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A series of periodic loading experiments were carried out on the O-type wire-cable vibration isolators. The isolators were loaded
under shear, roll, and tension-compression loadings.When subjected to shear and roll loads, the restoring force-deformation curves
generated by the isolators formed symmetric hysteresis loops. However, when the isolators were loaded with tension-compression
loads, the isolator produced asymmetric hysteresis loops. It is found through the experiment that the dynamic characteristics of
the isolator are determined by the loading amplitude as well as the geometric parameters of the isolator while they are almost
independent of loading frequency within the testing frequency range. Based on the experimental data, the dynamic response of
the isolator was modeled by a modified normalized Bouc-Wen model. The parameters of this model were identified through an
identification procedure that does not involve any nonlinear iterative algorithms. Comparison between the identification results
and the experimental data suggests that the identification method is effective. With the model and the identified parameters, the
frequency response of an O-type wire-cable vibration isolator-mass system was evaluated. Typical nonlinear response behaviors
were found when the isolator was used in tension-compression mode while the response appears to be similar to that of a linear
system when the isolator was used in shear and roll mode.

1. Introduction

Wire-cable vibration isolators are typical nonlinear hysteretic
damping devices. Owing to their good dry friction damping
performance, wire-cable isolators have been widely used as
key vibration absorption components for vibration isolation
of industrial and defense equipment, naval vessels, aircraft
engines and other sensitive equipment [1–4], and so forth.
The isolator exhibits good damping performance due to
rubbing and sliding friction between the wire strands. How-
ever, the dynamic characteristics of a conventional wire-cable
isolator are controlled by several coupled parameters such as
the diameter of the wire ropes, the number of strands, the
cable length, the cable twist, or lay angle [5]; therefore, it is
difficult to design such an isolator.Moreover, if a conventional
wire-cable isolator is damaged, there is no way of fixing
it but to replace it. To cope with the problems, a new O-
type wire-cable vibration isolator (see Figure 1) is designed.

The O-type isolator uses independent wire rope loops as
elastic-damping components. The wire rope loops can be
made of complex wire ropes or simple strands depending
on the usage of the isolator. In most cases, the wire ropes
used are the wire rope structure with independent wire
strand core (IWSC). The wire loops are held between metal
retainers. Both the stiffness and the damping of the O-type
wire-cable vibration isolator can be adjusted by varying the
wire rope diameter, number of wire rope loops, horizontal
angle of wire rope loops, and coil diameter. Compared with
the conventional stranded wire helical wire-cable vibration
isolator, the O-type isolator has some particular advantages,
such as longer fatigue life, better installation andmaintenance
ease, better reliability, and better vibration absorption ability.

Full understanding of the impact of the geometric
parameters on the dynamic characteristic of the isolator is
of great importance for designing a wire-cable vibration
isolator for engineering applications. Little research has been
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Figure 1: O-type wire-cable vibration isolator.

devoted to the subject. Wang et al. [6] presented a two-state
model to describe the static response of the stranded wire
helical springs, which are also wire rope made components,
analytically and discussed the load-strain relationship of
the springs with different geometric parameters. Gong and
Tang [7] presented a comprehensive model for nonlinear
hysteretic systems. Gerges [8] and Gerges and Vickery [9]
presented a semianalytical model for wire rope vibration
isolator under tension-compression loading and proposed
twomathematicalmodels for describing the effective stiffness
and the equivalent viscous damping ratio of conventional
wire rope springs. Ni et al. [5, 10] studied the conventional
wire rope vibration isolator under three types of loading.

The dynamic response model of an O-type wire-cable
vibration isolator is a very important tool for designing
systems using the isolator as well as evaluating the responses
of systems with such isolators. To date, no accurate physical
model for the dynamic behavior of the isolator has been
analytically derived. In most engineering applications, the
behavior of the isolator is described by empirical or phe-
nomenological models. The Bouc-Wen model [11, 12] and
its normalized version [13] have been widely used to model
many engineering structural systems [14] and describe vari-
ous kinds of hysteretic systems such as magnetorheological
dampers [15, 16]. However, the original Bouc-Wen model
cannot model the dynamic behavior of O-type wire-cable
vibration isolators in tension-compression mode accurately
for it can only describe symmetrical hysteresis loops. Ni
et al. [5] proposed two modified Bouc-Wen models which
are capable of representing the symmetric soft-hardening
hysteresis loops and the asymmetric hysteresis loops with a
hardening overlapping envelope, respectively. The parame-
ters of Ni’s model are identified using Ni’s frequency domain
identification method [17]. With Ni’s method, to search for
the optimal parameters, a set of initial values must be man-
ually chosen. However, it is rather difficult to make a guess
of a reasonable set of initial values in practice and therefore
the method is often found failing to converge to a reasonable
solution. Ikhouane and Gomis-Bellmunt proposed a limit
cycle identification method [18]. This method does not rely
on iteration algorithms and therefore is free of convergence
problems. Making use of the limit cycle, Zhao et al. [19]
proposed a two-stage method for identifying the parameters
of a modified Bouc-Wen model that is capable of describing
the dynamic behavior of the asymmetric hysteresis loopswith
hardening overlapping behaviors.

In the present work, periodic loading tests were con-
ducted on eight types of the new O-type wire-cable vibra-
tion isolators to investigate the impact of the loading fre-
quency, loading amplitude, and the isolator geometrics on

Figure 2: The cross section of the wire rope.

the dynamic characteristics of O-type wire rope vibration
isolator.The isolators are tested under shear, roll, and tension-
compression loadings. A modified Bouc-Wen model is
adopted to model the dynamic behavior of the O-type wire-
cable vibration isolators and the model parameters are iden-
tified using the experimental data. Finally, the steady state
dynamic responses of an O-type wire-cable isolation-mass
system in three modes are evaluated numerically.

2. Periodic Loading Experiment

Deformation controlled periodic loading experiments were
carried out on several O-type wire-cable vibration isolators.
The isolators are made of 6 × 19 IWSC wire ropes. The wire
ropes are clustered in six strands of 19 steel wires each, which
are wrapped around a central strand with 19 steel wires.
The cross section of the wire rope is shown in Figure 2. The
diameter of the wires that made up the wire rope is 0.4mm.
Thematerial of the wires is American Iron and Steel Institute
(AISI) Stainless Steel Type 316.

2.1. Experiment Scheme. The isolator geometric parameters
include the wire rope loop mean diameter 𝐷, the wire rope
diameter 𝑑, wire number of rope loop 𝑔, horizontal angle of
wire rope loop𝛼, loading amplitude𝐴, and loading frequency
𝑓. To find out the loading amplitude and the isolator
geometrics’ impact on the dynamic response characteristics
of the isolator, the tests were conducted following the scheme
listed in Table 1.

The symbols 𝑠, 𝑟, and 𝑡-𝑐 in the last column of Table 1
represent the shear, roll, and tension-compression loading,
respectively.

2.2. Setup of the Experiment. The experiments were carried
out on an elastomer test system, as shown in Figure 3.
The isolators were fixed by the upper and lower clamps of
the mechanical testing and simulation machine (MTS). The
upper fixture of MTS vibrates periodically while the lower
one is fixed throughout the experiment. In tests where the
isolators are under shear or roll loading, two isolators are
bolted together to avoid unbalanced load. The deformation
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Table 1: Experiment scheme.

Isolator number 𝐷 (mm) 𝑑 (mm) 𝐷/𝑑 𝑔 𝛼 (∘) 𝐴 (mm) 𝑓 (Hz) Loading
1 63 4 15.75 8 60 3, 5 1, 5 s, r, and t-c
2 50 5 10 8 60 3, 5 1, 5 s, r, and t-c
3 55 5 11 8 60 3, 5 1, 5 s, r, and t-c
4 63 5 12.6 8 60 1–10 1, 5 s, r, and t-c
5 65 5 13 8 60 3, 5 1, 5 s, r, and t-c

6 63 6 10.5 8 60 1, 2 1–19 s, r, and t-c
3, 5 1, 5 s, r, and t-c

7 63 8 7.875 8 60 3, 5 1, 5 s, r, and t-c
2, 4, 6 t-c

8 63 6 10.5 2 90, 80.87, 71.49, 61.56, 50.59 3, 5 1, 5 t-c

Vibration table

Upper fixture of MTS

Screw adapter 1
Upper clamp 1

Upper clamp 2

Vibration isolator

Lower clamp

Screw adapter 2

Lower fixture of MTS

Frame

x

(a) Schematic diagram of the setup of an isolator under
tension-compression loading

(b) The actual setup of an isolator under
tension-compression loading

(c) The actual setup of an isolator under roll loading (d) The actual setup of an isolator under
shear loading

Figure 3: Setup of the experiment.
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(a) Tension-compression loading
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(b) Shear loading
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(c) Roll loading

Figure 4: Experimental hysteresis loops with different frequencies.

of an isolator is equivalent to the displacement of the upper
clamp of MTS. The lower clamp of MTS is installed on top
of a load cell. The displacement of the upper fixture of MTS
is measured by a potentiometric linear displacement sensor.
The restoring force and displacement signals are sampled
synchronously. The sampling rate was chosen so as to collect
512 points per cycle according to the loading frequency. The
sampling time was chosen to cover at least 15 loading cycles.

2.3. Results
2.3.1. The Dependence of Dynamic Characteristics on Exci-
tation Frequency. Figure 4 shows the measured hysteresis
loops for isolator number 6 under shear, roll, and tension-
compression loading, respectively. The loading frequency is
set to be ranging from 1 to 19Hz. The loading amplitude is
𝐴 = 2mm. It can be observed that the response of the O-type
isolator is rate-independent in the tested frequency range.
Such rate-independent nature is similar to conventional wire-
cable isolators [2, 8, 10].

2.3.2. The Dependence of Dynamic Characteristics on Exci-
tation Amplitude. Figure 5 shows the measured hysteresis
loops for isolator number 4 in shear, roll, and tension-
compression loading, respectively. The loading amplitude is
set to be ranging from 1 to 10mm at the loading frequency
𝑓 = 5Hz.

Figure 5(a) shows that the isolator exhibits significant
asymmetric hysteresis loops under tension-compression
loading and an envelope that contains all the hysteresis
loops is presented by the loop with the largest loading
amplitude. As the loading amplitude increases, stiffening and
softening behaviors are observed on tension and compression
sides, respectively.The asymmetry increases with the loading
amplitude. The hysteresis loops under the shear and roll
loading are similar as shown in Figures 5(b) and 5(c). The
tested isolator generates symmetric hysteresis loops under
both loadings owing to its symmetric configuration in these
loading directions. For specific loading amplitude, the restor-
ing force under the tension-compression loading is much
greater than those under shear or the roll loadings.
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(a) Tension-compression loading
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(b) Shear loading
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(c) Roll loading

Figure 5: Experimental hysteresis loops with different displacement amplitudes.

2.3.3. The Dependence of Dynamic Characteristics on Wire
Rope Diameter. All the geometric parameters of isolators of
number 1, number 4, number 6, and number 7 are equivalent
except the wire rope diameter. The measured hysteresis
loops of the four isolators under shear, roll, and tension-
compression loading are plotted in Figure 6. The loading
amplitude is set to be 𝐴 = 5mm at the frequency 𝑓 = 5Hz.

It is obvious that stiffness and the dissipated energy of the
isolator increase with the wire rope diameter. The variation
of a relatively small 𝑑 can lead to a significant change of the
stiffness. In other words, enlarging 𝑑 will have a stiffening
effect on the isolator, and the stiffening effect tends to get
strengthened as 𝑑 increases. However, according to Figure 6,
if 𝑑 is small enough, the differences of the stiffness and the
dissipated energy tend to get smaller as 𝑑 decreases. This
implies that the effective stiffness is close to being linear when
𝑑 is small. Hence, the asymmetry is increasingly apparent in
the tension-compression mode as the wire rope diameter 𝑑

increases.

2.3.4. The Dependence of Dynamic Characteristics on Wire
Rope Loop Diameter. All the geometric parameters of isola-
tors of number 2, number 3, number 4, and number 5 are
equivalent except the wire rope loop diameter. The measured
hysteresis loops of the four isolators under shear, roll, and
tension-compression loading are plotted in Figure 7. The
loading amplitude is set to be 𝐴 = 5mm at the frequency
𝑓 = 5Hz.

It is observed that stiffness tends to decrease as 𝐷

increases. The differences of the dissipated energy and the
asymmetry of the hysteresis loops between the isolators

are insignificant when the isolators are under tension-
compression loading. However, the dissipated energy
increases with 𝐷 significantly when the isolators are under
shear or roll loading.

2.3.5. The Dependence of Dynamic Characteristics on the
Number and Horizontal Angle of the Wire Rope Loops. By
changing the number of the wire rope loops in isolator
number 7, the relation between dependence of dynamic
characteristics on the number of the wire rope loops is
studied. The measured hysteresis loops are under tension-
compression loading. The loading amplitude is set to be 𝐴 =

5mm at the frequency 𝑓 = 5Hz. The measured hysteresis
loops are plotted in Figure 8. Isolator number 8 is rigged with
different horizontal wire rope angles so that the dependence
of dynamic characteristics on the horizontal wire rope angle
can be studied. The experimentally acquired hysteresis loops
of isolator number 8 under tension-compression loadingwith
loading amplitude 𝐴 = 5mm at the frequency 𝑓 = 5Hz are
plotted in Figure 9.

It can be observed in Figure 8 that both the stiffness and
dissipated energy tend to increase with the wire rope loop
number. According to Figure 9, the stiffness tends to increase
slightly as with 𝛼.

2.3.6. The Dependence of Energy Dissipation on 𝐴 and Isolator
Geometrics. The dissipated energy of the isolator is the area
enclosed by the hysteresis loop. Figure 10 illustrates the
hysteresis loop area varying with the loading amplitude 𝐴

ranging from 1 to 10mm at the frequency 𝑓 = 5Hz. Figure 11
illustrates the hysteresis loop area varying with different
𝐷/𝑑 ratio with loading amplitude 𝐴 = 5mm and loading



6 Shock and Vibration

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1500

−1000

−500

0

500

1000

1500

2000

1

4

6

7

Re
sto

rin
g 

fo
rc

ef
(N

)

Displacement x (mm)

(a) Tension-compression loading
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(b) Shear loading
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(c) Roll loading

Figure 6: Experimental hysteresis loops of isolators with different wire rope diameters.
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(a) Tension-compression loading
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(b) Shear loading
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Figure 7: Experimental hysteresis loops of isolators with different wire rope loop diameters.
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Figure 8: Measured hysteresis loops with different wire rope loop
numbers.
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Figure 9: Measured hysteresis loops with different horizontal angle
of wire rope loop.

frequency 𝑓 = 5Hz. Figure 12 illustrates the hysteresis loop
area varying with the number of wire rope loops with loading
amplitude 𝐴 = 5mm and loading frequency 𝑓 = 5Hz.
Figure 13 illustrates the hysteresis loop area varying with
horizontal angle of wire rope loops with loading amplitude
𝐴 = 5mm and loading frequency 𝑓 = 5Hz.

It can be observed that the hysteresis loop area increases
with the loading amplitude. The area-amplitude curve
exhibits weak nonlinearity. The isolators offer much
larger energy dissipation when loaded under the tension-
compression mode. It can be observed in Figure 11 that the
relation between the hysteresis loop area and the 𝐷/𝑑 ratio is
not monotonic.

The hysteresis loop area increases nearly linearly with the
number of the wire rope loops 𝑔. Figure 13 suggests that the
hysteresis loop area decreases as the horizontal angle of wire
rope loops 𝛼 increases if 𝛼 is small. When 𝛼 reaches a certain
value, the hysteresis loop area then begins to increase with
𝛼. This is because the installation of the isolator is changed
from the tension-compression mode to the combination of
shear and tension-compression mode as the horizontal angle
of wire rope loop 𝛼 decreases.
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Figure 10: Hysteresis loop area versus loading amplitude.
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Figure 11: Hysteresis loop area versus 𝐷/𝑑 ratio.
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3. Modelling and Identification of the O-Type
Wire-Cable Vibration Isolator

3.1. Dynamic Response Model of the Isolator. The dynamic
response model of the isolator is a rather important tool for
designing dynamic systems with the isolator. As is observed
in the aforementioned experiment, the isolator can generate
both symmetric and asymmetric hysteresis loops depending
on the way it is loaded. Such dynamic behavior can be readily
described by Zhao et al’s modified Bouc-Wenmodel [19] with
a slight twist. The model is expressed as

Φ (𝑡) = 𝐹
𝑒

(𝑥 (𝑡)) + 𝑘
𝑧
𝑧 (𝑡) 𝐹

𝑛
(𝑥 (𝑡)) , (1)

𝐹
𝑒

(𝑥 (𝑡)) =

𝑁

∑

𝑖=0

𝑘
𝑒𝑖

𝑥
𝑖

, (2)

𝐹
𝑛

(𝑥 (𝑡)) =

𝑀

∑

𝑗=0

𝑘
𝑛𝑗

𝑥
𝑗

, (3)

where 𝑡 is the time, 𝑥 is the deformation of the isolator, Φ

is the overall restoring force, 𝐹
𝑒
, 𝐹
𝑛
, and 𝑧 are the nonlinear

elastic component, the nonlinear amplifier component, and
the pure hysteretic component of the restoring force, respec-
tively, 𝑁 and 𝑀 are the degrees of the polynomials, and 𝑘

𝑒𝑖

and 𝑘
𝑛𝑗
are the model parameters.

The pure hysteretic component 𝑧 is given by the normal-
ized Bouc-Wen model [13, 19] as

�̇� = 𝜌�̇� {1 − [𝜎 sgn (�̇�) sgn (𝑧) − 𝜎 + 1] |𝑧|
𝑛

} , (4)

where the over dot denotes the time derivation and 𝜌, 𝜎, and
𝑛 are the model parameters.

Owing to the fact that 𝑘
𝑧
is actually a redundant variable

which can be combined with the coefficients of 𝐹
𝑛
to simplify

the calculation procedure, (1) can be recast as

Φ (𝑡) = 𝐹
𝑒

(𝑥 (𝑡)) + 𝐹
𝑛

(𝑥 (𝑡)) 𝑧 (𝑡) . (5)

3.2. Identification of theModel Parameters. Thenonhysteretic
parameters of the nonlinear amplifier 𝐹

𝑛
and the nonlinear

elastic component 𝐹
𝑒
are identified first. Using the identifica-

tion results, the hysteretic parameters are then identified.

3.2.1. Identification of Nonhysteretic Parameters. In order to
achieve the parameter identification, a “bounded region”
must be selected from a measured hysteresis loop. In the
“bounded region,” the hysteretic component of the response
model can be simplified as a constant. Usually, the “bounded
region” is the middle part of the measured hysteresis loop, as
is illustrated in Figure 14.

The response of the pure hysteretic component |𝑧| is
bounded to 1 when 𝑥 is in the “bounded region” [19]. In such
case, the restoring force in the section can be derived as

Φ
𝑙

= 𝐹
𝑒

+ 𝐹
𝑛
, �̇� > 0,

Φ
𝑢

= 𝐹
𝑒

− 𝐹
𝑛
, �̇� < 0,

(6)

−8 −6 −4 −2 0 2 4 6 8
−100
−80
−60
−40
−20

0
20
40
60
80
100

Φu

Φl

Re
sto

rin
g 

fo
rc

ef
(N

)

Displacement x (mm)

Bounded region

Figure 14: The selected “bounded region” of a measured hysteresis
loop.

where Φ
𝑙
and Φ

𝑢
are the loading branch and the unloading

branch of the hysteresis loop, respectively. 𝐹
𝑛
and 𝐹

𝑒
can be

derived as

𝐹
𝑛

=

Φ
𝑙

− Φ
𝑢

2

,

𝐹
𝑒

=

Φ
𝑙

+ Φ
𝑢

2

.

(7)

The experimental data is a series of discrete data points;
therefore, (7) should be recast in the discrete form

𝐹
𝑛𝑘

=

Φ
𝑙𝑘

− Φ
𝑢𝑘

2

, (8)

where 𝑘 = 1, 2, . . . , 𝐾 denotes the 𝑘th point of the discrete
experimental data and 𝐾 is the length of the experimental
data. Using (3) and (8), the following relation can be found:

F
𝑛

= k
𝑛
y
𝑀

, (9)

where k
𝑛

= [𝑘
𝑛1

, 𝑘
𝑛2

, . . . , 𝑘
𝑛𝑀

] is the nonlinear amplification
coefficients vector, F

𝑛
= [𝐹
𝑛1

, 𝐹
𝑛2

, . . . , 𝐹
𝑛𝐾

] is the nonlinear
amplification vector, and y

𝑀
is the linearized deformation

matrix for the nonlinear amplifier component. The matrix is
given by

y
𝑀

=
(
(

(

𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝐾

𝑥
2

1

𝑥
2

2

⋅ ⋅ ⋅ 𝑥
2

𝐾

.

.

.

.

.

. d
.
.
.

𝑥
𝑀

1

𝑥
𝑀

2

⋅ ⋅ ⋅ 𝑥
𝑀

𝐾

)
)

)

. (10)

To obtain the coefficient vectors k
𝑛
, a linear optimization

problem can be formulated as

min𝑓 (k
𝑛
) =





F
𝑛

− k
𝑛
y
𝑀






. (11)

The solution to the problem denoted by (11), that is, k
𝑛
,

can be readily solved using linear least square method [20].
The parameters of the nonlinear elastic component 𝐹

𝑒
can be

derived through a similar process.
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3.2.2. Identification of Hysteretic Parameters. Using the iden-
tification result of k

𝑒
and k

𝑛
, the hysteretic component 𝑧 can

be derived in the discrete form as

𝑧
𝑘

=

Φ
𝑘

− 𝐹
𝑒𝑘

𝐹
𝑛𝑘

=

Φ
𝑘

− k
𝑒
y
𝑁𝑘

k
𝑛
y
𝑀𝑘

, (12)

where Φ
𝑘
is the 𝑘th restoring force data point of the

experimental hysteresis loop and y
𝑁𝑘

and y
𝑀𝑘

denote the 𝑘th
column of y

𝑁
and y
𝑀
, respectively. The limit cycle approach

[17, 18] is applied to identify the hysteretic parameters.
Rewrite (4) in the following piecewise form:

𝑧


=

{
{
{
{

{
{
{
{

{

𝜌 (1 − 𝑧
𝑛

) �̇� > 0, 𝑧 ≥ 0,

𝜌 [1 − (1 − 2𝜎) (−𝑧)
𝑛

] �̇� > 0, 𝑧 < 0,

𝜌 [1 − (1 − 2𝜎) 𝑧
𝑛

] �̇� < 0, 𝑧 ≥ 0,

𝜌 [1 − (−𝑧)
𝑛

] �̇� < 0, 𝑧 < 0,

(13)

where the symbol () denotes the derivation with respect to 𝑥.
Using (12) and (13), the hysteretic parameters 𝜌, 𝜎, and 𝑛 can
be easily identified using experiment data with a limit cycle
identification method [18, 19].

At this point, all the model parameters are identified
without any nonlinear iteration procedures; therefore, the
identification is very fast and requires no guesses for any of
the parameters.

3.2.3. Processing of the Experimental Data. In practice, the
measured data will inevitably be contaminated by noises
which could cause significant error when the data is used
to identify the model parameters of the isolators. Hence, the
measured data must be processed before the identification
process. A simple yet effective way of denoising is the moving
average method [21]. This method would be sufficient if the
experimental data is not severely contaminated. For the case
where the experimental data is severely contaminated, the
data should be filtered using digital low pass filters before they
are used in the identification process. When the sampling
frequency satisfies some specific conditions [22], an effective
frequency domain noncausal filtering method proposed by
Ni et al. [17] could be adopted.

3.2.4. Identification Results. With the model and the identi-
fication method, the model parameters of isolator number
4 in shear, the roll, and tension-compression modes are
identified and listed in Table 2.The hysteresis loops predicted
using the identification results are plotted in Figure 15. It
can be observed from Figure 15 that the predicted hysteresis
coincides with the measured loops well.

4. Evaluation of the Dynamic Response

With the dynamic response model the response of systems
with the isolator can be evaluated. Figure 16 illustrates the
configuration of three systems consisting of mass blocks
and O-type wire-cable vibration isolators. The isolators are
installed in different ways so that they are subject to shear,
roll, and tension-compression loading, respectively.

Table 2: Model parameter identification results.

Model parameter Mode
s r t-c

𝑘
𝑒𝑖

𝑘
𝑒0

−8.7845 7.7460 −23.7263
𝑘
𝑒1

18.9590 8.4184 33.5017
𝑘
𝑒2

−0.1800 −0.0537 1.9960
𝑘
𝑒3

0 0 0.0722
𝑘
𝑒4

0 0 0.0023
𝑘
𝑛𝑗

𝑘
𝑛0

42.0757 19.2852 71.19495
𝑘
𝑛1

−0.15915 −0.07229 6.91807
𝑘
𝑛2

0 0 0.2064
𝑘
𝑛3

0 0 −0.05694
Hysteretic parameters

𝜌 1.4503 1.1669 1.4095
𝜎 2.2624 2.1586 2.8049
𝑛 0.8793 0.8998 0.8646

Suppose that the system is subjected to the base excitation
displacement 𝑥

𝑔
(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) and the displacement of

the mass block relative to the base or the deformation of the
isolator is denoted by the symbol𝑥(𝑡).The equation ofmotion
of the system is expressed as

𝑚 (�̈� (𝑡) + �̈�
𝑔

(𝑡)) = 𝑚𝑔 − Φ (𝑡) . (14)

When the system is in the static state, the following
conditions are met:

𝑥 (𝑡) = 𝑥
𝑔

(𝑡) = 0,

�̇� (𝑡) = �̇�
𝑔

(𝑡) = 0,

�̈� (𝑡) = �̈�
𝑔

(𝑡) = 0.

(15)

In this case, by substituting (2)–(5) and (15) into (14),
one can find that the gravity and the constant term of the
nonlinear elastic component of the dynamic response model
of the isolator are counteracted; namely,

𝑚𝑔 − 𝑘
𝑒0

= 0. (16)

Using (2)–(5) and (16), the motion equation (14) can be
rewritten as

𝑚 (�̈� (𝑡) + �̈�
𝑔

(𝑡)) +

𝑁

∑

𝑖=1

𝑘
𝑒𝑖

𝑥
𝑖

(𝑡)

+ 𝑧 (𝑡)

𝑀

∑

𝑗=0

𝑘
𝑛𝑗

𝑥
𝑗

(𝑡) = 0.

(17)

The Runge-Kutta method [23] is employed to solve (17)
and study the frequency response of the systems numerically.
The frequency response is obtained through a numerical
frequency sweep process. In order to check if the system
features multivalued responses, the excitation frequency is
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Figure 15: The tested and predicted hysteresis loops.
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Figure 16: Systems with the isolator.
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Figure 17: The simulated frequency response curves of relative displacement.

firstly increased from the start frequency to the upper limit
and then decreased to the start frequency when performing
the sweep. The base displacement amplitude 𝐴 is chosen to
be 0.5mm, 1.0mm, 1.5mm, 2.0mm, 2.5mm, and 3.0mm in
the current simulation. The range of the base displacement
frequency 𝑓 is simulated as 1–20Hz. Let the amplitude of
the displacement of the mass block relative to the ground be
denoted by the symbol 𝑋. Figure 17 illustrates the computed
frequency response curves of the system in the case 𝑚 =

15 kg.
The frequency response curves show clearly the nonlinear

feature of thewire-cable isolator system. Significant nonlinear
behaviors such as evident second-order subharmonic res-
onance can be observed in the tension-compression mode
while no subharmonic resonances exist in shear, roll modes.
This is because, as aforementioned, the system features
stronger nonlinearity when subject to tension-compression
loading. Moreover, the resonant frequencies shift to the left
as the excitation amplitude increases. This is similar to the
behavior of convention wire-cable isolators [17]. Further-
more, with the same mass and the isolator, the primary
resonant frequency of the system in the tension-compression
mode is greater than that in the shear mode and is almost
twice that in the roll mode. When the excitation amplitude
is small, the system exhibits similar level of resonant ampli-
tudes in all modes. However, when the excitation amplitude
exceeds a certain level, the resonant amplitudes in the shear
and roll modes are almost twice the amplitude in the tension-
compression mode. This indicates that the isolator is more

effective in the tension-compression mode. No multivalued
responses are found in the present system.

5. Conclusion

A series of dynamic tests were performed on several O-
type wire-cable vibration isolators. The experimental results
showed that the output of the isolator is almost independent
of the loading frequency, however, strongly affected by
the loading amplitude. As the loading amplitude increases,
stiffening and softening behaviors are observed in tension
and compression directions, respectively.The restoring force-
loading hysteresis loops showed apparent asymmetry when
the loading amplitude is large enough. However, the hys-
teresis loops are symmetric when the isolators were subject
to shear and roll loadings. The energy dissipation capabil-
ity of the isolators is strongest when it is under tension-
compression loading.The dependence of the stiffness and the
energy dissipation capability of the isolators on the isolator
geometrics was studied and reference was provided for the
design and manufacturing of the isolator for engineering
applications.

A phenomenological model was adopted to model the
dynamic response of the isolator.Themodel parameters were
identified using the experimental data.The identification pro-
cess does not depend on nonlinear iterative algorithms and
therefore is free from convergence problems. The hysteresis
loops generated using the identification results agree with
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the measured hysteresis loops well, indicating the model and
identification method are fit for the O-type isolator.

Based on the established dynamic response model of
the isolator, the steady state dynamic response of a wire-
cable isolator-mass system was analyzed using Runge-
Kutta method. The analysis results show that the frequency
response characteristics of the system where the isolator is
under tension-compression loading are significantly different
from those under shear and roll loadings. For example, the
resonance frequency is higher and the resonance amplitude
is smaller. This is because the isolator features larger stiffness
and better damping capability when it is the under tension-
compression loading. Significant nonlinear behaviors such as
subharmonic resonance can be observed when the excitation
amplitude is large enough and when the isolator is subject
to tension-compression loading. However, no subharmonic
resonance is found for isolators under shear or roll loadings.
This suggests that the isolator features stronger nonlinearity
in the tension-compression mode.
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