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Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings
thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault
diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis.Therefore, exploiting unlabeled data plus few
labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis
performance. To overcome the noise brought bywrong labeling into the classifiers training process, the cut edgeweight confidence is
introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem.The
proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types
of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance
improvement by the proposed method in the extreme situation where there is only limited number of labeled data.

1. Introduction

Roller bearings are one of the most commonly used com-
ponents in rotational machines and their faults may lead to
huge economic losses, environment pollution, and human
casualties. Hence, the fault diagnosis of the roller bearing is
vital to guarantee the smooth and safe functioning of the
mechanical systems.

There are a great deal of researches on vibration-based
fault diagnosis of roller bearings and several powerful diag-
nostic methods are available [1]. Li et al. [2] presented an
approach formotor roller bearing fault diagnosis using neural
networks. Seryasat et al. [3] brought forward a ball bearing
fault diagnosis method using fast Fourier transform (FFT)
and wavelet energy entropy mean and root mean square
(RMS). Peng and Chiang [4] used C4.5 decision tree and
random forest algorithm to diagnose the fault of ball bearing
of three-phase induction motor. Jin et al. [5] introduced a
bearing fault diagnosis method using trace ratio linear dis-
criminant analysis. And Liu et al. [6] proposed an extended
wavelet spectrum analysis technique to achieve a more
positive assessment of bearing health conditions. In fact, all

these methods yield a rather excellent performance for fault
diagnosis of different bearings. However, the data used in
those methods are all labeled data, the kind that are already
marked according to the bearing states. In the case of bearing
fault diagnosis, however, the labeled data are quite expensive
to obtain since they require human effort while large amount
of unlabeled data is readily available. For a better practical
value, the use of unlabeled data ought to be considered.
Therefore, semisupervised learning, a technique that exploits
unlabeled data plus few labeled data to train a good classifier,
might be promising candidates in the area of roller bearing
diagnosis when there is limited number of labeled data.

Good reviews [7, 8] have given out a good review of
semisupervised classification methods. Among them, gener-
ative models, self-training, and cotraining are three classic
semisupervised learningmethods. Generativemodels specify
a joint probability distribution over observation and label
sequences and thus are used for modeling data. Nigam et al.
applied the expectationmaximization (EM) algorithm, a clas-
sic generative model, on mixture of multinomial distribution
for the task of text classification. And the result showed the
classifiers performed better than those trained only from
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labeled data [9]. However, the generative model must be
carefully constructed to reflect reality; otherwise unlabeled
data that are supposed to help may actually hurt accuracy
[10]. Self-training is a technique where a classifier is first
trained from the small amount of labeled data and then used
to classify the unlabeled data that will be added to the training
set for further retraining. Rosenberg et al. [11] applied self-
training to object detection systems from images and show
the semisupervised technique compares favorably with a
state-of-the-art detector. But self-training suffers fromwrong
labeling; note that the classifier uses its own predictions to
teach itself [12]. Cotraining, proposed by Blum and Mitchell
[13], can be quite effective, where in the extreme case only
one labeled point is needed to learn the classifier, which is
utmost incredibly amazing [14]. However, cotraining makes
more than strong assumptions that (1) features can be split
into two sets; (2) each subfeature set is sufficient to train
a good classifier; and (3) the two sets are conditionally
independent given the class on the splitting of features, which
generally cannot bemet in real life. To deal with this problem,
Zhou and Li [15] proposed a cotraining style semisupervised
learning algorithm named tritraining. In tritraining process,
three weak classifiers are generated from the original labeled
example set and are then refined using unlabeled examples.
Tritraining neither requires the instance space to be described
with sufficient and redundant views nor puts any constraints
on the supervised learning algorithm. In addition, it possesses
the merits of good efficiency and generalization ability. Tri-
training has been successfully applied in Chinese chunking
[16], biomedical named entity recognition [17], and web
spam detection [18]. With all these advantages and successful
application in other areas, tritraining is supposed to be a
promising method in bearing fault diagnosis too. However,
the process of unlabeled data adopted in tritraining is the
simplistic consistency principle. In detail, in each round of
tritraining, an unlabeled example is labeled for the third
classifier if the other two classifiers agree on the labeling,
under certain conditions. This might undermine the per-
formance stability of tritraining because the unlabeled data
may often be wrongly labeled by both classifiers during the
learning process [19]. In order to overcome this problem,
the cut edge weight statistic (CEWS) [20] is utilized to
give the confidence of each predicted label of the unlabeled
data. Only when the confidence is high enough can the
predicted label be added to training set. With this problem
solved by cut edge weight confidence (CEWC) plus all its
merits, there is no doubt that tritraining will be a promising
semisupervised algorithm for improvement of bearing fault
diagnosis.

Hence to fully appreciate the large amount of unlabeled
data of roller bearing and thus improve the performance
of bearing fault diagnosis, this paper presents a roller bear-
ing fault diagnosis method based on the combination of
tritraining and CEWC. And the remainder of the paper is
organized as follows. In Section 2, a detailed description
of the methodologies used in this paper is presented. In
Section 3, the experiment setup and relative information of
two independent roller bearing fault datasets are presented.
In Section 4, the results are presented. In Section 5, the results

are discussed. And finally in Section 6, the conclusion of the
research is given.

2. Methodology

2.1. Tritraining. Tritraining is semisupervisedmachine learn-
ing proposed by Zhou and Li [15]. The procedure of tritrain-
ing is as follows. First three diverse classifiers are initially
trained from the bagging samples from the original labeled
example set. The diversity of the classifiers is guaranteed by
the manipulation of the original labeled example set through
a popular ensemble learning algorithm, that is, Bagging [21].
Second, the three trained classifiers are used to predict
the examples from the unlabeled set. Those who pass the
consistency principle will be added to the labeled dataset.
Third, the initial classifiers are updated and the process
repeats.

Let 𝐿 denote the labeled dataset with size |𝐿| and𝑈 denote
the unlabeled dataset with size |𝑈|. In standard tritraining
algorithm, there are three diverse classifiers ℎ1, ℎ2, and ℎ3
initially trained from the original 𝐿. Then, for any classifier,
an unlabeled example can be labeled for it as long as the
other two classifiers agree on the labeling of this example. For
example, if ℎ1 and ℎ2 agree on the labeling of an example 𝑥
in 𝑈, then 𝑥 can be labeled for ℎ3. It is obvious that in such a
scheme if the prediction of ℎ1 and ℎ2 on 𝑥 is correct, then ℎ3
will get a solid new instance for further training. Otherwise,ℎ3 will get an example with noisy label. However, Zhou and
Li [15] proved that, even in the worst case, the increase in
the classification noise can be compensated if the amount
of newly labeled examples is sufficient and the constraint
condition (1) is met.

󵄨󵄨󵄨󵄨󵄨𝐿 ∪ 𝐿𝑡󵄨󵄨󵄨󵄨󵄨 (1 − 2𝜂𝐿 |𝐿| + 𝑒̂
𝑡
1
󵄨󵄨󵄨󵄨𝐿𝑡󵄨󵄨󵄨󵄨|𝐿 ∪ 𝐿𝑡| )2

> 󵄨󵄨󵄨󵄨󵄨𝐿 ∪ 𝐿𝑡−1󵄨󵄨󵄨󵄨󵄨 (1 − 2𝜂𝐿 |𝐿| + 𝑒̂
𝑡−1
1

󵄨󵄨󵄨󵄨󵄨𝐿𝑡−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿 ∪ 𝐿𝑡−1󵄨󵄨󵄨󵄨 )
2

,
(1)

where 𝐿𝑡 and 𝐿𝑡−1 are the set of examples that are labeled for
a classifier by other two classifiers in the tth round and the
(𝑡 − 1)th round, respectively. 𝑒̂𝑡1 is the upper bound of the
classification error rate of those other two classifiers in the
tth round. And 𝜂𝐿 is the classification noise rate of 𝐿; that is,
the number of examples in 𝐿 that are mislabeled is 𝜂𝐿|𝐿|.

It is noteworthy that if the labeled examples are not
sufficient or the constraint condition is not met, it is rather
doubtable whether the benefits outweigh the drawbacks in
case that an unlabeled example is wrongly labeled.Therefore,
it is still necessary to measure the confidence of the labeling
of each classifier.

2.2. Cut Edge Weight Confidence. The CEWC is established
by a two-step process. In the first step, by employing the𝑘-nearest neighbor criterion, a neighborhood graph is con-
structed from the labeled examples 𝐿 = {(𝑙𝑝, 𝑦𝑝) | 𝑝 =1, 2, . . . , |𝐿|}, where 𝑙𝑝 is the attributes of pth example in set𝐿 and 𝑦𝑝 the label. Concretely, each example (𝑙𝑝, 𝑦𝑝) ∈ 𝐿
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Figure 1: Cut edge illustration.

corresponds to a vertex in the graph𝐺𝐿.There will be an edge𝑝𝑞 connecting the two vertices of 𝑙𝑝 and 𝑙𝑞 if either 𝑙𝑝 is among
the k-nearest neighbors of 𝑙𝑞 or 𝑙𝑞 is among the 𝑘-nearest
neighbors of 𝑙𝑝. And a weight 𝑤𝑝𝑞 ∈ [0, 1] is associated with
the edge 𝑝𝑞 computed as (1+𝑑(𝑙𝑝, 𝑙𝑞))−1, where 𝑑(𝑙𝑝, 𝑙𝑞) is the
Euclidean distance between 𝑙𝑝 and 𝑙𝑞.

In the second step, the confidence of whether the label 𝑦𝑝
associated with 𝑙𝑝 is correct is evaluated through exploring
information encoded in 𝐺𝐿’s structure. As illustrated in
Figure 1, an edge in 𝐺𝐿 is called cut edge if the two vertices
connected by it have different associated labels. The CEWS is
as follows:

𝐽𝑝 = ∑
𝑙𝑞∈𝐶𝑝

𝑤𝑝𝑞𝐼𝑝𝑞, (2)

where 𝐶𝑝 corresponds to the set of examples which are con-
nected with 𝑙𝑝 in𝐺𝐿 and 𝐼𝑝𝑞 corresponds to an i.i.d. Bernoulli
random variable which takes value of 1 if 𝑦𝑝 is different from𝑦𝑞. When the size of 𝐶𝑝 is sufficiently large, according to the
central limit theorem, 𝐽𝑝 can be approximately modeled by a
normal distribution. Let 𝐽𝑠𝑝 denote the standardized form of𝐽𝑝.Then based on the left unilateral 𝑝 value of 𝐽𝑠𝑝 with respect
to N(0, 1), the labeling confidence of (𝑙𝑝, 𝑦𝑝) is as follows:

CF𝐿 (𝑙𝑝, 𝑦𝑝) = 1 − Φ (𝐽𝑠𝑝) , (3)

where CF𝐿(𝑙𝑝, 𝑦𝑝) is the labeling confidence and Φ(𝐽𝑠𝑝) =
(1/√2𝜋) ∫𝐽𝑠𝑝

−∞
𝑒−(𝑡2/2)𝑑𝑡 is the 𝑝 value of 𝐽𝑠𝑝 under standard

normal distribution.
Note that CF𝐿(𝑙𝑝, 𝑦𝑝) represents only a heuristic way to

estimate the labeling confidence of (𝑙𝑝, 𝑦𝑝) and should by no
means be deemed to represent the ground-truth probability

of 𝑦 being the correct label of 𝑙. Though, experimental
results in [22] validated the usefulness of this heuristic
confidence estimation strategy in discriminating correctly
labeled examples from incorrectly labeled ones.

2.3. Diagnosis Framework. Theproposed approach combines
the tritraining and CEWC to achieve bearing fault diagnosis
and thus is called C-tritraining. The framework of it is
illustrated in Figure 2.The data used for diagnosis are bearing
vibration signals. First, the diagnostic features of the original
vibration signals are extracted. Using ensemble empirical
mode decomposition (EEMD) the original vibration signals
can be broken down into intrinsic mode functions (IMFs)
[23]. The information entropies of IMFs, which are surpris-
ingly good features for bearing fault diagnosis [24], are used
as the features, as the input of proposed method. Then, three
bagging sample sets are drawn from the labeled feature set
and each of them is used for the initial training of the weak
classifier that we adopt BP neural network in this paper.
Three weak classifiers will be obtained and used to predict
certain proportion of unlabeled feature examples. In detail,
the prediction of weak classifier 1 and weak classifier 2, if the
CEWC of both are higher than the threshold, will be added
to sample set 3 for updating of weak classifiers 3. The same
goes for the updating of weak classifier 1 and classifier 2; that
is, the training set is enlarged by the prediction of other two
weak classifiers. Besides, the initial proportion of unlabeled
features examples from the database is set to be 0.5. The
proportion updates as follows:

prop𝑡 = prop𝑡−1 + (𝑒𝑡 − 𝑒𝑡−1) , (4)

where prop𝑡 and prop𝑡−1 are the proportion at 𝑡th and (𝑡−1)th
iteration. 𝑒𝑡 and 𝑒𝑡−1 are the training error at 𝑡th and (𝑡 − 1)th
iteration.The proportion updating process is rather intuitive.
If the error decreases after the enlargement of training set
with added unlabeled prediction, we naturally are confident
that the weak classifiers are reliable and able to handle
more unlabeled examples next time. However, if the error
increases, wewill have lower confidence of theweak classifiers
and less unlabeled examples are trusted to them next time.
The tritraining process keeps running until the termination
condition is reached.The final output of the framework is the
ensemble classifier that will be used to do the final bearing
diagnosis using majority voting.

Trying to avoid the overfitting problem, a small trick
named suspect principle is introduced into the classifiers
updating process as the termination condition. The core of
suspect principle lies in that when the three initial classifiers
in tritraining have been updated to their best (the error rates
stop decreasing) with the help of unlabeled examples, we
remain doubtful whether they have reached their best or just
fall into a local optimum. Therefore, the termination condi-
tion is set as the classifiers updating process keeps running
after certain times that the error rates stop decreasing. It is
worth discussing how we should set the suspect principle
value. The experimental results in Section 4 show that four
times is a good choice.
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Figure 2: Framework of the proposed method.

3. Case Study Description

To verify the effectiveness and generalization ability of the
proposed method, datasets from two individual bearing fault
cases conducted by different groups were adopted.

Case 1. As shown in Figure 3, the first case was originally
conducted on rotational machinery fault simulation test bed
(QPZZ-II) by Prognostic and Health Management Labora-
tory of School of Reliability and Systems Engineering, BUAA.

The inner-ring fault, outer-ring fault, and roller element
fault are introduced by wire-electrode cutting a crevice on the

surface of inner ring, outer ring, and one of the roller ele-
ments as marked in Figure 4.The vibrational signals are sam-
pled at a frequency of 5120 samples per second and the
rotation speed is 1500 revolutions per minute.

The test bearings used are cylindrical roller bearing
(N205EM HRB CHINA), the detailed structure information
of which is listed in Table 1.

Case 2. Thesecond casewas originally conducted by Institute
of Intelligent instrument and Diagnosis, Xi’an Jiaotong Uni-
versity. The test rig shown in Figure 5 is completely designed
and manufactured all by them. It consists mainly of a speed
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Figure 3: Test rig of Case 1.

Table 1: Bearing structure information.

Designation Inside
diameter

Outside
diameter Thickness Element

type

N205EM 25mm 52mm 15mm Cylindrical
roller

Table 2: Bearing structure information.

Designation Inside
diameter

Outside
diameter Thickness Element

type

6308 40mm 90mm 23mm Deep
groove ball

governor, driving motor, power supply box, horizontal and
radial loading devices, and of course sensors.

Bearing faults in Case 2 include inner-ring fault, outer-
ring fault, and roller element fault with an area of 3.8mm2,
7mm2, and 3mm2 circle-shaped spalling on the surface of
inner ring, outer ring, and roller element, respectively. The
test bearings used are deep groove ball bearing (6308), the
detailed structure information of which is listed in Table 2.
The sampling frequency is 20K samples per second and the
rotation speed is 1500 revolutions per minute.

4. Results

Through EEMD process, the original vibration signals col-
lected from the two cases are transformed into two feature
sets. According to [18], two parameters of EEMD, that is,
the ratio of the standard deviation of the added noise and
that of input, are set to be 0.15 and ensemble number is
set to be 100. Information of the feature sets is tabulated in
Table 3. For each feature set, 85 percent of the data are kept as
training set while the rest are used as the test set to examine
the trained classifiers. The training set, composed of labeled
pool and unlabeled pool, that is, 𝐿 ∪ 𝑈, is partitioned under
different unlabeling rates including 80 percent, 60 percent,
40 percent, and 20 percent. Take the data of Case 1 whose
size is 400 examples; for example, the training set has 340
examples (85 percent) and test set 60 examples (15 percent).
When the unlabeling rate is 80 percent, 68 examples out of

Table 3: Feature sets.

Feature set Attribute Size Class Nor./inner/outer/element
Case 1 24 400 4 25%/25%/25%/25%
Case 2 9 128 4 25%/25%/25%/25%

Table 4: Parameters of BPNN.

Number of
layers

Input layer
nodes

First hidden
layer nodes

Second
hidden layer

nodes

Output
layer nodes

4 24 8 4 4
Train
function

Function
coefficient

Mean
square error Epoch Validation

checks
Levenberg-
Marquardt 1.00𝑒 + 10 1.00𝑒 − 20 1000 6

340 examples are then put into 𝐿 and other 292 examples are
put into𝑈 without their labels. To overcome the randomness
of the results, 50 independent runs are performed and the
averaged results are summarized as the final outcome.

Figure 6 shows the classification error rate of Cases 1 and
2 under different unlabeling rate and suspect principle value.
When suspect principle value is set to four, the classification
error rates are the lowest or the second lowest in most
situations except only for the classification error rate in Case
2 under the unlabeling rate of 0.6. Therefore, it is naturally
intuitive to determine that suspect principle value set to four
is a practical optimal choice.

With suspect principle value set to be four, the averaged
results are summarized in Table 4, which presents the
classification error rate of the initial ensembleweak classifiers,
that is, the combination of the three initial BP neural network
classifiers only trained from 𝐿 and the final ensemble clas-
sifiers generated by tritraining and the improvement of the
latter over the former.The architecture and parameters of the
BP neural network are shown in Table 4.

4.1. Comparative Experiments with Different Semisupervised
Learning Models. In this paper, self-learning and tritraining
models were conducted for comparison. The self-learning
model is a traditional semisupervised learningmethodwhere
the most confident unlabeled data samples, together with
the predicted labels, are added to the initial training set, so
that the neural network classifier can be retrained and the
procedure repeats. The tritraining model is an elementary
model whose parameters were the same as those of the C-
tritraining except the CEWS optimization process. Detailed
diagnosis is listed in Table 5–7 and Figure 7.

4.2. Comparative Experiments with Different Base Classifiers.
For the purpose of investigating the diagnosis performance
with different base classifiers, an additional experiment was
conducted where the support vector machine (SVM) was
built with a RBF kernel function whose kernel parameter is
set to 0.08 and the penalty factor set to 128. The SVM model
was trained using the one-versus-all criterion. Note that the
SVMmodel could be regarded as amore stable classifierwhile
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Figure 4: Faults of inner ring, outer ring, and roller element.

Table 5: Classification error rate of initial and final hypothesis and the corresponding improvements of C-tritraining under different
unlabeling rate with suspect principle value set to 4.

Case Unlabeling rate of 0.8 Unlabeling rate of 0.6 Unlabeling rate of 0.4 Unlabeling rate of 0.2
Initial Final Improvement Initial Final Improvement Initial Final Improvement Initial Final Improvement

Case 1 0.1670 0.1367 18.14% 0.0990 0.0857 13.43% 0.0613 0.06 2.12% 0.0500 0.0487 2.6%
Case 2 0.4589 0.3400 25.91% 0.3274 0.28 14.48% 0.2495 0.2211 11.38% 0.2453 0.2200 10.31%

Figure 5: Test rig of Case 2.

neural network based classifiers are mostly unstable in terms
of training mechanism. Taking Case 1 as an example, detailed
diagnosis results are displayed in Table 8.

5. Discussion

(1) Different from the supervised learning based diag-
nosis methods for fault detection and identifica-
tion, this manuscript proposes a new incremental
learning approach that takes advantage of unlabeled
data to improve diagnosis performance of rolling
bearings. Considering that fault samples are continu-
ously attained over monitoring time, semisupervised
ensemble learning is employed so as to avoid manual
labeling error, as well as improving classification
accuracy for health assessment utilizing prior learned
knowledge and newly attained information in a real-
time diagnosis mechanism. In this regard, tritraining,
where three diverse classifiers are generated from the
bagging samples and integrated for fault diagnosis,
is conducted to improve classification performance
of base classifiers. On this basis, CEWC is employed
in this study to further mine salient characteristics
of unlabeled data with a view to design a more
intelligent diagnosis model. This method was applied

to two bearings with different proportions of unla-
beled samples (20, 40, 60, and 80 percent, resp.).
As shown in Table 5, the proposed method is able
to effectively improve the performance of the initial
ensemble classifiers under all unlabeled rates for both
Cases 1 and 2. The improvement percentage ranges
from 25.9% to 2.6%.

(2) It is noteworthy in Figure 8 that the improvement per-
centage increases sharply as unlabeling rate increases
in both Cases 1 and 2. This means, by utilizing
unlabeled data, the proposed method really makes a
difference where there is limited labeled data to train
the classifiers. And when there is less labeled data to
train the classifiers, the proposed method is able to
more improve the classifiers’ performance. However,
the absolute value of improvement and diagnostic
error rate in Case 2 are commonly higher than those
in Case 1.The difference between two results is caused
by their dataset size. The feature set of Case 1 has 400
examples while Case 2 has only 128 examples. For
Case 2, when unlabeling rate is 0.8, then there are only128 × 85% × 20% ≈ 22 labeled examples to train
classifiers, which is apparently not enough to train
good classifiers. No wonder the initial underfitting
classifiers’ classification error reaches 0.4589 when
unlabeling rate is 0.8.The proposedmethod promotes
25.91% performance of the initial classifiers in this
extreme situation.When there is enough labeled data,
for example, Case 1 when unlabeling rate is 0.2,
the classification error rate lowers to 0.0487 (95.13%
diagnostic accuracy). It implies that roller bearing
fault diagnosis based on tritraining is promising in
either situation (a) where there is not enough labeled
data to obtain good classifiers or situation (b) where
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Figure 6: Classification error rate of Case 1 (a) and Case 2 (b) under different unlabeling rate and suspect principle value.
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Figure 7: Performance improvement at different unlabeling rate in Cases 1 and 2.

there is enough labeled data. In situation (a) tri-
training greatly improves classifiers’ performance by
utilizing unlabeled data that are easily available. And
the performance will keep upgrading as long as there
ismore unlabeled data. In situation (b) tritraining can
still be helpful though the initial classifiers are good
enough for the bearing fault diagnosis.

(3) In this study, the semisupervised learning methods
including self-learning and traditional tritraining are
conducted for comparison. Detailed diagnosis results
are listed in Tables 3–7 and Figure 8. It is observed that
although the classification rates of all methods were
improved, the tritraining based methods appeared to

produce higher correct rates inmost of the cases. Tak-
ing the diagnosis results with unlabeling rate of 0.8 in
Case 2 as an example, the improvements of classifica-
tion accuracieswere 25.91%, 14.33%, and 23.13% forC-
tritraining, self-learning, and tritraining, respectively.
This is mainly because such ensemble process could
effectively strengthen the learning ability through
integrating multiple views of individual classifiers. In
addition, compared to basic tritraining model, the
proposed method attained better diagnosis results
demonstrating the effectiveness of CEWS on captur-
ing pivotal fault characteristics from unlabeling data
in rolling bearing diagnosis issues. It is also noted
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Table 6: Classification error rate of initial and final hypothesis and the corresponding improvements of self-training under different
unlabeling rate.

Case Unlabeling rate of 0.8 Unlabeling rate of 0.6 Unlabeling rate of 0.4 Unlabeling rate of 0.2
Initial Final Improvement Initial Final Improvement Initial Final Improvement Initial Final Improvement

Case 1 0.3353 0.2933 12.53% 0.2168 0.2033 6.23% 0.1002 0.0933 6.89% 0.0417 0.0454 −8.15%
Case 2 0.4737 0.4058 14.33% 0.4037 0.3658 9.39% 0.3158 0.2632 16.66% 0.2811 0.2648 5.80%

Table 7: Classification error rate of initial and final hypothesis and the corresponding improvements of tritraining under different unlabeling
rate.

Case Unlabeling rate of 0.8 Unlabeling rate of 0.6 Unlabeling rate of 0.4 Unlabeling rate of 0.2
Initial Final Improvement Initial Final Improvement Initial Final Improvement Initial Final Improvement

Case 1 0.2167 0.1833 15.41% 0.1500 0.1333 11.13% 0.0667 0.0654 1.95% 0.0533 0.0520 2.44%
Case 2 0.3684 0.2832 23.13% 0.3632 0.3205 11.73% 0.2559 0.2105 17.74% 0.2105 0.2000 4.99%
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Figure 8: Comparative diagnosis results of rolling bearing diagnosis
cases.

in Case 1 that the diagnosis result of self-learning
decreased with unlabeling rate of 0.8, which may due
to some negative effects of improper training such as
overfitting problems.

(4) From the diagnosis results of SVM based C-tri-
training, it is noted that the fault classification per-
formance was improved as well, demonstrating the
effectiveness of the proposed semisupervised learning
method in rolling bearing diagnosis; that is, such
model can be appropriately applied using various
base classifiers. However, themisclassification rates of
the testing data were relatively high when compared
to the BPNN based model, which may be due to
the lesser difference between three SVM models.
The ensemble process could only be more effective
on condition that the base classifiers are of greater
diversity. Therefore in this study, when determining
the base classifier and architecture, we follow a simple

idea that the classifiers should be as different as
possible in the bagging process so that more sufficient
information could be learned from the unlabeling
data.

6. Conclusion

In order to improve performance of bearing fault diagnosis
when there is limited labeled data, this paper presents a roller
bearing fault diagnosis method based on the combination of
tritraining and CEWC.The method is validated in two roller
bearing fault cases conducted by two independent groups.
The results showed that, with the help of unlabeled examples,
the method is able to effectively improve the fault diagnosis
for both cylindrical roller bearing and deep groove ball
bearingwhen there is limited labeled examples.The proposed
method still helps evenwhen there is enough labeled data and
the diagnostic accuracy can reach up to 95%.

Although the proposed method is promising, there is
something that could be improved in the future work. The
feature extracted from the vibrational signal is information
entropy of IMFs through EEMD, which is an iterative process
and so is tritraining. That makes the proposed method
time-consuming, which undermines its applicability in roller
bearing online diagnosis. Hence, the efficiency improvement
is among the priorities in future work.
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