastic belt
[12]. Chen et al. obtained the transverse vibration of the
axially moving belt through the modified finite difference
[13]. Chen employed the Kelvin model and Euler-Bernoulli
beam model to establish the nonlinear governing equation of
the viscoelastic belt. In their paper, the periodic and chaotic
oscillations of the parametrically excited the moving belt [14].

From all the above-mentioned investigations, it can
be concluded that the majority of the investigations were
devoted to the transversal vibration of the axially moving
viscoelastic materials. However, the length of the moving belt
is much larger than its width usually. Therefore, longitudinal
vibration of the axially moving viscoelastic materials is more
important, especially during the start and stop of the moving
belt, such as conveyors. However, fewer papers discussed the
longitudinal vibration of the viscoelastic moving belt. Even



Kuz'menko and Sitnyanskii presented a simple method of
linearizing nonlinear viscoelastic relations of the longitudinal
viscoelastic vibrations for a rod with one end mass [15]. The
authors did not give any application of the axially viscoelastic
moving material. The governing equations of the viscoelastic
moving belt containing a term of the mixed partial derivative
with respect to the time and the space coordinate are a
viscoelastic continuum. So, the related researches also have
theoretical significance.

As exact values of the continuity equation are usually
unavailable, approximate analytical methods, multiple scales,
and discrete element methods, that is, the finite element
method [16-24], are widely used to investigate vibration of
the belt when we solved a concrete issue. Then the above-
mentioned methods can be used to solve the governing
equation. However, the accurate solution cannot be obtained
from these methods.

In the paper, the dynamic governing equation of the vis-
coelastic moving belt with one end subjected to concentrated
mass was established based on the Kelvin-Voigt viscoelastic
partial-differential constitutive law. The generalized coordi-
nate method was adopted to solve the accurate dynamic
displacement and tension. The effects of system parameters,
such as the loading radio, damping coeflicient, and the
acceleration, on the dynamic response of the viscoelastic
moving belt were also investigated.

2. Governing Equation

A viscoelastic belt, with density of p, cross-sectional area of
A, and mass of one end M, travels from speed 0 to V at a
constant axial acceleration a(t) between one rigidly clamped
end and the other end subjected to concentrated mass. The
Kelvin-Voigt viscoelastic model was chosen to describe the
viscoelastic properties of the viscoelastic belt in this paper.
The model was composed of a linear spring and a linear
dashpot. They were connected in parallel. The corresponding
linear differential operator E for Kelvin-Voigt viscoelastic
model is

_ 3 3
E=E —=E|(1 — |, 1
BT ( ”‘ar) M

where E is the stiffness constant of the spring, # is the dynamic
viscosity of the dashpot, and p = #/E is the retardation time.
The stress o(t) in the constitutive law is given as

O 0

t)=E — =E|l+u— |e. 2
o(t) etng, ( +yat>s (2)

And the tension equation is obtained as
0\ oU
Sx,t)=EA(l+u— | —, 3
() = EA (1442 ) 2 ®
where U represents the displacement of the cross-section,
which includes the static displacement w(x,t) and the

dynamic displacement u(x, t).

The transverse vibration is neglected. We can obtain the
partial-differential equation of the longitudinal vibrations
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of the viscoelastic moving belt with an end subjected to
concentrated mass as

o°U EN
pdx (? +a (t)) = adx + pgdx. (4)

Substituting (3) into (4) yields

o°’U 0\ o’U
¥_62<1+Ma)W:g_a(t)' (5)

The boundary conditions and the initial conditions of (5) are
as follows:

U (0,t) =0,
(6)
UlLt)y=w+u(t),
U(x,0) =0,
o (x,0) _, @)
or

3. Dynamic Response via the Generalized
Coordinate Method

3.1. Model Shape. As mentioned above (3), the displacement
of the belt consists of the static displacement and the dynamic
displacement. The static displacement is mainly caused by
the weight of the belt and the concentrated mass; the static
displacement could be written as

M + pl
Ll P (8)
EA 2EA

Substitution of (8) into (5) yields a dynamic partial-
differential equation

Fu 9\ o*u
— = l+u—|=— —af(t). 9
aw  © < +”at>ax2 @) ©
The boundary conditions of (9) are as follows:
u(0,t) =0,
*u (l,t) o\ou@r (0
M =-EA(1 - | ——.
[ a2 ”””] ( +”at> ox

The initial conditions would be the same with (7).

Equation (9) is nonhomogeneous differential equation of
dynamic displacement; the Duhamel principle is employed to
solve (9) via homogenizing:

Fu 0\ o*u
i (““a)@‘ )

For free vibration, the homogeneous boundary conditions of
(11) are as follows:

2
J l;t(i’t) = —EA(I +7T

u g) du (L, 1)

ot ox 12)
u(0,t) = 0.
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TABLE 1: Value of 7 corresponding to different «.

« 001 04 08 10 20 4.0 10 100 1000
n, 010 0.60 0.79 086 108 127 143 156 157
n, 315 326 337 343 364 394 431 467 471
1n; 629 635 641 644 658 681 723 778 785
n, 943 947 951 953 9.63 981 1020 10.89 10.99

To investigate the dynamic response, the separation of vari-
able is employed to solve (11):

u(xt)=Xx)T(), (13)

where X(x) is spatially function and T(f) is temporally
function.

Substitution (13) into (11) would lead to
T x" 5

——— == 14

A(T+ul) X (14)

From the boundary conditions, we can obtain the model
shape

X,, = bsin qux, 15)
a =ntany, (16)

where o = pl/M is the loading ratio of the belt’s self-weight
and the concentrated mass. 17, = A, is new parameter.
Equation (16) is a transcendental equation and it has
infinite solutions. The values of 17 which are corresponding
to different values of « are shown in Table 1.
A general solution of T(t) is sought in the form of (14):

T = e (D, cosw,,t + D, sinw,t), 17)
where v,, = c¢n/l is the natural frequency, & = uv,,/2
is damping coefficient, and w,, = av,,\1 - &* is damped
frequency.

3.2. Dynamic Displacement. In the following analysis, the
generalized coordinate method is used to obtain the dynamic
displacement of the viscoelastic belt. And the mathematical
statement of the arbitrary cross-section dynamic displace-
ment in nonsteady state is as follows

w61 = Y Xy (X) G (1), (18)
m=1

Based on the analysis above, the vibration mode X(x) had
been derived from the homogeneous equation as X,,(x) =
sin(#,,,x/1). To solve the generalized coordinate of the time
q,,(t), the second Lagrange differential equation is given as

ia_K_a_K+a_R+a_H—Q (19)
dtdq, 04, 04, 0q "

where K represents the kinetic energy, R indicates the elastic
strain energy or elastic potential energy, H denotes the virtual

work by both external and viscous dissipative force, R =
—(1/2)(d/dt)(K + H), and Q,,, accounts for the generalized
force.

The kinetic energy of the viscoelastic belt is given as

K= J qudx+—[Zqu]. (20)

The elastic strain energy is obtained as

o0 1
H= ETA qmzj X'dx. (21)
0

n=1
The dissipative energy is represented as
CHWEAS 2l
R—Tqu Ode. (22)

n=1

Substituting (20), (21), and (22) into (19) yields

I
e Io X"dx

Qm + I, ) qm
Jo X2dx + (M/p) X (I)
¢ _[; X" dx Q,,
+ qm = :
[[x2dx+ (M/p)X2() p [ X2dx + MX? (1)
(23)
From (23), (14), and (11) we can obtain
Lon
X
l ) =% (24)
” 2
[, X7+ (M/p) X> (1)
Substituting (24) into (23) yields
2
G+ NG+ gy = ()
p .[0 X"2dx

Equation (25) is applicable to various boundary conditions
(both ends free; one end fixed, the other free, etc.); only
the mode shapes X(x) are different according to different
boundary conditions.

The mathematical statement of the generalized force
according to the principle of virtual work is given as

I
Q,=Ma®t)X,, )+ J pa(t) X,,dx = ()’;—Ma ). (26)
0

m

The solution of (25) is expressed in the form

t v? g tum(t=1)
= J l—QO (1) —— sinw,, (t — 7) dT.
0 FA [ X"dx ©m
(27)
Substituting (26) and (27) into (18) yields
(x,) = Z oin ”’”x/ 2 P o COLICD
u(x,
A Hy = N (1



TABLE 2: The first four-order natural frequency.

« 001 04 0.8 1.0 20 4.0 10 100 1000

v, 046 276 363 396 497 584 658 718 722

v, 14.49 15.00 1550 15.78 16.74 1812 19.82 21.48 21.67

v; 28.93 29.21 2949 29.62 30.27 3133 33.26 35.79 36.11

v, 43.39 4356 4375 43.84 4430 4513 46.92 50.09 50.55

where

t
Alt) =w, J ¢ g (1) sin w,, (t - 1) dT,
0

4 (29)

Mo (201, + 80 277,,,)

m

Substituting (28) into (3) yields

Hm
1-¢&2

Equations (28) and (30) describe the longitudinal
dynamic displacement and dynamic tension of the viscoelas-
tic moving belt with the Kelvin-Voigt viscoelastic constitutive
law, respectively.

s(xt) = pAl m; cos % (A0 +pA®)].  (30)

4. Analytical Results

The length of the investigated belt was 10m in this study.
The cross-sectional area A, the stiffness constant E, and
the density p were 0.0002m?, 10" Pa, and 9.5 x 10° kg/m’,
respectively.

4.1. 'The Natural Frequency of the Moving Belt. The natural
frequency of the moving belt was obtained based on (17)
and Table 1. The variations of the natural frequency value
with loading ratio are shown in Table 2. It can be seen that
the natural frequency is not unique and has infinite discrete
values; the natural frequency is the fundamental frequency
for m = 1. The fundamental frequency always dominates
the free vibration and forced vibration of the system, and
when the system starts, the fundamental frequency is the
first resonant frequency, the first one to avoid or rush across,
and thus the determination of fundamental frequency has an
important role in the system analysis. In this study, the first
four-order of the natural frequency was chosen to show the
natural frequency under different loading ratio, which can
indicate the vibration characteristics enough. From Table 2,
we can summarize that the natural frequency of the moving
belt increases with the loading ratio increasing.

When the end mass of the moving belt is much less than
the belt’s self-weight, namely, « — o0, then tanz,, — oo,
and thus v,, = (¢/I)((2n — 1)/2)m and the natural frequency
of the belt reaches its highest value. Otherwise, when the end
mass of the moving belt is much bigger than the belt’s self-
weight, namely, « = 0, then tany,, = 7, that was v,, =
(c/l)v/a, and the free vibration natural frequency of the belt
is almost zero.
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FIGURE I: The influence of the damping coefficient on time response.

TaBLE 3: The overshoot M,% with different damping coefficient .

£ 0 0.2 0.4 0.6 0.8 1
Mp% 100 11.47 4.86 0.59 0.01 0

4.2. Time Response. When the acceleration of the moving belt
is constant, substituting a(t) = a into (28) leads to the time
response properties

—&v,,t

N cos (w,,t — ) |,
where ¢ = tan™' (§//1 - &2).

The effects of the constant acceleration on time response
of the moving belt are given for 0 < & < 1 in Figurel.
When & was changed from zero to one, the effects of the
constant acceleration of the moving belt on time response of
the moving belt are shown in Figure 1.

Combining Figure1 and (31), we can obtain the influ-
ence of the damping coefficient on time response with the
condition of the constant acceleration. When the damping
coeflicient is zero, it is equivalent to the vibration of the elastic
belt, namely, an undamped vibration with the continuous
undergoing vibration. When the damping coefhicient is in the
span 0 < & < 1, the vibration is subcritical damping vibra-
tion. Moreover, the maximum overshoot would decrease
gradually with the damping coefficient increasing (Table 3).
Meanwhile, the peak time would increase while adjusting
time decreases. According to the performance index of the
second order system, the maximum overshoot of the system

is Mp = (1/4/1- 52)6_((7”4){/\/@). With the increase of
damping coefficient, the maximum overshoot would decrease
and system stability would be improved. When £ is greater
than 0.4, the overshoot would be less than 5%.

A)=a, |1- 31)

4.3. Dynamic Tension Response. In this section, the numer-
ical simulation is presented to show the effectiveness of
analytic solutions. The objectives of this section are to
investigate the loading ratio, the damping coefficient, and
the acceleration of the moving belt on the dynamic tension
response curve at the rigidly clamped end.
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FIGURE 2: The influence of the loading ratio on the dynamic tension
(¢£=08a=04m/s):(a)a =0.4;(b)a =0.6; (c)x = 1;(d) a = 2;
(e) & = 100.

F(N)

t(s)

FIGURE 3: The influence of the damping coefficient on the dynamic
tension (« = 0.4,a = 0.4m/s): (a) £ = 0.4; (b) £ = 0.6; (c) £ = 0.8.

4.3.1. Effect of the Loading Ratio. Figure 2 shows the influence
of the loading ratio on the longitudinal amplitudes of the
moving belt, where the damping coeflicient & equals 0.8 and
the acceleration a is 0.4 m/s. It can be seen that the amplitude
of dynamic tension and adjusting time become small when
the loading ratio increases. The reason is that the elastic strain
energy or elastic potential energy of the end mass will be
smaller with increasing the loading radio, so the dynamic
tension will decrease. The energy was indicated (23). When
the value of loading ratio « is larger than one, there are
positive and negative dynamic tension. The main reason is
that when the value of loading ratio « is larger than one, the
compressive stress appeared in the moving belt at the starting
moment. With time increasing, the tensile stress appeared. It
can be observed from Figure 2(d) (« = 1) that the tension is
zero at the starting moment; otherwise, the starting tensions
of the left are not 0.

4.3.2. Effect of the Damping Coefficient. The effects of the
damping coeflicient of the moving belt on dynamic tension
are given in Figure 3, where the loading ratio « equals 0.4 and
the acceleration a is 0.4 m/s. The max values of the dynamic
tension are —55.9N, —5LIN, and -49.2N. It can be seen
that increasing the value of the damping coefficient & leads
to a deceasing in vibration amplitudes and adjusting time
of the dynamic tension. The damping coefficient indicates
the energy dissipation capability of the viscoelastic belt

'a:(').l
a=0.2

a=04

FIGURE 4: The influence of the acceleration on the dynamic tension
(=0.8,a=04):(a)a=0.1m/s;(b)a=0.2m/s;(c)a=0.4m/s.

and furthest absorbs and consumes impact energy of the
dynamic tension. The energy is just the dissipative energy
as mentioned in (22). So the longitudinal amplitudes of the
moving belt decrease with increasing the damping coefficient.

4.3.3. Effect of the Acceleration. The effects of the acceler-
ation of the moving belt on the dynamic tension response
curves are depicted in Figure 4. The acceleration a was
chosen as 0.1m/s, 0.2 m/s, and 0.4 m/s, respectively. The max
amplitudes of the dynamic tension are —6.4 N, —12.8 N, and
—49.2N in Figure 4. We can observe that the stability of
the dynamic response is improved and the dynamic tension
amplitude decreases with the decreasing of the acceleration.
There is one reason to clarify the result. The smaller the
acceleration, the smaller the kinetic energy of the moving
belt, so the longitudinal amplitudes of the dynamic tension
will be smaller.

5. Conclusions

In this study, the accurate form of the governing equations of
the viscoelastic belt with one end subjected to concentrated
mass is derived using the generalized coordinate method. The
effects of the system parameter of the moving belt on the
dynamic response are investigated based on the derivative
dynamic governing equation. The conclusions of this study
are summarized as follows.

(1) The longitudinal vibration frequency of the viscoelas-
tic belt will decrease with the increasing of the
concentrated mass at one end.

(2) Increasing the value of the loading radio and damping
coeflicient and decreasing the acceleration of the
moving belt will lead to a deceasing in dynamic
tension at the rigidly clamped end.

(3) The method of solution can be applied to axially
moving viscoelastic materials with different boundary
conditions.
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