
Research Article
Determination of the Strain-Free Configuration of
Multispan Cable

Chuancai Zhang,1 Qiang Guo,1,2 and Xinhua Zhang1

1State Key Lab for Mechanical Structural Strength and Vibration, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
2Shanghai Electric Power Generation Equipment Co., Ltd. Shanghai Turbine Plant, Shanghai 200240, China

Correspondence should be addressed to Xinhua Zhang; xhzhang@mail.xjtu.edu.cn

Received 16 March 2015; Revised 25 May 2015; Accepted 26 May 2015

Academic Editor: Tai Thai

Copyright © 2015 Chuancai Zhang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

For building a reasonable finite element geometric model, a method is proposed to determine the strain-free configuration of
the multispan cable. The geometric conditions (the end conditions and the unstretched length conditions) as constraints for the
configuration of multispan cable are given. Additionally, asymptotic static equilibrium conditions are given for determining the
asymptotic shape of the multispan cable. By solving these constraint equations, a set of parameters are determined and then the
strain-free configuration of multispan cable is determined. The method reported in this paper provides a technique for building
reasonable FEA geometric model of multispan cables. Finally, a three-span cable is taken as example to illustrate the effectiveness
of the method, and the computed results are validated via the software ADINA.

1. Introduction

The cable structures are widely used in the engineering, such
as bridge, building, and power transmission system [1, 2]. In
[1], a new forcemethod is proposed for analysing the dynamic
behaviour of flat-sag cable structures. The accepted dynamic
model of such cables reduces to a partial differential equation
and an integral equation. The support reaction forces are
considered as excitations, allowing D’Alembert’s solution to
be used. In this way, single or multispan cables have been
developed in the form of a single-degree-of-freedom system
in terms of the additional dynamic tension. Finally, two
examples are presented to illustrate the accuracy of the pro-
posed force method for single and multispan cable systems
subjected to harmonic forces. In [2], a three-dimensional
modeling procedure is proposed for cable-stayed bridges
with rubber, steel, and lead energy dissipation devices. In
this study, the cable structure can be simplified as a four-
node isoparametric cable element. The multispan cables and
towers are the basic structures in the power transmission
system. Under the wind load, the multispan cable is apt to

generate large displacements because of its high flexibility and
large span. So themultispan cable exhibits strong geometrical
nonlinearity. Usually, the dynamic behavior of such cable
structures is analyzed on the platform of the finite element
analysis (FEA) software. To build a reasonable FEA model,
two alternative configurations of the cable structures need
to be determined in the modeling process; one is the initial
static equilibrium configuration and the other is the assumed
strain-free configuration. As a prestressed state, the static
equilibrium configuration of a cable is the starting point
of the subsequent dynamic analysis, whereas the strain-free
configuration of a cable is only an assumed state which does
not exist in the real world due to the ubiquitous gravity and
it is the starting point for static and dynamic analyses. If the
FEA geometric model is built based upon the static equi-
librium configuration of the cable, the prestrain or prestress
in each element caused by gravity should be specified one
element by one element; this is always cumbersome. The
gravity load is included in the equilibrium configuration.The
FEA geometric model contains two gravity loads in this way,
so that the model does not match the actual cable structure.
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The gravity load is not included in the strain-free configura-
tion. Alternately, if the geometric model is built based on the
strain-free configuration, the prestrain or prestress in each
element needs not to be specified in advance and they are
set up naturally in the nonlinear static analysis via the FEA.
After that, the gravity load applied in the model; the system
achieves equilibrium. Therefore, the assumed strain-free
configuration ismore preferable to the static equilibriumcon-
figuration for building the FEAgeometricmodel ofmultispan
cable.

For the static and dynamic analysis of cable structures,
Irvine [3] systematically summarized the classical achieve-
ments reached up to 1981 and the static equilibrium shape of
a cable is described as an elastic catenary. For the modeling
of cable structures, in [4], a method for modeling cable
supported bridges for nonlinear finite element analysis is
presented in this paper. A two-node catenary cable element,
derived using exact analytical expressions for the elastic
catenary, is proposed for the modeling of cables. Based upon
the elastic catenary, Such et al. [5] proposed a method for
determining the static equilibrium configuration of arbi-
trary three-dimensional cable structures subject to gravity
and point loads. Srinil et al. [6, 7] formulated a system
of nonlinear partial differential equations describing the
large amplitude three-dimensional free vibrations of inclined
sagged elastic cables. Ai and Imai [8] proposed an iterative
scheme to find the static equilibrium shape of beam-cable
mixed system. In [9], based on exact analytical expressions
of elastic catenary, Thai and Kim presented a catenary cable
element for the nonlinear static and dynamic analysis of
cable structures. In [10], Vu et al. presented a spatial catenary
cable element for the nonlinear analysis of cable-supported
structures and proposed an algorithm for form-finding of
cable-supported structures. Rienstra [11] derived the partial
differential equations and boundary conditions satisfied by
the static equilibriumconfiguration ofmultiple spans coupled
via suspension strings. In [12], Impollonia et al. obtained the
deformed shape of the elastic cable in closed form for the
cases of uniformly distributed load andmultiple-point forces.
Greco and Cuomo [13] proposed a method for obtaining an
exact configuration of slack cable nets by using the exact
expressions of the equilibrium derived from the equation of
the catenary.

All the above papers focused on the determination
of static equilibrium configuration of the cable structures.
However, the present paper concentrates on determining
the strain-free or unstretched configuration of multispan
cable. Firstly, based upon the elastic catenary theory, a
set of geometric boundary conditions, cable length con-
dition, and static equilibrium conditions are derived for
determining the configuration of the multispan cables
when they are approaching asymptotically to the strain-
free state. These constraint conditions constitute a sys-
tem of nonlinear algebraic or transcendental function
equations. Secondly, these nonlinear equations are solved
and one finds a set of parameters which determine the
unstretched configuration of the multispan cable. Finally,
an example of three-span cable is given to illustrate the
method.

2. The Governing Equations of
Multispan Cable

First we assume that (1) the bending stiffness of cable is
negligible; (2) the material of cable is of Hookian type; that
is, its constitutive relation is linear elastic; and (3) only the
self-weight as the static force is applied to the cable structure.
Under these assumptions, the governing equation for the
cable in its static equilibrium state is as follows [6]:

( 𝐸𝐴𝜀0√1 + 𝑦󸀠20 )
󸀠

= 0,

( 𝐸𝐴𝜀0𝑦󸀠0√1 + 𝑦󸀠20 )
󸀠

+ 𝜔
𝑐
√1 + 𝑦󸀠20(1 + 𝜀0) = 0.

(1)

Here, the “ 󸀠” denotes the derivative with respect to 𝑥, 𝜀0
denotes the tensional strain in the cable when it is in static
equilibrium state, 𝐸 is Young’s modulus, 𝐴 is the sectional
area of the cable and assumed to be constant, 𝑦0 represents
the static equilibrium shape of the cable, and 𝜔

𝑐
is the cable

weight per unit length in the unstretched state.
The tensional strain 𝜀0 is related to the horizontal ten-

sional force 𝑇
𝐻
as follows:

𝜀0 = 𝑇
𝐻𝐸𝐴√1 + 𝑦󸀠20 . (2)

According to (1), the final static equilibrium governing
equation of the cable can be rewritten in the following form:

(1+ 𝑇
𝐻𝐸𝐴√1 + 𝑦󸀠20 )𝑦󸀠󸀠0 + 𝜔

𝑐𝑇
𝐻

√1 + 𝑦󸀠20 = 0. (3)

This is the so-called elastic catenary equation. Being different
from the traditional catenary equation, it takes account of
the extensibility of the cable. Under the dynamic wind load,
the multispan cable usually vibrates nonlinearly due to its
large displacement, so the finite element analysis is preferable
to investigate the static and dynamic behavior. To build the
FEA model, firstly the geometric model of multispan cable
is needed. Therefore, one of the initial configurations, the
strain-free state or the static equilibrium state, should be
determined. As stated in the Introduction, in the following,
we only discuss how to determine the strain-free configura-
tion of the multispan cable.

3. Determination of the Strain-Free
Configuration

Determining the strain-free configuration of the cable based
on the data of static equilibrium configuration can be viewed
as an inverse problem in nonlinear structural mechanics.
The unstretched state of cable is an assumed state and
it can be viewed as an asymptotic state that corresponds
to 𝐸𝐴 → ∞ (which means the cable is inextensible),
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Figure 1: The configuration of three-span cable.

and 𝜔
𝑐
/𝑇
𝐻

→ −𝑎 (note that 𝜔
𝑐
is negative), so the equation

for cable in unstretched state is as follows:

𝑦󸀠󸀠 − 𝑎√1 + 𝑦󸀠2 = 0. (4)

This is the rigid catenary equation. Its solution can be found
as

𝑦 (𝑥) = 1𝑎 cosh 𝑎 (𝑥 + 𝑐1) + 𝑐2. (5)

For the three-span cable, as illustrated in Figure 1, the
shape of the left span cable in its unstretched state can be
expressed as

𝑦1 (𝑥) = 1𝑎1 cosh 𝑎1 (𝑥 + 𝑐11) + 𝑐12. (6)

Similarly, the shape of themiddle span cable can be expressed
as

𝑦2 (𝑥) = 1𝑎2 cosh 𝑎2 (𝑥 + 𝑐21) + 𝑐22 (7)

and the shape of the right span cable is expressed as

𝑦3 (𝑥) = 1𝑎3 cosh 𝑎3 (𝑥 + 𝑐31) + 𝑐32. (8)

There are 9 unknown parameters appeared in the above
expressions. Determination of the strain-free configuration
of the three-span cable is equivalent to determining these
unknown parameters, so the following constraint equations
can be built.

For the left span cable,

End conditions:
{{{{{{{{{
𝑦1 (𝑥)󵄨󵄨󵄨󵄨𝑥=0 = 𝐻1,𝑦1 (𝑥)󵄨󵄨󵄨󵄨𝑥=𝑙

𝑎

= ℎ
𝑎
,(𝐿1 − 𝑙𝑎)2 + (𝐻2 + 𝑟1 − ℎ𝑎)2 = 𝑟21 .

(9)

Here, the meaning of the first and second equations of (9)
is obvious. In engineering, the rod 𝐴𝑃1 (insulator) is very
stiff so it can be reasonably assumed as rigid; therefore, the
third equation of (9) holds too. Figure 1 can be referred to for
the meaning of the symbols 𝐿1, 𝐻1, 𝐻2, 𝑙𝑎, ℎ𝑎, and 𝑟1 in the
above equations. In addition, the following condition about
the length of the original unstretched cable can be built:

Length condition:∫𝑙𝑎
0
√1 + 𝑦󸀠21 𝑑𝑥 = 𝑠01. (10)

Here, 𝑠01 represents the length of the left span cable in its
unstretched state and can be expressed via the data of the
static equilibrium configuration.

It should be pointed out that, in some cases (e.g., in the
example given later), the original length 𝑠01 of the cable in its
unstretched state may be less than the straight distance 𝐴𝑃1,
so, in order to build a reasonable FEA geometric model, the
position of the hanging point 𝑃󸀠1 must be determined.

Note that the function 𝑦1(𝑥) is in the form of cosh; the
above integral actually can be given explicitly. To find the
length 𝑠01, the following equations can be constructed (see
[3], page 18):𝑇

𝐻
𝑠01𝐸𝐴 + 𝑇

𝐻
𝑠01𝑊1

{sinh−1 ( 𝑉1𝑇
𝐻

)
− sinh−1 (𝑉1 −𝑊1𝑇

𝐻

)} = 𝐿1,
𝑊1𝑠01𝐸𝐴 ( 𝑉1𝑊1

− 1
2
)+ 𝑇
𝐻
𝑠01𝑊1

[{1+( 𝑉1𝑇
𝐻

)2}1/2

−{1+(𝑉1 −𝑊1𝑇
𝐻

)2}1/2] = 𝐻1 −𝐻2,

(11)

where𝑊1(= 𝜔
𝑐
𝑠01) is the self-weight of the left span cable and𝑇

𝐻
and𝑉1 are the horizontal and vertical reaction forces at the

support point 𝐴, respectively. From the above two equations,
the unknown 𝑉1 and 𝑠01 can be solved.

Being similar to (9), for the middle and right span cables,
the following constraint equations can also be constructed.
For the middle span cable,

End conditions:
{{{{{{{{{
𝑦2 (𝑥)󵄨󵄨󵄨󵄨𝑥=𝑙

𝑎

= ℎ
𝑎
,𝑦2 (𝑥)󵄨󵄨󵄨󵄨𝑥=𝐿1+𝐿2+𝐿3−𝑙𝑏 = ℎ

𝑏
,(𝐿3 − 𝑙𝑏)2 + (𝐻3 + 𝑟2 − ℎ𝑏)2 = 𝑟22 ,

Length condition:∫𝐿1+𝐿2+𝐿3−𝑙𝑏
𝑙
𝑎

√1 + 𝑦󸀠22 𝑑𝑥 = 𝑠02.
(12)

For the right span cable,

End conditions:
{{{
𝑦3 (𝑥)󵄨󵄨󵄨󵄨𝑥=𝐿1+𝐿2+𝐿3−𝑙𝑏 = ℎ

𝑏
,𝑦3 (𝑥)󵄨󵄨󵄨󵄨𝑥=𝐿1+𝐿2+𝐿3 = 𝐻4, (13)

Length condition:∫𝐿1+𝐿2+𝐿3
𝐿1+𝐿2+𝐿3−𝑙𝑏

√1 + 𝑦󸀠23 𝑑𝑥 = 𝑠03. (14)
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Again, Figure 1 can be referred to for the meaning of the
symbols𝐻3,𝐻4, 𝐿2, 𝐿3, 𝑙𝑏, ℎ𝑏, and 𝑟2 in the above equations.𝑠02 and 𝑠03 represent, respectively, the lengths of middle and
right span cables in their unstretched state.

Similar to (11), the determining equations for 𝑠02 are as
follows:𝑇

𝐻
𝑠02𝐸𝐴 + 𝑇

𝐻
𝑠02𝑊2

{sinh−1 ( 𝑉2𝑇
𝐻

)
− sinh−1 (𝑉2 −𝑊2𝑇

𝐻

)} = 𝐿2,
𝑊2𝑠02𝐸𝐴 ( 𝑉2𝑊2

− 1
2
)+ 𝑇
𝐻
𝑠02𝑊2

[{1+( 𝑉2𝑇
𝐻

)2}1/2

−{1+(𝑉2 −𝑊2𝑇
𝐻

)2}1/2] = 𝐻3 −𝐻2

(15)

and the equations for 𝑠03 are as follows:𝑇
𝐻
𝑠03𝐸𝐴 + 𝑇

𝐻
𝑠03𝑊3

{sinh−1 ( 𝑉3𝑇
𝐻

)
− sinh−1 (𝑉3 −𝑊3𝑇

𝐻

)} = 𝐿3,
𝑊3𝑠03𝐸𝐴 ( 𝑉3𝑊3

− 1
2
)+ 𝑇
𝐻
𝑠03𝑊3

[{1+( 𝑉3𝑇
𝐻

)2}1/2

−{1+(𝑉3 −𝑊3𝑇
𝐻

)2}1/2] = 𝐻3 −𝐻4.

(16)

Besides (9), (10), and (12)–(14), two other equations describ-
ing the equilibrium conditions of forces in the limiting state
from 𝑃

1
→ 𝑃󸀠
1
and 𝑃

2
→ 𝑃󸀠
2
are given as follows:

At point 𝑃: (T1 +T2) ⋅ 𝜏 = 0. (17)

Referring to Figure 2, the unnormalized directional vector n
can be written in its coordinate-component form as

n = (𝑙
𝑎
−𝐿1, ℎ𝑎 − (𝐻2 + 𝑙1)) (18)

and the unnormalized directional vector 𝜏 can also be given
in its coordinate-component form as

𝜏 = (ℎ
𝑎
− (𝐻2 + 𝑙1) , 𝐿1 − 𝑙𝑎) . (19)

The tensional forces T1 and T2 in the left span and middle
span cables can be written in their component form as

T
1
= − 󵄩󵄩󵄩󵄩T1󵄩󵄩󵄩󵄩 ( 1√1 + 𝑦󸀠2

1

, 𝑦󸀠
1√1 + 𝑦󸀠2
1

)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑋
𝑃
󸀠

1

,

T
2
= − 󵄩󵄩󵄩󵄩T2󵄩󵄩󵄩󵄩 ( 1√1 + 𝑦󸀠2

2

, 𝑦󸀠
2√1 + 𝑦󸀠2
2

)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑋
𝑃
󸀠

1

.
(20)

T1

T2

Tn

P

B

𝜏

n

Figure 2: The forces at the suspension point.

On the other hand, in the limit case (𝜔
𝑐
→ 0), the following

relations hold: 𝜔
𝑐󵄩󵄩󵄩󵄩T1󵄩󵄩󵄩󵄩 /√1 + 𝑦󸀠21 = − 𝑎

1
,

𝜔
𝑐󵄩󵄩󵄩󵄩T2󵄩󵄩󵄩󵄩 /√1 + 𝑦󸀠22 = − 𝑎

2
. (21)

Substituting these relations into (13), one finally gets

( 1𝑎2 − 1𝑎1) (𝐻2 + 𝑙1 − ℎ𝑎)
+ (𝑙
𝑎
−𝐿1) (𝑦󸀠2𝑎2 − 𝑦󸀠1𝑎1 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑙
𝑎

= 0. (22)

Similar to (22), at point 𝐶 the following relation holds:

( 1𝑎3 − 1𝑎2) (𝐻3 + 𝑙2 − ℎ𝑏)
+ (𝐿3 − 𝑙𝑏) (𝑦󸀠3𝑎3 − 𝑦󸀠2𝑎2 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝐿1+𝐿2+𝐿3−𝑙𝑏 = 0. (23)

Theoretically, the strain-free configurations of cable struc-
tures with any number of spans can be determined in the
same way as described above. On the other hand, there are
infinity of many strain-free configurations for the multispan
cables; each of them satisfies the geometric constraints, that
is, the end conditions and the length conditions. By imposing
the force equilibrium conditions, we obtain actually the
asymptotic strain-free configuration of the cable. In a sense,
such an asymptotic configuration (from the static equilibrium
state to the strain-free state) is optimal, because it is most
similar to the static equilibrium shape of the cable, so if
one performs the FEA starting from this configuration, the
convergence is expected to be most rapid.

For determining the configuration of the three-span
cable in its unstretched state, totally, there are 13 unknowns
including 𝑎

𝑖
, 𝑐
𝑖𝑗
(𝑖 = 1 ⋅ ⋅ ⋅ 3, 𝑗 = 1, 2) and ℎ

𝑎
, ℎ
𝑏
, 𝑙
𝑎
, and 𝑙

𝑏
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Table 1: The parameters of three-span cable.

Parameter Value𝐻
1

40𝐻
2

206𝐻
3

210𝐻
4

45𝐿
1

580𝐿
2

1910𝐿
3

570𝑇
𝐻

91378𝐸 6.3𝑒 + 10𝐴 6.6655𝑒 − 4𝜌 4524.1𝜔
𝑐

29.0668

Table 2: The solution of three-span cable.

Parameter Value𝑎
1

0.2591𝑒 − 3𝑎
2

0.2791𝑒 − 3𝑎
3

0.2590𝑒 − 3𝑐
11

802.4259𝑐
12

−3903.9257𝑐
21

−1527.5928𝑐
22

−3502.7267𝑐
31

3879.8891𝑐
32

−3903.5631ℎ
𝑎

206.0680ℎ
𝑏

210.0671𝑙
𝑎

578.8362𝑙
𝑏

1912.3203

and 13 equations including (9)-(10), (12)–(14), and (22)-(23).
Because of the complex nonlinearity, these equations can only
be solved numerically. In the next section, an engineering
example is given as illustration.

4. An Example

To illustrate the proposedmethod for determining the strain-
free configuration of multispan cable, in this section a real
three-span transmission line system is taken as example; its
data are listed as shown in Table 1.

Substituting these data into the above equations and then
using the Newton-Raphson method, one can find a set of
solutions as shown in Table 2.

The unstretched lengths of the three span cables are
found to be 𝑠01 = 602.7090463, 𝑠02 = 1935.110206, and𝑠03 = 592.8032497, respectively. Knowing the values of these
parameters, the asymptotic configuration of the three-span
cable in its strain-free state can be described by (6)–(8).

Via the above computed results, the original unstretched
configuration of the three-span cable can be easily plotted
as shown in Figure 3. Starting from this configuration, the

X

Y

Z

Unstretched configuration
Static equilibrium configuration

A
D
I
N
A

Figure 3:The unstretched and the static equilibrium configurations
of the three-span cable.

Figure 4: The magnification of local configuration near the left
insulator.

geometric model for FEA can be easily built, and the cor-
responding static equilibrium configuration can be further
determined by using FEA software, for example, the ADINA.
The static equilibrium configuration via the ADINA is also
shown in the same figure. The largest difference in height
between the unstretched and the static equilibrium config-
urations is about 17.75m.

On the other hand, to see clearly the difference between
the original unstretched and the static equilibrium configura-
tions, a zoom-in of the local configurations of the three-span
cable near the left insulator is shown in Figure 4.

5. Conclusions

In this work, a method is presented for determining the
asymptotic strain-free configuration of the multispan cable.
The constraints of the geometric conditions and the asymp-
totic static equilibrium conditions are derived, and the deter-
mining equations for the asymptotic strain-free configuration
are obtained. A set of parameters which describe the shape of
the multispan cable are determined. The proposed method
provides a way to build reasonable FEA geometric model of
multispan cables. At last, a three-span cable system is taken
as example to illustrate the effectiveness of the method; the
results are validated via the ADINA.
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