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This paper presents elasticity solutions for the vibration analysis of isotropic and orthotropic open shells and plates with arbitrary
boundary conditions, including spherical and cylindrical shells and rectangular plates. Vibration characteristics of the shells and
plates have been obtained via a unified three-dimensional displacement-based energy formulation represented in the general shell
coordinates, in which the displacement in each direction is expanded as a triplicate product of the cosine Fourier series with the
addition of certain supplementary terms introduced to eliminate any possible jumps with the original displacement function and its
relevant derivatives at the boundaries. All the expansion coefficients are then treated equally as independent generalized coordinates
and determined by the Rayleigh-Ritz procedure. To validate the accuracy of the present method and the corresponding theoretical
formulations, numerical cases have been compared against the results in the literature and those of 3D FE analysis, with excellent
agreements obtained. The effects of boundary conditions, material parameters, and geometric dimensions on the frequencies are
discussed as well. Finally, several 3D vibration results of isotropic and orthotropic open spherical and cylindrical shells and plates
with different geometry dimensions are presented for various boundary conditions, which may be served as benchmark solutions

for future researchers as well as structure designers in this field.

1. Introduction

In many applications and fields of modern technology,
for example, civil aviation, space industry, and deep-ocean
exploitation, the engineering structures often work in com-
plex environment conditions and can be subjected to various
forms of external loads, which may result in violent vibrations
and lead the structures to failure. Therefore, it is of particular
importance to understand the structural vibrations and
reduce them through proper design to ensure a reliable, safe,
and lasting structural performance. An important step in
vibration design of an engineering structure is the evaluation
ofits vibration modal characteristics. This modal information
plays a key role in the structure design and vibration suppres-
sion when subjected to dynamics excitations.

Plate and shells, such as rectangular plates and cylindrical,
conical, and spherical shells, are basic structural elements of
most engineering structures. A thorough understanding of

their vibration characteristics is of great significance for engi-
neers to predict the vibrations of the whole structures. Plates
can be viewed as shells with zero curvature (infinite radii
of curvature); thus, for simplicity, the plates are treated as a
special case of shells in subsequent introductions. Recently,
the vibration analysis of shells has received much attention.
The literature on this subject is vast. In the literature, many
of the studies are based on the thin-shell theories (such
as Donnell’s, Love’s, and Sanders’ shell theories), which are
developed on the basis of the Kirchhoff-Love’s simplifying
assumptions [1-10]. Much more information on thin-shell
theories is available in an influential monograph published
by Leissa [11] in 1973. The thin-shell theories are very efficient
in calculating vibration results of thin shells; however, they
are highly inadequate for the analysis of even slightly thick
shells due to the fact that the transverse stress and strain
components are omitted. Therefore, the vibration of thick
shells has conventionally been solved using the first-order



shear deformation theories (FSDTs) and the higher-order
shear deformation theories (HSDTs) [12-19]. However, shear
correction factors have to be incorporated in the FSDTs
to adjust the transverse shear stiffness due to the fact that
the shear strains along the shell thickness are assumed
to be constant. A remedy to this drawback is to use the
HSDTs, which are based on the assumption of nonlinear
strain variation through the shell thickness. The HSDTs,
however, are still inadequate for the analysis of thick shells
since the transverse normal stress and strain components are
ignored in these theories. To analyze thick shells, the three-
dimensional (3D) theory of elasticity which accounts for all
the transverse stress and strain components may be the best
choice.

In recent years, vibration analysis of shells relying on the
3D theory of elasticity has attracted the attention of many
researchers. The 3D analysis not only provides realistic results
but also allows solving the whole spectrum of thick shells.
Some research works in this research topic include those of
Loy and Lam [20] using a layer-wise approach to study the
vibration of thick cylindrical shells with simply supported-
simply supported and clamped-clamped boundary condi-
tions. Liew and his coauthors [21-23] had developed a p-
Ritz method to calculate vibration results of solid cylinders,
spherical panels, open cylindrical shells, and curved panels.
In this method, the admissible displacements of a structure
are expressed in terms of sets of one- and two-dimensional
orthogonal polynomial functions and solved by the Ritz
method. Leissa and his coworkers [24-26] carried out a 3D
method for determining the free vibration frequencies and
mode shapes of thick shells with variable thickness. In this
approach, displacement components in the meridional and
normal directions are taken to be algebraic polynomials,
respectively. Strain and kinetic energies of the shells are
formulated, and upper bound values of the frequencies are
obtained by minimizing the energy functional with respect
to the expanded coefficients. Also, Zhou et al. [27, 28]
investigated the vibration characteristics of cylindrical shells
and doubly curved panels by the Chebyshev-Ritz method,
in which the displacement in each direction is taken as
a triplicate product of the Chebyshev polynomials in shell
dimensions, multiplied by a boundary function along with a
set of generalized coeflicients determined by Ritz procedure.
Other contributions can be seen in [29-34]. The development
of researches on this topic can be seen in several monographs
by Leissa and Qatu [35], Qatu [36], Reddy [37], and Saada
[38] and reviews [39-41].

Compared with the above researches, it is observed that
there exist a few investigations concerning 3D vibration
analysis of closed shells and shallow shells with particular
geometrical configurations, such as cylindrical, conical, and
spherical shells. However, to the best of our knowledge, a
unified 3D elasticity solution for isotropic and orthotropic
open shells with arbitrary boundary conditions and vari-
able circumferential dimensions does not seem to exist. In
addition, most of the previous researches were limited to
isotropic shells with a specified set of boundary conditions
(such as free-fee, simply supported-simply supported, and
clamped-clamped), and thus they typically require constant
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modifications of the trial functions and corresponding
solution procedures to adapt to different boundary cases.
Therefore, the use of the existing solution procedures can
be easily inundated with various boundary conditions in
practical applications due to the fact that there are hundreds
of sets of boundary conditions for an open shell. Moreover,
the open shells in the engineering applications may be
of recognizable thickness-length/thickness-radius ratios and
have large curvature (small radius of curvature). Therefore,
a unified, reliable, and efficient method for predicting the
3D vibration characteristics of thick deep and shallow open
shells with arbitrary boundary conditions would be highly
desirable.

In view of these voids, this paper presents an endeavor
to investigate the vibrations of isotropic and orthotropic
open shells with arbitrary boundary conditions and variable
circumferential dimensions in the framework of 3D shell
theory.

In the present paper, the 3D shell theory and the energy
based Rayleigh-Ritz procedure are combined to develop the
elasticity solutions. Since there are many types of open shells,
and it is impossible to undertake an all-encompassing survey
of every case of them, therefore, the present work is focused
on the open cylindrical and spherical shells, which are most
frequently used in the engineering practices. Under the
current framework, the displacement in each shell direction
is expanded as a triplicate product of the cosine Fourier series
with the addition of certain supplementary terms introduced
to eliminate any possible jumps with the original displace-
ment function and its relevant derivatives at the bound-
aries. All expansion coeflicients are then determined by the
Rayleigh-Ritz procedure. Based on the proposed method,
numerical cases are presented and compared against results
in the literature to validate the accuracy of this method.
Effects of boundary conditions, geometric dimensions, and
material properties on the natural frequencies of open shells
and plates are discussed as well. Finally, several 3D vibration
results of isotropic and orthotropic open cylindrical and
spherical shells and plates with different geometry dimen-
sions are presented for various boundary conditions, which
may serve as benchmark solution for future researches to
evaluate the new 2D shell theories and to compare results
obtained by approximate numerical methods.

2. Theoretical Formulations

2.1. The Model. As shown in Figure 1(a), an open shell of
meridional length L ,, circumferential width L 5, and uniform
thickness h are selected as the analysis model. An orthogonal
shell coordinate system («, 3, and z) located in the middle
surface of the shell is considered to present the geometry
dimensions and its deformations, in which the coordinates
«, 3, and z are taken in the meridional, circumferential,
and normal directions, respectively. R, and Ry are the
mean radii of curvature in the « and f directions. The
displacement variations in the meridional, circumferential,
and normal directions of an arbitrary point in the shell space
are represented by u, v, and w, respectively.
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FIGURE 1: Geometries and coordinate systems of plates and open cylindrical and spherical shells.

2.2. Kinematic Relations and Stress Resultants. According to
the three-dimensional shell theory of elasticity, the general
strain-displacement relations for a shell can be defined as
follows [33, 38]:
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where &, &g, €, V> Vaz> a0d Yup are the normal and shear
strains. H,, Hg, and H,, indicate the Lamé parameters; they
can be derive(f from the rectangular coordinate system (x, y,
and z) by the following relationships:

(&) () (),




)

It should be stressed that the Lamé parameters given in
(2) are determined by the adopted orthogonal curvilinear
coordinate system. Consequently, the strains given in (1)
depend on the adopted coordinate system as well. Since the
present work is focused on the open cylindrical and spherical
shells and plates, which are most frequently used in the engi-
neering practices, therefore, under the current framework,
the rectangular, cylindrical, and spherical coordinate systems
are chosen to develop the theoretical formulations for the
plates and open cylindrical and spherical shells, respectively.
According to Figures 1(b)-1(d), the coordinates («, f3, and
z), geometry dimensions (L,, Lg, R,, and Rp), and Lamé
parameters (H,, Hy, and H;) of the plates and shells under
consideration are [38]

(a) plates: o« = x, B = y, L, = a,Lg = b, R, = Rg = 00,
andHazHﬁszzl,

(b) cylindrical shell: « = x, 8 = 0, L, = L, Lﬂ = RO,
R,=00,Rg=R,H,=1,Hg=zand H, = 1,

(c) spherical shell: « = ¢, 8 = 0, L, = RA$, Lg = RO,
R, = R,Rﬁ =R H, = Z,Hﬁ =zsin¢,and H, = 1,

where 0, is the included angle in the circumferential direction
of open cylindrical and spherical shells. A¢ is determined by
the ends of a spherical shell (ie., Ap = ¢, — ¢,). The cor-
responding strain-displacement relations for the plates and
open cylindrical and spherical shells are given in Appendix A.

For open shells and plates, the three-dimensional consti-
tutive relations are given by Hooke’s law as

O [Ci Ci Ci3] (&

opr=1Cin Gy Cys| 187>

o LCi3 Gy Gyl L, 3)
Tpz [Cas 0 07 |7V

Tz =| 0 Css 0 | {Yaz (>

Top L 0 0 Ceed (Vap

where 0,,, 03, 0, Tg,» To,> and T, are the normal and shear
stresses. And the elastic stiffness coefficients o (i,j = 1-6)
for the orthotropic materials are given as
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where E,;, E,,, and E;; represent Young’s moduli in the «,
B, and z directions, respectively. y;; (i, j = 1,2,3,i # j) are
the corresponding Poisson’s ratios. Gy,, G;3, and G,; indicate
the shear moduli. It should be noted that there are only nine
independent material parameters for orthotropic materials,
thatis, E,;, E,, Es3, G5, G35 Ga35 t12> 13> a0d 5. The other
Poisson’s ratios are defined as y;; = E;;u1;;/E;;. By letting E; =
Ey = Ess thy = ths = s anC{Gu =Gy =Gy = By /2 +
244,,), the present formulation can be readily applied to open
shells and plates made from isotropic materials.

2.3. Energy Expressions. 3D vibration analysis of structures
has long been a goal of researchers in the field. Unfortunately,
in most cases, it is very difficult to obtain the exact 3D
analytical solutions of a structure. Therefore, this compels
researchers to seek for approximate solutions by modern
techniques such as the Rayleigh-Ritz method, DQ method,
RBF method, FEM, and DSC approach. Among them, the
Rayleigh-Ritz is widely adopted due to the reliability of
its results and efficiency in practical calculation. Since the
purpose of this work is to develop a unified, reliable, and
efficient method for predicting 3D vibration characteristics
of thick isotropic and orthotropic open shells and plates
with arbitrary boundary conditions and variable geometry
dimensions, the Rayleigh-Ritz procedure is applied in this
paper. The deformation strain energy of a shell can be
expressed in terms of the strains and stresses given previously
as

1 (L (Lp (h
Uv = 2 J- J J {‘Socazx T EROR + &0, + VpeTpz * VazTlaz T yfxﬁT“ﬁ} H HgH,dz df da ®)
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and the kinetic energy can be written as

(6)

.JOLa JOL,; th{(%)z+(%) (aalf) }HHﬁH dzdpda,

where p is the density of the materials. In the present
work, the general restrained conditions of an open shell
are realized by introducing three groups of artificial linear
springs (k,, k,, and k,,) at each boundary of the open shell to
separately simulate the boundary forces and displacements.
These boundary springs are assumed to be continuously
distributed through the entire boundary domain. Therefore,
arbitrary boundary conditions of the shell can be easily
simulated by assigning these springs at proper stiffness. For
example, the clamped boundary conditions can be realized
by setting all the boundary springs to be infinitely rigid
(represented by a very large number 10’D, where D is the
flexural stiffness D, defined as D = E, b’ /12(1— /,tfz)). For the
purpose of convenience, symbols kj, k;,, and ky; (y = a0, B0,
al,and f1) are used to indicate the stiffness (per unit area) of
the boundary springs at the boundariesax =0, 3 =0, = L,
and B = Lp, respectively. Therefore, the deformation strain
energy about the boundary springs (Uy;,) can be defined as
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In particular, for open cylindrical shells, the energy functions
are defined as
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and, for open spherical shells, the energy functions are
defined as
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where s, = sin ¢ and ¢4 = cos ¢.

2.4. Admissible Displacement Functions. The Raleigh-Ritz
method is one of the most common approximate methods
used in the vibration analysis of continuous systems. The
selection of suitable admissible displacement functions is of
particular importance in this method due to the fact that
its convergence and accuracy highly depend on the selected
admissible displacement functions. It has been always of
great interest for researchers to develop a unified, accurate,
and feasible admissible displacement function which can
be used to determine the vibration characteristics of a
structure with arbitrary boundary conditions. In the present
work, an improved Fourier series proposed by Li for the
vibration analysis of 1D [42] and 2D [43] structures with
general boundary conditions is extended to investigate the



3D vibration characteristics of open shells and plates. The
displacements of an open shell/plate can be written as

u(a, B, z,t) =U (o, B, 2) €,
v(a, Bz, t)
w (e, Bz, t)

in which w is the eigenfrequency and j* = -1. U(a, 3, 2),
Ve, B, z), and W(a, 3, z) are the 3D improved Fourier series
expansions constructed as

Ul B, 2)

M

=V (a, B,z) e, (12)

=W (a B, 2) e,

N Q
Z ZAmnq cos A acos A, Bcos A,z

=
Ii
L
3
I
(=}
=
I
o

(13)
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where A,, = mmn/L,, A, = nn/Lg and A, = qr/h. M,
N, and Q represent the truncation numbers with respect to
variables «, 3, and z. The magnitude of M, N, and Q will
be determined by the convergence studies given in Section 3.
The good accuracy and fast convergence behavior of the
improved Fourier series solution will be shown later. A,,,,,
B,ug> and C,,,,,, are the triple cosine Fourier series expansion
coeflicients for the displacement components u, v, and w,

respectlvely Aknq Aimq A?cmn’ kngq® Bfmq Bkmn’ Can Cl[:mq
and Cj,,, are the corresponding expansion coefficients of the
auxiliary functions. Each coeflicient is treated equally as an
independent generalized coordinate and will be determined
by performing the Rayleigh-Ritz procedure in future. ;. («),
((B), and {i.(z) (k = 1,2) are six auxiliary functions. The
objective of introducing these auxiliary functions in each
displacement is to eliminate any possible jumps with the
original displacement function and its relevant derivatives
at the boundaries when the displacement is expanded as
a conventional triple cosine series. Thus, the function sets
given in (13) are capable of representing any 3D motion of
an open shell/plate with increasing accuracy as the truncated
numbers are increased. It should be stressed that these jumps
are not inherently related to the displacement function over
the solution domain; instead, they are the artifact resulting
from the Fourier series representation of the displacement
solution. The detailed illustration is given in [43]. More
information about the improved Fourier series can be seen
in [42]. The auxiliary functions are given as

g (14)
2
_P (B
G- (L)
z 2
G@=z(5-1)
2tz
Cz(z)—z<ﬁ—1)
It can be verified that
GO =0(L)=6G(L) =0, §(0)=1,
(15)
5L =4 (L) =60 =0, &(L,)=1

Similar conditions can be found in the auxiliary functions
related to variables 3 and z. More detailed information about
the auxiliary functions can be seen in [43, 44].

2.5. Solution Procedure. Since the improved Fourier series
expression given in (9) is defined on the interval of
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[0,L,]®[0,L ﬁ] ® [0,h], thus, linear transformations for
coordinates from R, < z < R, and ¢, < ¢ < ¢, (spherical
shells) to z € [0, h] and g_b € [0, A¢] should be introduced for
the practical programming and computing. With the energy
expressions and admissible displacement functions given in
the previous subsections, the remaining work is to obtain the
actual displacement functions by determining the coefficients
associated with the displacement functions. The Lagrangian

energy functional comprising the strain and kinetic energies
of the open shell/plate can be defined as

L=T-Uy-U,. (16)

Substituting the energy expressions and the admissible dis-
placement functions into the Lagrangian energy functional
and performing the Rayleigh-Ritz operation with respect to
the following undetermined coefficients:

oL
o "
* (17)
- B B B
X= Amnq’ A7cnq’ Akmq’ A?cmn’ anq’ anq’ Bkmq’ Blzcmn’ Cmnq’ Cznq’ Ckmq’ Cimn’
the vibration characteristic equation can be obtained and G” = [COOO,...,Cmnq,...,C NG Clor - > Chngr -+ >
summed up as the following matrix form:
B B B
2 Cowr Clos -+ Clar > Coniy Cioo > Cl
(K-0’M)G =0, (18)
Chamv]
where K and M are, respectively, the stiffness and mass 1)

matrices. Both of them are symmetric matrices and can be
written as

KHM KMV Kuw
T
K = Kuv KVV vw >
T T
L KM'IU KVU) wa (19)
'M,, 0 0
M=| 0 M, o0
Lo o0 M,
The detailed expressions of submatrices K,,,,, K,,,» K,,.,» K,

K, Kyo» M, M,,, and M, are given in Appendix B,
respectively. G is the column matrix which contains, in an
appropriate order, the unknown expansion coefficients that
appear in the series expansions (13); namely,

G=[G"G"Gc"]", (20)
where

G = [Agows- > A > Ariny A > A

A g A
Asne Al Al At AT s AT 5
A

Gv:[BOOO,...,anq,...,BMNQ,B‘{‘O,...,anq,...,
BSyg Bl Boos -+ Borios Bios s B>
By

The natural frequencies of open shells and plates under
consideration can now be solved based on a standard
numerical procedure. These frequencies are upper bounds
on the exact values. With the truncation numbers in (13)
being increased, the current results will approach the exact
solution as closely as desired. The mode shape corresponding
to each frequency can be easily determined by substituting
the eigenvector G back into the improved Fourier series
expansions and solving for the ratios of coeflicients. In
addition, the proposed method can be readily applied to force
vibration analysis of isotropic and orthotropic open shells
and plates with arbitrary boundary conditions by summing
the loading vector F on the right side of (18) and solving the
standing characteristic equation.

3. Numerical Examples and Discussions

According to the theoretical formulations presented in
Section 2, a unified computer code based on the scientific
software MATLAB has been developed, which is capable
of calculating vibration results of isotropic and orthotropic
plates and open shells with arbitrary boundary conditions
and variable circumferential dimensions. With this code,
in this section, several numerical examples are presented
to test the convergence, accuracy, and reliability of the
proposed improved Fourier series method. In the following
calculations, three types of frequently encountered boundary
conditions, that is, complete free boundary (F), simply
supported support (S), and full clamped restraint (C), are
considered. Taking edge « = 0, for example, these types of
boundary conditions can be written in terms of boundary
spring rigidities as

(1) free edge (O"a = Taﬁ = T(JLZ = 0). k::o = kZCO = kgé}() = 0)
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TaBLE 1: Convergence of the first six nature frequencies (Hz) of open cylindrical and spherical shells with FFFF boundary conditions.

MR MxNxP Open cylindrical shells Open spherical shells
1 2 3 4 5 6 1 2 3 4 5 6

13x13x09 15343  215.67 33135 413.97 45154 596.42 12846 14832 30856 357.03 562.05 572.62
13x13x10 15342 21566 331.35 413.97 45153 596.41 12846 14831 30856 35702 562.04 572.60
1Bx13x11 15342 21566 33135 413.97 45153 596.41 128.46 14831 30856 35702 562.04 572.60
02 14x14x09 15338 21567 33132 41393 45152 596.41 128.46 148.26 30852 35701 562.02 572.34
14x14x10 15338  215.66 33132 41393 45152 596.40 128.45 14826  308.51 35701 562.01  572.33
14x14x11 15338  215.66 33132 413.93 45152 596.40 128.45 14826 30851 35701 562.01  572.33
ANSYS 153.38 21572 33135 413.95 45155 596.90 128.48 148.28 308.47 35718 562.08 572.43
13x13x09 28352 398.61 576.28 594.09 666.63 98213  219.22  260.60  489.01 571.20 843.44 844.46
13x13x10 28351 398.60 57628 594.08 666.63 98213 21922 260.60 489.01 571.20 843.44  844.45
13x13x11 28351 398.60 576.28 594.08 666.63 98213  219.22 260.60 489.01 57120 843.43  844.45
04 14x14x09 28350 398.60 57627 594.08 666.62 98213 21922 260.60 489.01 571.20 843.44 844.46
14 x14 x10 28350 398.60 576.27 594.08 666.62 98213 21922 260.60 489.01 571.20 843.44  844.45
14 x14 x11  283.50 398.60 576.27 594.08 666.61 98213 21922 260.60 489.01 571.20 843.43  844.45
ANSYS 283.78 399.09 57712 594.54 66751  982.69 21954  261.03  489.88 57271 844.97 846.35

(2) simply supported edge (o, = 0, v = w = 0): kj;, =
0k, = k“ =10"D,

(3) clamped edge (u = v = w = 0): kjy, = kiy, = ki), =
10D,

where D is the bending rigidity, defined as D = E,,h’/12(1 -
2
H1)-

The appropriateness of defining these boundary condi-
tions in terms of boundary spring rigidities will be verified
by the numerical applications given later. The present for-
mulation can be applied to shells subjected to uniform and
nonuniform elastic boundary conditions, mixed boundary
conditions, and their combinations as well. For simplicity,
a short letter string is adopted to describe the boundary
conditions of a plate/open shell, such as FCSF which denotes
that the boundaries « = 0, = 0,0 = Ly, and f = Ly of
the structure are completely free, clamped, simply supported,
and completely free, respectively (counterclockwise).

3.1. Convergence Study. Theoretically, there are infinite terms
in the improved Fourier expansions given in (13); thus, the
expansions should be truncated and only finite terms are
considered in the actual computing. As the first example, in
Table 1, convergence studies of the first six frequencies (Hz)
of completely free thick open cylindrical and spherical shells
with different thickness-radius ratios are performed to check
the convergence behavior of the improved Fourier solutions.
Two thickness-radius ratios, that is, #/R = 0.2 and 0.4, are
considered in the study. The two shells are assumed to be
made from isotropic materials with the following material
properties: E = 210 GPa, u = 0.3, and p = 7800 kg/m”’. The
geometric dimensions are L = 2m, R = 1 m, and 6, = 27/3
for the cylindrical shell and ¢, = 7/4, ¢; = 371/4,R = 1m,
and 0, = 7 for the spherical one. It can be seen from Table 1
that the frequencies have converged monotonically to four
significant figures. For all modes, the differences between
results forms “13 x 13 X 9” and “14 x 14 x 11” are very small, less

than 0.05%. With the truncated numbers being increased, the
current results will approach the exact solution as closely as
desired; thus, the proposed improved Fourier method should
be better understood as a method with arbitrary precision.
In order to check the accuracy of the current method, results
obtained by the FEM analysis (ANALYS, SOLID45, element
size: 0.02 m) are also listed in the table. It can be found that the
two results are in good agreement. Unless otherwise stated,
the improved Fourier expansions are truncated as “14 x 14 x
11”7 in all the following examples.

3.2. Plates with Arbitrary Boundary Conditions. In this sub-
section, we consider vibrations of isotropic and orthotropic
plates. Table 2 compares the lowest seven frequency parame-
ters Q = wa”+/ph/D of isotropic plates with FFFF and SSSS
boundary conditions. Two different thickness-length ratios,
that is, h/a = 0.1 and 0.5, corresponding to moderately
thick and thick plates are considered in the comparison.
The geometry parameters and material constants used in
this example are a/b = 1, E = 210GPa, ¢ = 0.3, and
p = 7800kg/m’. The solutions given by Jin et al. [44] by
the Ritz method with modified Fourier series and those of
Liew et al. [45, 46] by the 3D Ritz method with general
orthogonal polynomials using the Gram-Schmidt process
are provided for a direct comparison. It is obvious that the
present solutions agree very well with the referential data. The
maximum differences between the present results and those
of Jin et al. [44] and Liew et al. [45, 46] are less than 0.02%
and 0.06%, respectively.

We next give the results for orthotropic plates with
various boundary conditions and thickness-length ratios in
Table 3 and Figure 2. In Table 3, the lowest five frequency
parameters O = wa’+/ph/D of an orthotropic rectangular
plate with different combinations of boundary conditions are
presented for three different thickness-length ratios; that is,
h/R = 0.1, 0.2, and 0.3. The other geometrical parameters
used for the analysis are a/b = 1/2. The plate is made of
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TaBLE 2: Comparison of frequency parameters Q = wa’+/ph/D of isotropic square plates with FFFF and SSSS boundary conditions (E =
210 GPa, pt = 0.3).

Mode number

B.C. hla Method
1 2 3 4 5 6 7
Reference [44] 12.728 18.956 23.346 31.965 31.965 55.493 55.493
0.1 Reference [45] 12.726 18.955 23.347 31.965 31.965 55.493 55.493
FEFE Present 12.728 18.955 23.346 31.969 31.969 55.493 55.493
Reference [44] 8.7801 12.515 14.962 16.072 17.030 17.030 17.632
0.5 Reference [45] 8.7802 12.515 14.962 16.073 17.030 17.030 17.631
Present 8.7801 12.515 14.962 16.072 17.030 17.030 17.632
Reference [44] 19.098 45.636 45.636 64.384 64.384 70.149 85.500
0.1 Reference [46] 19.090 45.619 45.619 64.383 64.383 70.104 85.488
SSSS Present 19.099 45.636 45.647 64.384 64.384 70.128 85.502
Reference [44] 12.426 12.877 12.877 18.210 23.009 23.009 25.753
0.5 Reference [46] 12.426 12.877 12.877 18.210 23.007 23.007 25.753
Present 12.425 12.877 12.877 18.210 23.009 23.009 25.753

TABLE 3: The first five frequency parameters Q) = wa’+/ph/D of an orthotropic plate with various boundary conditions and thickness-length
ratios (a/b = 1/2).

Boundary conditions

h/a Mode
FFFF FFFC CFFFF FSFS FCFC SFSF SSSS SCSC CFCF CSCS CCCC
1 1.2016 0.1913 3.1286 0.5325 1.2110 8.0884 8.2286 8.3199 12.661 12.713 12.767
2 1.6450 0.9024 3.2604 1.7197 2.1741 8.1983 8.3304 8.3304 12.696 12.988 13.243
0.1 3 3.2673 1.1872 3.8097 2.1094 3.2796 8.3304 8.8058 9.1970 12.868 13.805 14.451
4 3.5278 1.6663 5.2189 3.7856 4.6138 8.6275 10.182 11.061 13.400 15.512 16.647
5 5.8822 2.8738 7.7408 4.1791 6.3016 9.6412 12.616 13.998 14.637 16.661 19.938
1 1.1742 0.1900 2.5758 0.5272 1.1626 4.1652 4.1652 4.1652 7.4161 7.4588 7.5325
2 1.5490 0.8298 2.6625 1.5882 1.9269 5.9691 6.0783 6.1728 7.4365 7.7739 8.0882
0.2 3 3.0822 0.9344 3.1059 2.0326 3.0201 6.0448 6.5922 6.9602 7.5916 8.3304 9.3822
4 3.2398 1.1482 4.0386 2.0895 3.2493 6.3768 7.8472 8.3304 8.1909 8.7352 10.210
5 3.9204 2.6058 4.3684 3.4893 4.1349 7.2497 8.3304 8.5464 8.2659 10.196 11.435
1 1.1337 0.1884 2.0798 0.5189 1.0997 2.7768 2.7768 2.7768 5.1645 5.2093 5.2982
2 1.4422 0.3706 2.1375 1.3930 1.7267 4.5255 4.6197 4.7182 5.1800 5.5536 5.8807
0.3 3 2.6132 0.7345 2.5347 1.4672 2.1676 4.5817 5.1096 5.4364 5.3430 5.5688 6.8086
4 2.8421 1.0972 2.6924 1.9250 2.7193 4.8655 5.5536 5.5536 5.5107 6.5703 7.0848
5 2.9387 1.9690 3.7018 3.1616 3.6066 5.4050 5.5536 6.7789 5.9915 6.7960 8.7975

orthotropic material with the following material parameters:  of boundary conditions are presented for various thickness-

E/E; = 20, E,, = Esy = 10GPa, py, = py; = 0.25,
ty; = 03,Gy, = G5 = Gy; = 5GPa, and p = 4500 kg/m”.
From Table 3, we can observe that the frequency parameters
of the plate decrease with the thickness-radius ratio increases.
Figure 2 shows the first five mode shapes of the plate with
FCFC boundary conditions. The figure reveals that the mode
shapes of rectangular plates varied with thickness-length
ratio.

3.3. Open Cylindrical Shells with Arbitrary Boundary Con-
ditions. In this subsection, the accuracy and reliability of
the current method are validated by comparing the results
with those published in the open literature and the FEM
analysis firstly. Then, numerous new results of open isotropic
and orthotropic cylindrical shells with different combinations

radius ratios, included angles, and length-radius ratios. Also,
the effects of boundary conditions, geometric dimensions,
and material properties on the natural frequencies of the
cylindrical shells are studied.

As the first example, comparison of the first ten frequency
parameters Q = wL+/p/E of a thick open cylindrical shell
with CFFE SSSS, and CCCC boundary conditions is pre-
sented in Table 4. The shell with length L = 1m, width
R = 2m, thickness h = 0.5m, and included angle 6, =
2 arcsin(0.25) is assumed to be made from isotropic materials
with the following material properties: E = 210 GPa, u = 0.3,
and p = 7800 kg/m’. The comparison is performed between
the current results and those provided by Liew et al. [23]
by using the continuum and discrete approaches and the FE
simulation (MSC/NASTRAN) based on the 3D shell theory.
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FIGURE 2: Mode shapes of an orthotropic plate with FCFC boundary conditions and various thickness-length ratios.

TABLE 4: Comparison of frequency parameters O = wL+/p/E of a thick open cylindrical shell with different boundary conditions (L = 1m,

R/L=2,h/L=05,0,=2sin(0.25)", E = 210 GPa, and y = 0.3).

Boundary conditions ~ Theory Mode Number
1 2 3 4 5 6 7 8 9 10
3-D [23] 0.4427 0.6683 0.7822 1.5918 1.6516 1.7726 2.1988 2.2401 — —
CFFF FEM [23] 0.4411 0.6656 0.7794 1.5858 1.6452 1.7660 2.1902 2.2317 — —
Present 0.4431 0.6686 0.7825 1.5916 1.6531 1.7724 2.1998 2.2399 2.7542 3.0345
3D [23] 1.8361 1.9278 1.9483 2.7626 3.4121 3.4650  3.8276 3.8967 43067  4.3069
SSSS FEM [23] 1.8320 — — 2.7565 3.4045 3.4573 3.8191 3.8880 4.2964 4.2971
Present 1.8355 1.9268 1.9473 2.7625 3.4113 3.4637 3.8257 3.8946 4.3049 4.3057
3D [23] 2.3448 3.4994 3.6541 3.7476 3.7862 4.3711 47706  5.2640 5.3601 5.3900
CCCC FEM [23] 2.3350 3.4864  3.6405 3.7335 3.7723 4.3548 4.7528 5.2443 5.3402 5.3699
Present 2.3507 3.5063 3.6605  3.7500 3.7895 4.3705 4.7782 5.2736 5.3667 5.3992

The symbol “-” represents frequency parameters that were
not considered in the referential work. It is observed that the
present results match well with the approximate solutions and
FEM results provided by Liew et al. [23]. For all the three
cases, the differences between these three results are less than
0.67%. From this comparison, we can see that the presented
method is accurate in predicting vibration results of open
cylindrical shells with arbitrary boundary conditions. The
table also reveals that it is appropriate to define the boundary
conditions in terms of boundary springs.

Having validated the accuracy of the improved Fourier
series solution, some further vibration results of isotropic

open cylindrical shells with different combinations of bound-
ary conditions for various geometric parameters are pre-
sented in Tables 5-7 and Figures 3-4. In Table 5, the first five
frequency parameters Q = wR+/p/G of an isotropic deep
open cylindrical shell subjected to as many as eleven com-
binations of boundary conditions are presented for various
thickness-radius ratios. Five different thickness-radius ratios,
that is, /R = 0.1, 0.2, 0.3, 0.4, and 0.5, corresponding to
moderately thick to very thick open cylindrical shells, are
considered in the calculation. The geometrical and material
parameters used for the analysis are R Im, L/R = 3,
6y = m, E = 210GPa, 4 = 0.3,and p = 7800 kg/m’. From
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TaBLE 5: The first five frequency parameters Q
thickness-radius ratios (R = 1m, L/R = 3,0, = 7, E = 210 GPa, and y = 0.3).

1

wR+/p/G of an open isotropic cylindrical shell with various boundary conditions and

Boundary conditions

h/R  Mode
FFFF FFFC CFFFF FSFS FCFC SFSF SSSS SCSC CFCF CSCS CCCC
1 0.0709 0.0211 0.0760 0.1293 0.2103 0.1669 0.3507 0.5590 0.2384 0.4713 0.6184
2 0.0888 0.0374 0.1120 0.1507 0.4467 0.1731 0.4404 0.5653 0.2597 0.5082 0.6248
0.1 3 0.1422 0.0665 0.1724 0.3626 0.4513 0.3550 0.6317 0.8884 0.4498 0.7056 0.9570
4 0.2547 0.0856 0.2685 0.3934 0.4866 0.4017 0.7440 0.9403 0.5092 0.7736 0.9661
5 0.3076 0.2253 0.2778 0.6162 0.7796 0.4178 0.7457 0.9428 0.5190 0.8340 1.0030
1 0.1384 0.0420 0.1020 0.2542 0.3984 0.2234 0.4523 0.7116 0.3651 0.5848 0.7833
2 0.1756 0.0732 0.1667 0.2936 0.6346 0.2899 0.6368 0.9076 0.3851 0.7287 0.9652
0.2 3 0.2750 0.1307 0.2227 0.6972 0.7187 0.4402 0.7990 1.0016 0.6320 0.8631 1.3115
4 0.4669 0.1633 0.3650 0.7516 0.7958 0.6257 0.9927 1.2193 0.7024 1.0472 1.3574
5 0.5029 0.3989 0.4099 0.7858 1.0363 0.6323 1.0016 1.2566 0.8080 11111 1.5874
1 0.2028 0.0625 0.1314 0.3720 0.5530 0.2753 0.5713 0.8440 0.4488 0.7125 0.9269
2 0.2595 0.1067 0.1729 0.4243 0.7671 0.3831 0.6442 1.0023 0.5181 0.7552 1.1822
0.3 3 0.3976 0.1907 0.3179 0.9237 0.8055 0.4837 1.0023 1.1203 0.6739 1.0461 1.5368
4 0.5753 0.2296 0.3694 0.9898 1.0030 0.7911 1.0461 1.4237 0.9433 1.1792 1.5915
5 0.6844 0.4928 0.5039 1.0467 1.1684 0.8068 1.1140 1.4635 0.9804 1.3171 1.7865
1 0.2638 0.0827 0.1611 0.4812 0.6735 0.3293 0.6552 0.9578 0.5260 0.7856 1.0502
2 0.3397 0.1380 0.1782 0.5403 0.8355 0.4211 0.6884 1.0058 0.6161 0.8362 1.3129
0.4 3 0.5089 0.2469 0.3734 1.0470 0.8755 0.5745 1.0058 1.2422 0.7364 1.0468 1.7124
4 0.6770 0.2840 0.4090 1.0518 1.1187 0.8177 1.0467 1.5939 0.9687 1.4424 1.7437
5 0.7842 0.5469 0.5936 1.1198 1.2589 0.9324 1.3381 1.5954 1.1743 1.4923 1.9459
1 0.3213 0.1024 0.1837 0.5813 0.7654 0.3826 0.6678 1.0094 0.5942 0.8148 1.1452
2 0.4155 0.1664 0.1891 0.6411 0.8500 0.4412 0.7957 1.0457 0.6758 0.9467 1.4026
0.5 3 0.6085 0.2977 0.3773 1.0471 0.9582 0.6736 1.0094 1.3213 0.8181 1.0470 1.8369
4 0.7721 0.3271 0.4932 1.1320 1.1924 0.8225 1.0470 1.6989 0.9716 1.6046 1.8548
5 0.8414 0.5867 0.6742 1.1607 1.3218 1.0096 1.4661 1.7298 1.3134 1.6287 1.9735

the table, we can see that the frequency parameters of the
shell increase with the thickness-radius ratio increases. The
3D mode shapes for the shell with FCFC boundary conditions
are given in Figure 3 as well. Each of these mode shapes is
determined by substituting corresponding eigenvector back
into the improved Fourier series expansions and solving
for the ratios of coefficients then constructed by the SURF
function based on MATLAB. The shear deformations in the
thickness dimensions can be seen obviously, which may not
be obtained by using the 2D shell theories. Unlike many
existing approaches limited to cylindrical shells with small
curvature (shallow shells), the presented method can be used
to deal with deep open shells with variable circumferential
dimensions. Therefore, the first five frequency parameters
Q = wR+/p/G of an isotropic deep open cylindrical shell with
eleven combinations of boundary conditions and five differ-
ent included angles are presented in Table 6. The geometrical
and material properties of the shell are the same as the
previous one except that the thickness-radius ratio is h/R =
0.3 and the circumferential dimensions under consideration
are 0, = /3, 2m/3, m, 47/3, and 57/3. Frequency parameters
of the shell reduce with 6, increases in general. In order to
enhance our understanding on the vibration deformation of
open cylindrical shells, some selected mode shapes of the

shell with CFCF boundary conditions are given in Figure 4.
It is obvious that the mode shapes of the shell varied with
circumferential dimensions. For the sake of completeness, the
first five frequency parameters Q) = wR+/p/G of a deep open
isotropic cylindrical shell (R = 1m, h/R = 0.3, 0, = 7,
E = 210GPa, 4 = 0.3,and p = 7800 kg/m®) with various
boundary conditions and length-radius ratios are listed in
Table 7. Three different length-radius ratios performed in the
calculation are L/R = 1, 3, and 5. As seen from the table, the
increase of the length-radius ratio results in the decreases of
the frequency parameters.

To the best of the authors’ knowledge, there is no literature
for 3D vibration analysis of orthotropic open cylindrical
shells with arbitrary boundary conditions and variable cir-
cumferential dimensions. Therefore, some vibration results
for the titled problem, which may be used as referential data
for future researchers, are presented to fill this void. Unless
otherwise stated, in all the following examples, open cylin-
drical shells under consideration are made from orthotropic
materials with the following parameters: E;; = 200GPa,
E,, = Ey = 10GPa, py, = g3 = 025, y; = 0.3,
and G, = G3 = G,; = 5GPa, p = 4500kg/m’. In
order to validate the accuracy of the current approach for
the vibration analysis of orthotropic open cylindrical shells,
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TaBLE 6: The first five frequency parameters Q0 = wR+/p/G of an open isotropic cylindrical shell with various boundary conditions and
included angles (R = 1m, L/R = 3, h/R = 0.3, E = 210 GPa, and y = 0.3).

0, Mode Boundary conditions
FFFF FFFC CFFFF FSES FCEC SESF SSSS SCSC CFCF CSCs CCCC
1 0.3538 0.4457 0.0580 0.9894 2.4197 0.1595 1.0451 2.4919 0.3475 1.0451 2.5130
2 0.5316 0.5454 0.1721 1.0457 2.4308 0.4395 1.1132 2.6341 0.6014 1.1785 2.7046
n/3 3 0.8855 0.8405 0.2839 1.0563 2.5650 0.5505 1.5215 2.9448 0.7681 1.6466 3.0749
4 0.9124 1.2840 0.3436 1.3522 2.7783 0.6058 2.0902 2.9977 0.8792 2.0903 3.4482
5 1.1066 1.3494 0.7626 1.8882 2.9465 1.1108 2.1579 3.4408 1.2567 2.3133 3.6207
1 0.3001 0.1247 0.1016 0.1474 1.2941 0.2637 0.5085 1.4326 0.4458 0.6660 1.4879
2 0.5424 0.2076 0.1624 0.1778 1.3032 0.3108 1.0459 1.4912 0.4751 1.0459 1.5315
2m/3 3 0.6280 0.4577 0.3022 0.9467 1.4013 0.7009 1.1138 1.5025 0.8703 1.1790 1.7884
4 0.6433 0.4749 0.4926 0.9897 1.4026 0.7973 1.1852 1.6759 0.9197 1.3182 1.9511
5 0.7602 0.6574 0.5502 1.0464 1.5375 0.7986 1.5025 1.8582 1.0161 1.6477 2.2660
1 0.2028 0.0625 0.1314 0.3720 0.5530 0.2753 0.5713 0.8440 0.4488 0.7125 0.9269
2 0.2595 0.1067 0.1729 0.4243 0.7671 0.3831 0.6442 1.0023 0.5181 0.7552 1.1822
U 3 0.3976 0.1907 0.3179 0.9237 0.8055 0.4837 1.0023 1.1203 0.6739 1.0461 1.5368
4 0.5753 0.2296 0.3694 0.9898 1.0030 0.7911 1.0461 1.4237 0.9433 1.1792 1.5915
5 0.6844 0.4928 0.5039 1.0467 1.1684 0.8068 1.1140 1.4635 0.9804 1.3171 1.7865
1 0.1391 0.0411 0.1390 0.0377 0.2656 0.3147 0.5088 0.7306 0.4727 0.6663 0.8197
2 0.1444 0.0628 0.2031 0.0483 0.4864 0.3241 0.6708 0.7520 0.4870 0.7901 0.8867
4r/3 3 0.2592 0.0996 0.2393 0.1474 0.5755 0.5652 0.7520 0.7861 0.7001 0.8348 1.3080
4 0.3729 0.1462 0.4000 0.1779 0.5980 0.5688 0.7594 1.2541 0.7540 1.0462 1.4516
5 0.4938 0.3046 0.4336 0.5078 0.8529 0.7526 1.0462 1.3212 0.9907 1.1795 1.4523
1 0.0878 0.0319 0.1616 0.0473 0.1398 0.3087 0.5217 0.6017 0.4753 0.6763 0.7672
2 0.1047 0.0444 0.1698 0.0484 0.2845 0.3392 0.5709 0.6474 0.4874 0.7065 0.7988
57/3 3 0.1886 0.0627 0.2808 0.0598 0.3561 0.4910 0.6017 0.6980 0.6706 0.8515 1.0052
4 0.2162 0.0984 0.2898 0.0609 0.4646 0.6021 0.7453 0.9431 0.7598 0.8886 1.2314
5 0.3302 0.1682 0.4384 0.2742 0.6681 0.6276 0.8349 1.1715 0.8233 1.0463 1.3907

TaBLE 7: The first five frequency parameters O = wR+/p/G of an open isotropic cylindrical shell with various boundary conditions and
length-radius ratios (R = 1 m, h/R = 0.3,0, = 71, E = 210 GPa, and p = 0.3).

Boundary conditions
FFFF FFFC CFFFF FSES FCEC SESF SSSS SCSC CFCF CSCS CCCC
0.2532 0.0611 0.6542 0.3642 0.5435 1.0028 1.0018 1.0018 2.2572 2.4593 2.5851
0.4406 0.0894 0.7203 0.5373 0.5644 1.4519 1.8691 1.9529 2.2688 2.5169 2.5995
0.6995 0.1871 0.9461 0.9735 0.9928 1.4743 1.8895 2.0027 2.4975 2.6606 2.8954
0.7752 0.3095 1.1460 1.3082 1.0391 1.8721 2.0027 2.0362 2.5631 3.1005 3.2424
1.2856 0.5914 1.4254 1.5140 1.4765 2.0048 2.1582 2.3938 2.9106 3.1348 3.6945
0.2028 0.0625 0.1314 0.3720 0.5530 0.2753 0.5713 0.8440 0.4488 0.7125 0.9269
0.2595 0.1067 0.1729 0.4243 0.7671 0.3831 0.6442 1.0023 0.5181 0.7552 1.1822
0.3976 0.1907 0.3179 0.9237 0.8055 0.4837 1.0023 1.1203 0.6739 1.0461 1.5368
0.5753 0.2296 0.3694 0.9898 1.0030 0.7911 1.0461 1.4237 0.9433 1.1792 1.5915
0.6844 0.4928 0.5039 1.0467 1.1684 0.8068 1.1140 1.4635 0.9804 1.3171 1.7865
0.1319 0.0627 0.0669 0.3737 0.5522 0.1314 0.3195 0.6619 0.2043 0.4281 0.6959
0.2607 0.0959 0.0682 0.3943 0.6475 0.1778 0.4292 0.9543 0.3012 0.4847 1.0038
0.2797 0.1915 0.1718 0.5560 0.8660 0.3288 0.6278 1.0025 0.3742 0.6278 1.0680
0.3171 0.2009 0.2425 0.6148 0.8884 0.3638 0.6730 1.0515 0.4729 0.7565 1.2146
0.3652 0.3411 0.2779 0.6280 0.9944 0.4033 0.7996 1.1714 0.5441 0.8388 1.3679

L/R  Mode
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FIGURE 3: Mode shapes of an isotropic cylindrical shell with FCFC boundary conditions and various thickness-radius ratios.

Table 8 shows a comparison made for a thick deep open
cylindrical shell (R = 1m, L/R = 3,and 0, = m) with different
sets of boundary conditions. The comparison is performed
between the current 3D results and those obtained by ANSYS
(SOLID 45, element size: 0.02 m). The lowest five frequencies
(Hz) are considered in the comparison. From Table 8, it
is obvious that the two results are in good agreement
with each other. The proposed three-dimensional improved
Fourier series method is applicable for the analysis of
orthotropic open cylindrical shells with arbitrary boundary
conditions.

Based on the above verification, free vibration results
of open cylindrical shells with various boundary conditions
and geometric parameters are provided in Tables 9-10 and
Figures 5-6. Also, these results can be used to validate new
2D theories and new computational techniques in the future.
In Table 9, the first five frequencies are listed for a thick
shallow cylindrical panel (R = 1 m, L/R = 2, and 6, = 71/2)
with FFFE, FFFC, CFFE ESFS, FCEC, SESE SSSS, SCSC,
CFCEF, CSCS, and CCCC boundary conditions and different
thickness-radius ratios; that is, #/R = 0.1, 0.2, 0.3, 0.4, and
0.5. It can be seen from the table that frequencies of the shell
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TaBLE 8: Comparison of frequencies (Hz) of an open orthotropic cylindrical shell with different boundary conditions (L = 1m, L/R = 3,
h/R = 0.3,and 0, = 7).

Boundary conditions

Method
FFFF ~ FFFC  CFFFE  FSFS  FCEC  SFSE 5SS SCSC ~ CFCF  CSCS  CCCC
34030 88962 43139 53532  8L090 97376 12614 15473 13862 15492 17413
37098 17011 55070 64621 12025 10323 13354 16836 14230 15507 20755
preceyt 63565 27485 63069 14410 12751 12608 16836 18662 15242 17567 28418
103.02 36420 82902 15879 14861 15506 17567 26759 17271 20488  302.88
12850 78303 11729 17568  184.43 16758 18501 29542 17805 29952 31924
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FIGURE 4: Mode shapes of an isotropic cylindrical shell with CFCF boundary conditions and various circumferential dimensions.
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0.3, and 9,

0.25, o

4500 kg/m’

3, h/R
CCEFF, SSSS, and CCCC is presented in Figure 6. Results of

H13

281.63
conditions are presented in Figure5 to further enrich the

vibration results of orthotropic cylindrical panels. As the last
example, variation of the first ten frequencies (Hz) against
the vibration characteristics of open cylindrical shells varied

with mode sequences and boundary conditions.
3.4. Open Spherical Shells with Arbitrary Boundary Con-

Figure 6 reveal that the effects of the material parameter 7 on
ditions. In this subsection, the current method is applied

material parameter # (1

H12
P
L/R

f

the lowest five

256.41
mode shapes for the shell with full clamped boundary

/4, n/2, 3r/4, m,
0.5. From Table 10,

and 57/4). The shell is made from the aforementioned

orthotropic materials and with the following geometric

S

with the increase of the

>

2,and h/R

we can see that the frequencies of the open cylindrical shell
reduce by increasing the circumferential dimensions. This
is due to the fact that, with the increase of the included

f1 = 259.08
radius ratio, the shell stiffness increases. Table 10

are considerably increased by increasing the thickness-radius
shows the first five frequencies (Hz) for a rare thick open
cylindrical shell subjected to various boundary conditions

ratio. This is due to the fact that

thickness
angle, the shell stiffness reduces. Also,

and circumferential dimensions (6,

parameters: R = 1 m, L/R
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TABLE 9: The first five frequencies (Hz) of an open orthotropic cylindrical shell with various boundary conditions and thickness-radius ratios
(R=1m,L/R =2,and 0, = 11/2).

WR  Mode Boundary conditions
FFFF FFFC CFFFF FSES FCEC SFSF SSSS SCSC CFCF CSCS CCcCC
1 35.215 10.253 37165 18.324 147.58 85.29 129.33 195.62 147.58 171.95 226.11
2 56.896 21.815 48.745 26.589 175.14 9712 145.97 211.93 154.63 187.20 242.94
0.1 3 84.890 48.624 77115 97.848 190.10 127.19 255.78 334.24 172.83 263.52 361.15
4 158.64 57.907 120.79 113.01 192.42 199.13 263.52 335.67 229.70 280.45 390.23
5 184.42 134.05 162.09 226.46 271.94 246.02 305.96 342.27 256.53 363.62 393.90
1 67.285 20.340 61.965 36.263 220.72 140.10 168.81 263.10 203.94 218.20 301.55
2 110.39 42.002 63.152 51.258 225.46 144.40 249.83 316.59 20732 263.52 341.24
0.2 3 158.15 92.040 121.02 185.91 258.53 199.23 263.52 336.05 240.35 283.96 479.81
4 291.25 95.573 136.39 211.39 289.06 246.06 336.05 447.69 256.62 441.20 520.17
5 300.44 166.90 238.77 263.52 313.52 336.05 409.13 496.74 367.82 464.15 560.42
1 95.888 30.148 75.407 53.514 24740 174.11 200.49 304.92 226.54 239.54 336.11
2 158.44 60.042 80.904 73.128 252.58 17714 263.49 336.56 226.89 263.49 408.35
0.3 3 218.13 111.91 121.17 259.77 317.94 246.32 329.58 393.01 257.12 350.80 522.17
4 363.69 127.66 186.67 263.51 328.50 257.08 336.56 503.91 283.28 472.80 582.29
5 370.85 195.59 272.07 290.28 361.63 336.61 454.91 574.59 458.13 526.99 585.72
1 120.95 39.497 85.560 69.868 271.91 193.37 223.05 33719 236.27 252.31 361.36
2 200.43 75.511 94.412 91.766 272.53 200.57 263.51 337.40 237.49 263.51 444.93
0.4 3 266.34 119.09 121.37 263.52 325.22 246.63 33719 434.99 257.31 403.06 549.26
4 382.10 154.90 228.50 303.73 36710 299.86 389.76 536.97 316.14 490.52 593.38
5 401.76 219.65 291.93 319.87 401.08 33721 478.66 587.54 473.94 527.03 621.28
1 142.63 48.286 93.255 85.223 283.46 205.98 239.52 337.66 241.56 261.77 38115
2 236.61 88.344 103.65 107.20 293.00 215.57 263.52 362.31 243.65 263.52 463.94
0.5 3 305.21 123.62 121.56 263.52 336.61 247.00 337.66 456.71 257.41 445.36 569.04
4 382.43 175.22 263.55 309.75 38711 333.01 436.31 559.41 343.77 502.53 600.92
5 425.37 236.77 305.95 368.50 420.72 337.67 493.40 595.89 483.80 527.04 640.08

to study the vibrations of isotropic and orthotropic open
spherical shells with arbitrary boundary conditions. As the
first example, accuracy of the presented method is validated
by comparing the results with solutions published by other
researchers as well as those obtained by the FEM analysis. In
Table 11, comparison of frequency parameters Q = w+/p/E
is presented for a FFFF open spherical shell with different
thickness-radius ratios. Two different thickness-radius ratios,
that is, /R = 0.05 and 0.25, are considered in the comparison.
The comparison is carried out between the solutions of Reddy
[12], Liew and Lim [13], and Reddy and Liu [14] and the 3D
results of Liew et al. [21]. The shell parameters used in the
comparison are R = 2m, Ly = Ly = 4 sin(0.25)"", E =
210 GPa,and y = 0.3, p = 7800 kg/m”’. From the table, we can
see that the present results are in good agreement with the 3D
solutions provided by Liew et al. [21]. However, results from
different 2D theories deviate significantly as the thickness-
radius ratio increases. The comparisons given in Tables 1
and 11 for deep and shallow open spherical shells with FFFF
boundary conditions indicate that the current formulation is
accurate on the vibration analysis of isotropic open spherical
shells with different circumferential dimensions.

Having validated the accuracy of the present method,
some further vibration results for isotropic open spherical

shells with various boundary conditions, meridional dimen-
sions, thickness-radius ratios, and included angles are pre-
sented in Tables 12-14 and Figures 7-9. In Table 12, the

first five frequency parameters O = wR+\/p(1 — u?)/E of
an isotropic deep open spherical shell with thickness-radius
ratio h/R = 0.1, 0.2, 0.3, 0.4, and 0.5 are presented.
The spherical panel is made from isotropic material (E =
210GPa, 4 = 0.3, and p = 7800kg/m’) with top angle
¢, = m/4, end angle ¢; = /2, included angle 6, =
7, and mean radius R = 1m. Table12 shows that any
increase in the thickness-radius ratio h/R, from 0.1 to 0.5,
always leads to corresponding increases in the frequency
parameters. Table 13 contains the frequency parameters Q =

wRA\[p(1 — u?)/E of an open spherical shell with different
boundary conditions and included angles. The shell is made
from steel (E = 210GPa, y = 0.3, and p = 7800kg/m3)
with the following geometric parameters: ¢, = 7/4, ¢, =
/2, R = 1m, and h/R = 0.3. From Table 13, it can be
seen that frequency parameters of the shell reduce as the
included angle increased. For the sake of completeness, an
isotropic deep open spherical shell with different meridional
dimensions (¢, = open, ¢, = 5m/6) is investigated, and

the first five frequency parameters Q = wRy/p(1 — u?)/E of
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TABLE 10: The first five frequencies (Hz) of an open orthotropic cylindrical shell with various boundary conditions and circumferential
dimensions (R = 1m, L/R = 2,and h/R = 0.5).

0, Mode Boundary conditions
FFFF FFFC CFFFF FSES FCEC SFSE SSSS SCSC CFCF CSCS CCcC
1 219.65 162.00 90.20 263.52 596.43 202.12 263.52 639.00 239.89 263.52 649.09
2 419.01 208.27 108.26 368.49 601.38 228.42 436.30 666.94 248.75 445.34 774.92
/4 3 465.14 288.48 118.35 396.92 65770 235.54 527.03 767.71 250.46 527.03 923.12
4 475.33 465.74 301.03 527.03 744.14 46777 614.73 917.07 480.84 621.43 960.83
5 597.64 468.98 334.86 594.10 886.53 489.66 666.94 953.44 498.99 790.56 1022.2
1 142.63 48.286 93.255 85.223 283.46 205.98 239.52 337.66 241.56 261.77 381.15
2 236.61 88.344 103.65 107.20 293.00 215.57 263.52 362.31 243.65 263.52 463.94
/2 3 305.21 123.62 121.56 263.52 336.61 247.00 337.66 456.71 257.41 445.36 569.04
4 382.43 175.22 263.55 309.75 38711 333.01 436.31 559.41 343.77 502.53 600.92
5 425.37 236.77 305.95 368.50 420.72 337.67 493.40 595.89 483.80 527.04 640.08
1 99.221 23.555 98.027 20.826 179.51 209.92 225.65 225.65 242.42 250.22 324.90
2 109.37 44.625 99.777 29.006 202.85 213.14 227.82 303.60 244.87 263.52 326.13
/4 3 176.95 80.391 125.40 169.39 216.45 225.65 263.52 313.24 259.75 300.22 453.71
4 272.57 80.724 153.80 197.59 249.77 249.05 282.55 447.35 269.40 445.40 504.78
5 302.46 147.74 295.33 232.97 251.32 252.85 436.36 448.72 369.96 454.29 533.83
1 60.064 14.609 97.256 85.225 115.29 169.38 169.38 169.38 242.90 251.99 278.41
2 72.226 25.387 106.05 107.22 122.85 209.72 232.59 263.60 247.89 261.78 303.32
T 3 121.09 43.529 119.40 207.90 172.43 216.88 239.54 280.92 252.31 263.52 383.96
4 158.40 58.760 127.22 216.26 177.78 229.93 263.52 337.66 260.93 329.36 388.97
5 213.58 104.54 193.31 245.57 218.35 255.73 314.27 372.97 294.36 410.43 503.93
1 37256 10.494 98.891 76304 68.855 135.56 135.56 135.56 244.19 251.98 262.98
2 53.428 16.689 105.17 11.087 86.167 211.63 228.82 246.85 246.03 254.46 283.07
5m/4 3 91.135 26.660 113.22 43.505 130.86 213.79 238.09 262.43 252.19 263.52 338.34
4 98.780 42.932 128.30 58.120 136.00 232.15 261.83 270.55 261.63 281.55 345.08
5 153.66 78.062 145.98 133.96 189.18 244.79 263.52 323.93 265.85 349.53 414.63

TaBLE 11: Comparison of frequency parameters Q) = w+/p/E of a FFFF open isotropic spherical shell with different thickness-radius ratios
(R=2m,L, =L, =4sin(0.25)" m, E = 210 GPa, t = 0.3, and p = 7800 kg/m").

Mode number

h/R Theory
SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AA-1 AA-2 AA-3
FSDT [13] 0.57042 0.78415 1.7244 0.96545 1.7084 2.6277 0.38434 1.8309 2.0684
0.05 FSDT [14] 0.56635 0.77992 1.7210 0.96218 1.7025 2.6283 0.38299 1.8272 2.0631
3-D [21] 0.56477 0.76885 1.7153 0.97260 1.6719 2.6202 0.38566 1.8324 2.0605
Present 0.56479 0.76890 1.7163 0.97300 1.6720 2.6202 0.38581 1.8330 2.0610
FSDT [13] 1.8691 2.2768 2.7555 2.5575 2.6627 3.4526 1.3089 2.4434 3.2452
TSDT [14] 1.8689 2.2706 2.7499 2.5500 2.7059 3.4492 1.3216 2.4367 3.2554
0.25 HSDT [12] 1.8759 2.2875 2.7524 2.5545 2.6794 3.4701 1.3142 2.4441 3.2577
3-D [21] 1.8665 2.2390 2.7317 2.5242 2.6792 3.4627 1.3191 2.4199 3.2979
Present 1.8641 2.2347 2.7315 2.5232 2.6738 3.4691 1.3176 2.4198 3.2945

the shell are given in Table 14. The material and geometric
properties used in the investigation are 6, = 7, R = 1m,
h/R = 03, E = 210GPa, and ¢ = 0.3. In order to
enhance our understanding of deep open spherical shell with
different meridional dimensions, some selected mode shapes
for the shell with CFCF boundary conditions are presented in
Figure 7. Because of the curvature of the middle surface, the
mode shapes for the doubly curved spherical shells are much
more complicated than the singly curved cylindrical ones.

Then, free vibration analyses of deep orthotropic spheri-
cal shells with arbitrary boundary conditions are considered
in the following discussions, for which very limited amount
of results is available in the literature. In Table 15, the lowest
five frequencies (Hz) of an orthotropic deep open spherical
shell with eleven combinations of boundary conditions are
presented for five different thickness-radius ratios; that is,
h/R = 0.1, 0.2, 0.3, 0.4, and 0.5. The other geometrical
parameters used for the analysis are ¢, = 7/4, ¢, = 7/2,
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TABLE 12: The first five frequency parameters Q = wR\/p(1 — p?)/E of an open isotropic spherical shell with various boundary conditions
and thickness-radius ratios (¢, = 7/4, ¢; = /2,0, = 7, R = 1m, E = 210 GPa, and p = 0.3).

Boundary conditions

h/R  Mode
FFFF FFEC CFFFF FSEFS FCFC SFSF SSSS SCSC CFCF CSCS CCCC
1 0.0711 0.0172 0.2269 0.0951 0.1658 0.2564 0.6355 0.6421 1.2226 1.4486 1.4869
2 0.1353 0.0254 0.2549 0.2163 0.2382 0.4922 1.0055 1.0248 1.2226 1.4581 1.4937
0.1 3 0.2032 0.0561 0.3066 0.2628 0.3729 0.5117 1.1114 1.1206 1.4630 1.5212 1.6187
4 0.2812 0.1111 0.4167 0.4866 0.5115 0.6871 1.1169 1.1836 1.4899 1.5563 1.6193
5 0.3964 0.1835 0.4735 0.5418 0.6370 1.0485 1.2577 1.3111 1.5498 1.6713 1.7849
1 0.1316 0.0314 0.3703 0.1748 0.2876 0.3148 0.6914 0.7021 1.7007 1.8791 1.9375
2 0.2489 0.0458 0.3938 0.3473 0.3054 0.6826 1.2074 1.2261 1.7017 1.9277 1.9540
0.2 3 0.3663 0.1008 0.5050 0.4708 0.5767 0.8509 1.2620 1.2844 1.9172 1.9462 2.0873
4 0.4801 0.1765 0.5452 0.8508 0.6582 0.8631 1.4002 1.4558 1.9183 2.1248 2.2129
5 0.6947 0.3174 0.8061 0.8706 0.9080 1.2096 1.4917 1.5681 2.0520 2.2411 2.5283
1 0.1888 0.0452 0.4689 0.2480 0.3235 0.3414 0.7145 0.7274 1.9243 2.1076 2.1555
2 0.3385 0.0611 0.5233 0.4129 0.3853 0.6941 1.2672 1.2855 1.9255 2.1111 2.1944
0.3 3 0.5085 0.1409 0.5676 0.6466 0.6937 1.0925 1.4292 1.4529 2.1144 2.2186 2.3711
4 0.5841 0.2079 0.7232 0.9648 0.6970 1.1003 1.5709 1.6321 2.1613 2.2262 2.4572
5 0.9281 0.4222 0.8582 1.0133 0.9779 1.2698 1.7908 1.8377 2.2045 2.4715 2.6920
1 0.2416 0.0581 0.5509 0.3124 0.3313 0.3516 0.7190 0.7330 2.0016 2.1819 2.2376
2 0.4045 0.0721 0.6014 0.4431 0.4574 0.6900 1.2629 1.2838 2.0067 2.1821 2.3231
0.4 3 0.6196 0.1755 0.6434 0.7852 0.7009 1.2435 1.5776 1.6009 2.1864 2.2299 2.5276
4 0.6282 0.2233 0.8223 0.9835 0.7571 1.2719 1.7479 1.8035 2.2195 2.3895 2.5360
5 0.9931 0.4734 0.8837 1.0620 0.9996 1.2827 1.8404 1.8563 2.3305 2.6176 2.8487
1 0.2892 0.0699 0.6158 0.3652 0.3349 0.3535 0.7139 0.7283 1.9969 2.1339 2.2429
2 0.4499 0.0801 0.6460 0.4582 0.5071 0.6805 1.2441 1.2659 2.0163 2.1928 2.3929
0.5 3 0.6208 0.2042 0.7185 0.8844 0.6967 1.2397 1.6955 1.7173 2.1961 2.2960 2.5692
4 0.7268 0.2311 0.8231 0.9934 0.7913 1.3794 1.8064 1.8236 2.2815 2.4889 2.6311
5 0.9992 0.4899 0.9674 1.0810 1.0059 1.3841 1.8848 1.9327 2.4229 2.6261 2.9453

R = Im, and 6, = 7. In order to verify the accuracy of
the present work, corresponding frequencies obtained by the
FE analysis (ANSYS, SOLID 45, element size: 0.02m) of the
shell with thickness-radius ratio #/R = 0.3 are included in the
table as well. From Table 15, one can observe that the present
results are in good agreement with the 3D elasticity solutions
obtained by the FE analysis. The table also reveals that the
frequency parameters of the shell increase with the thickness-
radius ratio increases. Then, the first five frequencies for an
open orthotropic spherical shell (¢, = /4, ¢, = n/2, R =
1 m, and h/R = 0.3) involving different boundary conditions
and circumferential dimensions are given in Table16. As
expected, frequencies of the spherical shell vary from the
maximum value for the 6, = /4 shell to the minimum
value for the 6, = 5m/4 one. In Table17, frequencies of
an open orthotropic spherical shell with various boundary
conditions and meridional dimensions are presented. The
shell with top angle ¢, = 27/3, /2, /3, or 71/6, end angle
¢, = 5m/6, included angle 6, = m, mean radius R =
1m, and thickness-radius ratio h/R = 0.3 is considered in
the analysis. Unlike cylindrical shells, with increasing the
meridional dimensions of a spherical shell, the stiffness of the
shell may not reduce. The vibration characteristics of thick
open orthotropic spherical shells can be further elaborated by

Figures 8-9 by considering the mode shapes of open spherical
shells with FCFC boundary conditions and CCCC boundary
conditions as their frequencies presented in Tables 15 and 16,
respectively. Finally, variation of the first ten frequencies (Hz)
against material parameter 7 (§ = E,,/E,;, E;; = Es;3 =
10GPa, py; = ph3 = 0.25, py; = 03, G, = Gy = Gy3 =
5GPa, and p = 4500 kg/m®) of a deep open spherical shell
(¢ = /4, ¢, = /2, R = 1m, and h/R = 0.3,0, = n)
with FFFE, FFFC, CFFF, CCFF, SSSS, and CCCC is presented
in Figure 10. By comparing Figures 10 and 6, we can see
that the effects of the material parameter # on the vibration
characteristics of open shells varied with mode sequences,
boundary conditions, and shell types.

4. Conclusions

This paper presents a unified method for the free vibration
analysis of isotropic and orthotropic plates and shells with
arbitrary boundary conditions and geometry dimensions
in the framework of three-dimensional displacement-based
energy formulation, including rectangular plates, open cylin-
drical shells, and the spherical ones. Regardless of bound-
ary conditions, displacement in each structure direction
is expanded as a triplicate product of the cosine Fourier
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TaBLE 13: The first five frequency parameters QO = wR+/p(1 — u?)/E of an open isotropic spherical shell with various boundary conditions
and included angles (¢, = /4, ¢; = 7/2, R=1m, h/R = 0.3, E = 210 GPa, and u = 0.3).

0, Mode Boundary conditions
FFFF FFFC CFFFF ESES FCEC SFSF SSSS SCSC CFCF CSCS CCCC
1 1.5434 0.5258 0.3956 1.1290 1.9941 0.2223 2.1807 2.4911 1.8990 2.2182 3.0667
2 2.0638 0.8659 0.5747 1.6591 2.4592 1.0025 2.2182 2.7231 1.9102 2.4706 4.1467
/4 3 2.5408 1.0483 0.7678 2.2636 2.5999 1.2964 2.4712 4.1293 2.2036 3.9360 4.3251
4 2.9590 1.8398 1.5304 2.4774 3.4859 1.9852 3.6766 4.1563 3.3344 4.3027 4.7985
5 3.1493 2.2736 1.9231 3.2833 3.5635 2.5928 4.0103 4.5780 3.4008 4.3531 4.9817
1 0.7468 0.1503 0.4323 0.2479 0.8889 0.2957 1.2670 1.3054 1.9184 2.1075 2.3646
2 0.8246 0.2622 0.5281 0.4128 1.2374 1.0485 1.5707 1.7150 1.9212 2.2185 2.5819
/2 3 1.3824 0.5249 0.7754 1.1291 1.3836 1.1472 2.1811 2.3482 2.1685 2.4709 3.2073
4 1.7188 0.6080 0.9511 1.2559 1.4004 1.3091 2.2185 2.4407 2.2848 3.1325 3.4764
5 1.8750 1.0441 1.5353 1.6594 1.8157 1.9292 2.4717 3.0104 2.8882 3.2707 3.5592
1 0.3418 0.0727 0.4725 0.0601 0.5198 0.3268 0.8917 0.9135 1.9210 2.0967 2.2406
2 0.5192 0.1124 0.4959 0.0979 0.6987 0.8800 1.4624 1.5154 1.9236 2.1724 2.2484
/4 3 0.8172 0.2652 0.6403 0.5017 0.9143 1.0832 1.6389 1.6688 2.1366 2.2186 2.6379
4 0.8719 0.3327 0.8189 0.8047 1.0622 1.1156 1.7514 1.8452 2.1756 2.4713 2.7068
5 1.3417 0.6414 1.0216 1.0307 1.0907 1.5621 2.1816 2.3033 2.3414 2.7596 3.1727
1 0.1888 0.0452 0.4689 0.2480 0.3235 0.3414 0.7145 0.7274 1.9243 2.1076 2.1555
2 0.3385 0.0611 0.5233 0.4129 0.3853 0.6941 1.2672 1.2855 1.9255 2.1111 2.1944
T 3 0.5085 0.1409 0.5676 0.6466 0.6937 1.0925 1.4292 1.4529 2.1144 2.2186 2.3711
4 0.5841 0.2079 0.7232 0.9648 0.6970 1.1003 1.5709 1.6321 2.1613 2.2262 2.4572
5 0.9281 0.4222 0.8582 1.0133 0.9779 1.2698 1.7908 1.8377 2.2045 2.4715 2.6920
1 0.1177 0.0327 0.4867 0.0224 0.2086 0.3497 0.6155 0.6236 1.9278 2.0948 2.1323
2 0.2184 0.0398 0.4900 0.0319 0.2259 0.5910 1.0399 1.0542 1.9282 2.1264 2.1506
5m/4 3 0.3231 0.0859 0.6039 0.1257 0.4760 1.0334 1.4150 1.4271 2.1169 2.1401 2.2870
4 0.4395 0.1313 0.6105 0.2094 0.4815 1.0978 1.4948 1.5098 2.1215 2.2187 2.2974
5 0.6178 0.2576 0.8022 0.3940 0.7802 1.1040 1.4989 1.5356 2.1970 2.2654 2.5086

series with the addition of certain supplementary terms
introduced to eliminate any possible jumps with the original
displacement function and its relevant derivatives at the
boundaries. The boundary conditions of the shells and plates
are accounted for by using the artificial spring technique
and any classical boundary conditions can be easily realized
by assigning the springs with corresponding values, without
the need of making any modifications to the trial functions
and solution program to adapt to different boundary cases.
A unified computer code based on the scientific software
MATLAB is developed to obtain the accurate 3D vibration
results by using the Rayleigh-Ritz procedure. The validation
of the current method, theoretical formulations, and program
code is proved by comparing results with solutions in the
open literature as well as data by the 3D FE analysis. It is seen
that the current results are very close to the referential ones.
The effects of boundary conditions, material parameters,
and geometric dimensions on the frequencies are discussed
as well. Finally, several 3D vibration results of isotropic
and orthotropic plates and open cylindrical and spherical
shells with different geometry dimensions are presented for
various boundary conditions, which may serve as benchmark

solutions for future researches as well as structure designers
in this field.

Appendices

A. Strain-Displacement Relations for the
Plates and Cylindrical and Spherical Shells

Based on the rectangular coordinate system given in
Figure 1(b), the strain-displacement relations for plates are

o
*oox’
L2

ay

ow
zzg’

dv  Ou
ny=&+@>
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TaBLE 14: The first five frequency parameters Q = wR+/p(1 — p2)/E of an open isotropic spherical shell with various boundary conditions
and meridian dimensions (¢, = 57/6,60, = 7, R=1m, h/R = 0.3, E = 210 GPa, and u = 0.3).

é Mode Boundary conditions
0 FFFF FFEC CFFFF FSES FCFC SESF SSSS SCSC CFCF CSCS CCCC
1 0.3396 0.0736 1.2127 0.3772 0.3464 0.7931 1.1614 1.1952 3.0624 3.2486 3.3176
2 0.5312 0.0951 1.2320 0.5875 0.5971 1.0303 1.7034 1.7680 3.0640 3.2887 3.3482
27/3 3 0.7473 0.2249 1.5289 0.9444 0.8254 1.6863 2.3589 2.3823 3.2730 3.4337 3.5946
4 0.8582 0.2766 1.9177 1.2117 1.0095 2.1082 2.3722 2.4307 3.3581 3.4861 3.7113
5 1.2390 0.5785 2.1733 1.4049 1.2301 2.1244 2.6004 2.6517 3.4307 3.7493 3.9922
1 0.2254 0.0567 0.4832 0.2681 0.3884 0.3526 0.6733 0.7128 1.3685 1.5437 1.6240
2 0.3474 0.0805 0.5981 0.5820 0.4298 0.6070 1.1785 1.2212 1.3716 1.5710 1.7063
/2 3 0.5669 0.1808 0.6773 0.6731 0.7881 0.6711 1.1952 1.3154 1.5569 1.6229 1.9719
4 0.6454 0.2538 1.0277 0.9620 0.8104 0.7865 1.3272 1.4204 1.5885 1.7715 2.0406
5 0.9703 0.4872 1.1454 1.1509 1.0139 1.1836 1.5446 1.6729 1.6881 2.1317 2.3737
1 0.2126 0.0580 0.2379 0.2819 0.4292 0.2769 0.6692 0.6938 0.8346 0.9442 1.0676
2 0.2606 0.0803 0.2840 0.5475 0.4689 0.3002 0.8560 0.9925 0.8559 0.9845 1.2500
/3 3 0.5323 0.1718 0.4670 0.7092 0.7338 0.3740 0.9431 1.0621 0.9811 1.0750 1.3691
4 0.5418 0.2511 0.5593 0.8415 0.8164 0.7040 0.9442 1.2147 1.0527 1.2809 1.5463
5 0.8533 0.4427 0.6721 1.0935 0.9915 0.9231 1.1936 1.3363 1.1993 1.3517 1.5777
1 0.2444 0.0815 0.1090 0.4494 0.5350 0.2052 0.5474 0.7132 0.4876 0.5474 0.8128
2 0.2548 0.1004 0.1109 0.5805 0.5673 0.2533 0.6518 0.7898 0.6067 0.7073 0.9307
7/6 3 0.5319 0.2163 0.2741 0.7805 0.8465 0.3545 0.6736 0.9967 0.7137 0.8791 1.0796
4 0.5928 0.2856 0.2829 0.9844 0.8830 0.6073 0.8265 1.2215 0.7504 0.9041 1.2947
5 0.6822 0.4981 0.4473 1.0485 1.0250 0.6499 1.0942 1.2959 0.7543 1.1170 1.3992
_Ow  Ov _GU 1 ov w
Vyz—gﬁLa—Z» 89—7+§ﬁ+;>
_Ow Odu Jw
Yxz = oax oz g, = 3%’
(A1)
_ov 1(1ow
and, from Figure 1(c), the strain-displacement relations for Yor = oz * z <§% B V) ’
open cylindrical shells are defined as
_ou 1 (a;” . u)
g, = a_u) Ye =57 2 o¢ ’
0x
3 o v G
g = %+ ZTVB, Yoo = 55200  z0¢p  z
ow (A3)
€, = E, R
ow v v (A2) B. Stiffness and Mass Matrices for
Y- = 5075, " 2 Cylindrical and Spherical Shells
_Ow Ou The displacement components can be rewritten in the vector
Yee = 55 T oz form as
_ Ou  ov
07200 " ox u(a, B,z,t) =U (&, B, 2) €/ = UG"e™,
Similarly, according to Figure 1(d), the strain-displacement
relations for open spherical shells are given as v(e, B z,t) = V (o, B, 2) € = VG, (B.1)
ou w . .
& =—+t— w(a, Bz,t) =W (a, B,2) &/ = WG/,

z0p z
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FIGURE 7: Mode shapes of an isotropic spherical shell with CFCF boundary conditions and various meridional dimensions.

where

U= [cos Agxcos Ay cosryz,..
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~cos Ay cosryz,..

.,cos A, axcos A, B
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-cos A 0 cos /\N[S] ,

V=w=0U.

Thus, the stiffness and mass matrixes of an open cylindrical

shell can be written as

K, = I” ou’ ou
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FIGURE 8: Mode shapes of an orthotropic spherical shell with FCFC boundary conditions and various thickness-radius ratios.

+ kT 9:90} ds,, M,, = m {pv'viav,
- Cyy o1V Cy3 W' OV _ T
< [ 2W 525 5 Moo = [ fow"w}av

B.3
Cu owT ov ~ ow’T (B3)

z \ 00 0z 200

V| dv,
> where dV = zdzdOdx, dS, = zdzd0, and dS, = dzdx.
Similarly, the stiffness and mass matrices of an open spherical

wiw oW oW’
Ky, = JJ] {CZZT +Cys <WTE 4 EW> shell are
C, ouTou Cis¢ (oUT
Lo WIOW o oW! ow <= |13 % 5% (Y
¥ 0z 0z *z200 00
ou\ Cng . u'u
owT ow B +UT—>+ SUTU+Cys [ 5
+C55¥§ dV‘I’ J'J- {kxOW W|x=0 a([l) z z
_Uu _au’ +E5_U>+&E
N k)uc)leW|x:L} ds, + J' J { ;)OWTW'G:O 20z 20z 0z 0z sﬁ,z2 00
aU u T u T
+hGWIWL_, }dsz, "0 dv+” { w0V Uy, T kiU U'¢:¢1}dsl

M, - ” J [pUv}av, " “ [ksu™v],_, + k0", | ds,
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fi = 991.96

FIGURE 9: Mode shapes of an orthotropic spherical shell with CCCC boundary conditions and various circumferential dimensions.
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TaBLE 15: The first five frequencies (Hz) of an open orthotropic spherical shell with various boundary conditions and thickness-radius ratios
(¢ =7/4, ¢, =7/2, R =1m, and 6, = 7).

Boundary conditions

h/R  Mode
FFFF FFEC CFFFF FSFS FCFC SESF SSSS SCSC CECF CSCS CCCC
1 19.896 4.7150 145.92 26.597 43.825 92.211 204.15 206.87 637.75 640.79 687.84
2 38.600 71240 151.20 59.003 64.965 199.05 364.74 367.14 681.48 686.93 808.17
0.1 3 55.399 15.160 153.30 71.455 97.762 340.84 417.88 420.49 799.24 804.31 947.86
4 79.201 30.990 171.24 130.15 139.07 344.15 430.75 43731 932.69 937.60 1020.7
5 106.85 49.233 187.33 145.77 167.10 371.91 434.46 442.39 1001.0 1008.7 1047.7
1 33.414 7.9209 214.98 45.180 72.592 96.974 207.03 210.15 633.78 636.74 684.33
2 69.721 12.651 216.11 93.424 80.087 200.08 371.20 375.03 677.97 683.38 807.60
0.2 3 93.999 25.374 226.26 121.23 146.55 370.53 517.60 521.02 798.38 803.76 963.56
4 132.28 47.581 230.62 219.47 176.25 457.82 528.68 536.52 946.63 953.19 1072.6
5 177.78 80.265 263.47 233.78 233.90 460.49 533.26 539.54 1041.4 1057.8 1113.8
1 47.187 11.234 241.04 63.466 84.092 97.431 205.91 209.10 626.26 629.50 676.95
2 94.608 16.780 244.82 109.78 97.592 198.64 368.42 372.44 669.88 676.00 800.45
3 129.46 35.164 254.48 166.60 176.89 367.72 540.50 543.66 789.91 796.76 961.81
4 157.36 55.245 254.74 250.56 185.67 495.01 557.49 561.94 941.27 952.43 1092.2
03 5 23751 106.95 27795 270.09 254.20 499.55 572.32 582.43 1040.1 1079.2 1132.3
I 47.232 11.217 242.75 63.374 84.068 97.543 206.35 209.48 627.38 631.29 678.57
24 95.033 16.795 246.89 110.14 97313 198.87 369.20 373.16 670.22 677.73 801.91
34 129.90 35.127 255.38 167.11 176.99 368.44 542.07 545.12 790.89 798.61 963.97
4t 157.94 55.319 256.78 25111 185.96 499.94 563.57 567.98 943.59 955.28 1097.9
54 238.72 106.97 279.74 271.36 254.70 504.74 578.49 588.35 1046.1 1084.8 1140.1
1 60.205 14.431 251.07 80.237 85.760 96.770 203.49 206.68 615.23 618.93 665.74
2 113.00 19.698 253.75 116.83 117.06 196.17 363.47 367.52 657.54 664.82 787.70
0.4 3 160.03 43.922 259.74 204.51 187.57 362.74 533.94 536.72 775.23 784.31 949.69
4 164.11 58.904 270.40 257.72 191.75 507.17 578.32 583.76 924.19 941.97 1098.0
5 264.31 126.28 299.87 281.51 261.86 515.22 597.45 609.14 1021.8 1088.6 1129.6
1 72.074 17.420 250.27 94.752 86.482 95.525 200.21 203.37 600.93 605.18 650.82
2 125.55 21.692 255.44 119.83 131.16 192.94 356.93 360.93 641.35 649.95 769.50
0.5 3 162.84 51.465 266.92 233.65 186.52 356.18 523.57 526.18 755.11 766.45 927.68
4 185.83 60.700 279.17 262.21 200.00 506.90 591.05 597.40 898.66 921.41 1086.3
5 265.90 132.30 316.99 285.08 265.40 519.90 605.18 625.92 997.61 1079.3 1112.8
1% to 5% results obtained by ANSYS.
+ %> (WTBE + BWTW> +C33Ma—W M, = ”J {pV'Viav,
z oz 0z 0z 0z
oW’ oW Cy oW oW | M,, = m {pW'W}av,
“3a6 06 " 2 op 09 -

M

+
+

uu

w T w T
” {k¢0W w|¢:¢o+ Ky W W‘¢:¢l}d51

” { WWIW| 4 KWW 90} ds,,

m {pU"U}av,

where dV = z’s;dzd0d¢, dS, = zsydzdf, and dS, =

zdz d¢.
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TaBLE 16: The first five frequencies (Hz) of an open orthotropic spherical shell with various boundary conditions and included angles (¢, =
/4, ¢, =m/2,R=1m, and h/R = 0.3).

Boundary conditions

b Mode FFFF FFFC CFFFF FSES FCEC SESF SSSS SCSC CFCF CSCS CCCC
1 443.51 130.71 222.38 293.54 536.71 66.396 629.50 728.26 611.21 629.50 1186.0
2 611.86 232.99 246.28 444.69 675.25 464.99 668.60 805.69 1020.2 1079.1 1235.9
/4 3 882.78 286.55 279.19 617.48 714.50 507.72 731.49 1177.8 1036.7 1232.8 1367.2
4 902.67 477.56 637.73 702.69 937.59 689.20 1160.7 1259.3 1155.6 1294.8 1519.4
5 936.58 590.89 739.43 900.69 1079.2 738.47 1182.4 1362.2 1167.9 1302.6 1647.8
1 189.08 37.048 239.97 63.267 232.07 84.838 368.41 37711 621.23 629.50 803.86
2 234.56 70.009 243.00 109.72 319.08 366.89 572.28 598.55 780.31 796.75 1106.6
/2 3 362.22 140.87 263.46 293.61 367.59 492.89 629.50 706.99 1028.0 1079.1 1176.8
4 447.89 155.81 309.02 338.61 367.94 502.40 668.64 735.01 1056.8 1128.4 1199.3
5 512.70 280.64 493.30 444.73 495.53 606.52 731.50 831.07 1120.0 1225.0 1254.0
1 85.708 17984 240.41 15.545 135.78 93.192 257.64 262.86 624.62 629.50 711.91
2 146.72 30.483 244.79 26.247 179.62 252.51 483.28 487.43 700.48 709.75 908.76
37/4 3 216.38 66.516 257.67 128.73 229.69 476.19 560.16 569.44 887.13 899.62 1096.3
4 222.58 88.782 264.21 214.11 284.71 496.05 595.97 616.53 1035.1 1079.1 1134.9
5 361.62 173.33 325.13 272.42 288.33 507.53 629.50 697.78 1062.2 1129.6 1159.4
1 47187 11.234 241.04 63.466 84.092 97.431 205.91 209.10 626.26 629.50 676.95
2 94.608 16.780 244.82 109.78 97.592 198.64 368.42 372.44 669.88 676.00 800.45
- 3 129.46 35.164 254.48 166.60 176.89 36772 540.50 543.66 789.91 796.76 961.81
4 157.36 55.245 254.74 250.56 185.67 495.01 557.49 561.94 941.27 952.43 1092.2
5 237.51 106.95 27795 270.09 254.20 499.55 572.32 582.43 1040.1 1079.2 1132.3
1 29.373 8.1735 24294 6.1341 54.327 99.901 17712 179.16 62717 629.50 660.21
2 60.370 11.013 243.11 8.7143 56.663 169.06 301.12 304.42 655.30 659.69 743.83
54 3 82.483 21.409 250.47 32.422 122.29 299.61 43716 440.06 73718 741.85 861.91
4 119.80 35.084 252.42 55.852 125.78 436.10 556.76 559.23 851.69 857.42 991.96
5 157.24 64.758 265.43 101.21 206.84 498.30 563.86 569.32 972.10 982.99 1089.9

TaBLE 17: The first five frequencies (Hz) of an open orthotropic spherical shell with various boundary conditions and meridian dimensions
(¢, =51/6,0, =, R=1m,and h/R = 0.3).

Boundary conditions

%o Mode FFFF FFFC CFFFF ESES FCEC SESF SSSS SCSC CFCF CSCS CCCC
1 84.679 18.926 510.60 98.028 89.074 212.64 317.72 325.28 969.68 974.67 1027.7
2 146.31 25.038 521.72 152.51 154.01 291.59 490.39 502.82 1016.3 1026.4 1168.0
27/3 3 195.29 57.031 538.96 248.49 219.71 486.17 697.62 70791 11477 1162.2 1326.9
4 222.27 72.206 59715 319.22 255.89 696.35 887.99 892.37 1271.8 1312.8 1363.8
5 327.75 154.47 654.93 368.73 323.39 838.08 912.15 920.46 1303.4 1360.3 1382.2
1 57.626 14.203 228.35 71.121 102.60 117.91 214.91 228.01 456.22 460.47 533.24
2 99.202 22.128 243.09 154.35 110.66 209.78 368.11 376.89 523.97 531.36 700.27
/2 3 148.74 45.715 258.66 179.30 205.12 309.18 404.08 42212 685.82 693.36 872.42
4 178.28 68.778 316.42 253.59 220.52 317.77 442.10 454.90 830.34 859.53 884.69
5 256.56 126.55 349.70 307.45 263.17 380.38 460.47 502.97 846.00 882.39 923.62
1 59.987 15.391 120.01 76.167 111.87 98.56 19731 203.81 263.67 267.89 362.54
2 76.001 22.205 123.49 145.39 125.12 135.77 266.90 310.24 353.31 359.87 530.43
/3 3 148.26 45.380 169.24 188.24 192.03 147.10 267.89 311.52 491.00 529.88 555.30
4 152.12 68.610 187.82 224.49 22419 208.90 302.45 349.51 495.19 535.24 572.28
5 264.29 120.70 261.95 301.40 255.38 280.38 374.50 413.92 535.13 577.62 638.34
1 71.868 23.031 57.238 119.02 145.90 69.88 155.36 228.09 151.76 155.36 288.40
2 86.954 27.416 61.552 154.63 155.22 87.58 206.18 256.60 278.43 284.63 361.56
/6 3 152.04 60.878 92.824 211.79 220.50 118.40 214.97 283.89 309.74 357.24 42231
4 209.65 78.043 122.02 282.40 243.01 204.83 293.09 376.96 309.83 408.30 493.91
5 279.78 136.49 176.11 301.79 261.11 210.19 361.44 378.75 377.56 460.47 515.13




Shock and Vibration

400 |
350
300
250

200

Frequency (Hz)

150

100

50

Mode number

(a) FFFF

600 Fr

550

500

Frequency (Hz)
PN
S O
s 3

W
w
(=}

300

250

200 &

Mode number

(c) CFFF

700 ¢

600

500 ¢

Frequency (Hz)

'S
o
S

300 ¢

200 ¢

1 3 5 7 9

Mode number

= 777;1=3()
11:20 7}’]=40

(e) SSSS

300 r~ T T T T

250

200

Frequency (Hz)
I
S

—_
(=3
S

50
O " n
1 3 5 7 9
Mode number
(b) FFFC
700 ¢

650
600

w
(=2
S O

Frequency (Hz)
A s U
v
3

00 +
350 +
300
250
200 & . . . . E
1 3 5 7 9
Mode number
(d) CCFF
1400 ¢

1300

1200

—
—_
(=1
(=}

Frequency (Hz)
)
(=}
(=}

900

800

700

1 3 5 7 9
Mode number
-n= ---n=30
1= 20 — n= 40
(f) CCccC

27

FIGURE 10: Variation of the first ten frequencies (Hz) against material parameter # ( = E,,/E,,) for an open spherical shell with different

boundary conditions.
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