Hindawi Publishing Corporation

Shock and Vibration

Volume 2016, Article ID 1948029, 14 pages
http://dx.doi.org/10.1155/2016/1948029

Research Article

Hindawi

Fault Diagnosis for Rolling Bearing under
Variable Conditions Based on Image Recognition

Bo Zhou"? and Yujie Cheng"?

!School of Reliability and Systems Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China
?Science & Technology on Reliability and Environmental Engineering Laboratory, Beijing 100191, China

Correspondence should be addressed to Yujie Cheng; chengyujie@buaa.edu.cn

Received 25 May 2016; Accepted 14 July 2016

Academic Editor: Minvydas Ragulskis

Copyright © 2016 B. Zhou and Y. Cheng. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Rolling bearing faults often lead to electromechanical system failure due to its high speed and complex working conditions. Recently,
a large amount of fault diagnosis studies for rolling bearing based on vibration data has been reported. However, few studies have
focused on fault diagnosis for rolling bearings under variable conditions. This paper proposes a fault diagnosis method based
on image recognition for rolling bearings to realize fault classification under variable working conditions. The proposed method
includes the following steps. First, the vibration signal data are transformed into a two-dimensional image based on recurrence plot
(RP) technique. Next, a popular feature extraction method which has been widely used in the image field, scale invariant feature
transform (SIFT), is employed to extract fault features from the two-dimensional RP and subsequently generate a 128-dimensional
feature vector. Third, due to the redundancy of the high-dimensional feature, kernel principal component analysis is utilized to
reduce the feature dimensionality. Finally, a neural network classifier trained by probabilistic neural network is used to perform
fault diagnosis. Verification experiment results demonstrate the effectiveness of the proposed fault diagnosis method for rolling

bearings under variable conditions, thereby providing a promising approach to fault diagnosis for rolling bearings.

1. Introduction

Rolling bearings are considered to be a critical mechanical
component in industrial applications. The bearings” defects
usually lead to a considerable decline in plant productivity
and may even cause huge economic losses [1, 2]. Thus, it
is important to diagnose rolling bearing fault to keep the
bearings in good technical state.

Vibration-based methods have garnered particular atten-
tion due to their noninvasive nature and their high reactivity
to incipient fault. Therefore, vibration signal analysis is vital
for rolling bearings fault diagnosis due to its connection to
fault feature extraction accuracy [3]. Aiming to extract the
fault features, many feature extraction methods, including
Wigner-Ville distribution (WVD) [4], wavelet packet decom-
position (WPT) [5, 6], and empirical mode decomposition
(EMD) [7-9], have been proposed and have been demon-
strated to be powerful. Additionally, many fault diagnosis
methods also have been proposed, such as fast spectral

kurtosis based on genetic algorithms [10], multiscale entropy
and adaptive neurofuzzy inference system [11], and time
varying singular value decomposition [12]. However, most of
these methods are proposed based on the assumption that
the rolling bearings operate under fixed conditions when
performing fault diagnosis. Moreover, the application of
these methods is limited because of the tough, complex, and
particularly variable working environment of rolling bearings
(13, 14]. Therefore, it is important to investigate the fault
diagnosis method suitable for varying conditions.

Many studies have researched rolling bearings fault diag-
nosis. However, thus far, few researchers have studied fault
diagnosis under variable conditions. In 1990, Potter [15]
proposed a constant angular sampling method (i.e., order
tracking) that utilized the electronic impulse angular encoder
and solved the frequency smearing phenomenon of the spec-
trum caused by fluctuating rotating speeds and realized the
fault diagnosis for rotating machines. Considering the special
analog hardware whose function is sampling data increases



the cost of equipment; Fyfe and Munck [16] developed
the computed order tracking (COT) technique based on
order tracking to realize fault diagnosis for rotating machines.
However, the COT may make the carrier frequencies of
the transient responses, which are caused by the faults at
various speeds, expand to a wider scope because the natural
characteristic of the bearing system hardly changes, which
is not beneficial for extracting the fault characteristic. In
addition, [13] has proposed a new method for rolling bearing
fault diagnosis under variable conditions. This new method
utilizes LMD-SVD to extract features, but LMD also has the
problem of iterative calculation capacity, frequency aliasing,
end effect and other issues. Because of problems associated
with the above methods, we need to research a new method
for bearing vibration signal feature extraction, a method
based on the nonstationary and nonlinear bearing vibration
signals, thereby achieving fault diagnosis under variable
conditions.

Scale invariant feature transform (SIFT), an image invari-
ant feature extraction method, can recognize the same image
when it is rotated, scaled, translational, and affine trans-
formed. By extracting the 128-dimensional feature contain-
ing scale, orientation, and location information, SIFT can
perform image recognition and matching under translation,
rotation, scaling, and brightness changes [17]. Many studies
have used SIFT to recognize images. For example, Montazer
and Giveki [18] have utilized SIFT to extract image features
and match them to a database (i.e., a content-based image
retrieval system). Li et al. [19] have employed Robust SIFT
to match remote sensing images, and a number of studies
have also applied SIFT to such methods as facial expression
recognition [20], ear recognition for a new biometric technol-
ogy [21], and wheat grain classification [22]. Inspired by SIFT,
the vibration signals of rolling bearings are considered to be
transformed into images. The recurrence plot (RP) is a kind
of method to describe the recursive behavior of dynamic orbit
in the phase-space reconstruction; it is an important method
to analyze the instability of time series. RPs of rolling bearing
vibration signals under different conditions reveal translation
and scaling characteristics, so RP is employed to transform
the vibration signals under different conditions into images
and SIFT is utilized to extract the features of transformed RPs,
which is without interference of working conditions.

After the 128-dimensional invariant features are extract-
ed, to reduce the data redundancy between the extracted
features and the occupation of computer resources, a dimen-
sionality reduction method is utilized to identify the low-
dimensional structure hidden in high-dimensional data.
Principal component analysis (PCA) is a widely utilized
dimension reduction technique performed by linearly trans-
forming a high-dimensional input space onto a lower dimen-
sional one in which the components are uncorrelated. How-
ever, PCA will not perform well when the process exhibits
nonlinearity. Hence, kernel principal component analysis
(KPCA) was developed to overcome the limitations of PCA
in dealing with the nonlinear system [23].

This paper is structured as follows. Section 2 first intro-
duces the image transformation method, which generates
images for the following recognition. Then, SIFT, the core
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of this paper, is described, which is utilized to extract the
stable fault features under variable working conditions. Sub-
sequently, KPCA is introduced for the dimensionality reduc-
tion. At last, probabilistic neural network (PNN) is described
for the final fault classification. Section 3 describes the entire
fault diagnosis method for rolling bearing under variable
conditions, including descriptions of the experimental data,
image transformation, feature extraction, and fault classifica-
tion. Section 4 includes the results and discussion, and the
conclusions are presented in Section 5.

2. Related Theories

2.1. Recurrence Plot. To achieve fault diagnosis under variable
conditions, image transformation for SIFT is important to
ensure success. Therefore, choosing a good image transfor-
mation method is particularly important. On account of the
nonlinear and nonstationary characteristics of rolling bearing
signals, detecting dynamical changes in complex systems is
one of the most difficult problems. Recursiveness is one of the
basic characteristics of a dynamic system, and the recurrence
plot (RP) based on this characteristic is a good dynamic
mainstream shape-description method. Through the black
and white dots in the two-dimensional space, the recursive
state can be visualized in the phase space [24]. This approach
can uncover hidden periodicities in a signal in the recurrence
domain. These periodicities are not easily noticeable, and it
is an important method that analyzes the periodic, chaotic,
and nonstationary of time series. The following theories are
related.

The RP analysis is based on the phase-space reconstruc-
tion theory, which is described as follows.

(1) For a time series, u; (k = 1,2,..., N), whose sample
interval is Atf, we chose the mutual information
method and CAO algorithm to calculate the suitable
embedding dimension m and delay time 7, which
could reconstitute the time series. The reconstructed
time series is

;= (Up Ujprs > Ui gmo1)e)

)

i=1L2,...,N-(m-1)T.

(2) Calculate the Euclidean norm of x; and x;j in the
reconstructed phase space [25]:

5= b

(2)
i=1,2,...,N-(m-1)7; j=12,...,N-(m-1)7.
(3) Calculate the recurrence value [26]:
R(i,j) = H(g-S$;),
3)

i=1,2,...,N; j=1,2,...,N,

where ¢ is the threshold value and H(r) is the Heavi-
side function:

1 r=>0
H(r) = (4)
0 r<O0.
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(4) Utilize a coordinate graph whose abscissa is i and
whose ordinate is j to draw R(j, j), where i and j are
the time series labels and the image is RP.

2.1.1. Mutual Information Method. The mutual information
method estimating the delay time has been proposed by
Fraser and Swinney, based on the Shannon information the-
ory, which is widely used in phase-space reconstruction [27].

The Shannon theory shows that we can obtain the infor-
mation content of g; from the event b;:

Fula) |

P, (a)P(b;) ©)

I (ai,bj) = log, [

The relationship between a; and b; could be expressed with
comentropy I,p:

(6)

[ 2ulat) |

Ig= ZPAB (a,-,bj) log, P, (@) P (b)

ij
Apply the theory of the mutual information, and set A is
{A:a; = x; = x(t, +it,)} (7)
and set B is
{B:b =x;=x(t,+it, +71)}. (8)
Then, (6) translates into
L (1) = ZP [x (ty +it,), x (ty +iT, + T)]

)

o Px(ty+it,),x(ty +it, +7)]
1 g2{p[x(tomx)p[x(to+irx+f)]]}'

Usually at the beginning, I ,5(7) is large; therefore, we can
obtain an infinite amount of information in x(t) = x(t + 0).
x(t, + it,) and x(t, + it, + 7) are completely independent
for chaotic signals when 7 is large; when T — o0, I(1) — 0.
Generally the first minimum of I,5(7) is selected as the delay
time.

2.1.2. CAO Algorithm. The CAO algorithm was proposed by
CAO in 1997, and it has excellent properties to clearly dis-
tinguish real signal and noise, as well as high computational
efficiency [28]. First, we calculated the distance of the points
under the embedded dimensionality:

[[4; (m + 1) - Uiy (M + D

”ui (m) - Un(i,m) (m)” ’ (10)

a(i,m) =

i=1,2,...,N—-m,

where || - || is co the norm of the vector; u;(m + 1) is ith vector
after phase-space rebuilding, and the embedded dimension is

m+ 1 u,; (M + 1) is the nearest vector from u;(m + 1).

Next, we calculated the average value of the distance
change under the same dimension:

1 N-m
“W:ﬁtaza@w’ (11)
i=1

where E(m) is the average value of all a(i, m).
Finally, according to the discriminant equation

_E(m+1)

E, (m) = E(m) (12)

when m > my, E, (m) stops changing or changes slowly, and
mg + 1 is the minimum embedding dimension.

2.2. SIFT Theory. Recognizing the images that are rotating,
scaling, and translating refers to finding the stable points
of the images. These points, such as the corners, blobs, T-
junctions, and light spots in dark regions, do not disappear
with the rotation, scale, translation, and brightness changes.
SIFT was developed by Nurhaida et al. to extract distinctive
invariant features from images that can be used to perform
reliable matching between different views of an object or
scene [29]. SIFT has five basic steps: constructing scale space,
extreme points detection, precise location of key points,
orientation assignment, and descriptor calculation [30].

2.2.1. Gaussian Blur. SIFT finds key points in the different
scale spaces, and the acquisition of scale space needs to
be realized using Gaussian blur. Lindeberg has proved that
Gaussian convolution kernel is the only kernel to achieve
scale transformation, and it is the only linear kernel [31].

Gaussian blur is an image filter that utilizes normal
distribution to calculate the fuzzy template, and the template
is used to perform convolution operations with the original
image to achieve the transition of fuzzy images.

The normal distribution equation of N dimensional space
is

(13)

where o is the standard deviation of the normal distribution;
the larger o is, the fuzzier image is. r is the fuzzy radius that
refers to the distance between the template element and the
center of the template. If the two-dimensional template size is
mxmn, then (x, y) on the template corresponding to the Gauss
equation is

1 (e 2 00 2 2
G(x, y) — 27_[0_26 ((x-m/2)"+(y-n/2)") /20 . (14)

According to the value of o, the size of the Gaussian
blur template matrix is (60 + 1) x (60 + 1). Equation (14) is
used to calculate the value of the Gaussian template matrix;
convolution is calculated with the original image, and the
Gaussian blur image of the original image is obtained.



2.2.2. Scale Space Construction

(1) Scale Space Theory. Scale space theory was first proposed
by lijima in 1962, and it was widely used in the field of com-
puter vision after being promoted by Duits et al. [32].

The basic concept of scale space is as follows. A scale
parameter is introduced in the image model, and the scale
space sequence at multiple scales is obtained through the con-
tinuous change of scale parameter. The principal contours are
extracted from the scale space of these sequences, and the
principal contours are utilized as a feature vector to realize
edge detection, corner detection, and feature extraction at
different resolutions.

(2) Representation of Scale Space. The scale space L(x, y,0) of
an image is defined as the convolution calculation between
the Gauss function G(x, y, 0) and the original image I(x, y):

L(x,y,0) =G(x,y,0) * I(x, ), (15)
where * represents convolution:

_ L Gmpreenp e
G(xy.0) = e . (e)
where m and n are the dimensionality of the Gaussian
template determined by (60 + 1) x (60 + 1). (x, y) is the pixel
location in the image. o is the scale space factor, the smaller
value of which is the least amount of the smoothed image, and
the corresponding scale is smaller.

(3) Gaussian Pyramid. The pyramid model of an image is as
follows: the original image is constantly downsampling, and
it generates a series of different sizes of images, ranging from
large to small and from the bottom to the top, thereby con-
structing a tower-shaped model. The original image is the first
stratum of the pyramid, and the new image obtained through
downsampling is a stratum of the pyramid. The number of
strata in the pyramid is jointly decided through the size of
the original and top images. The equation is as follows:

n = log, {min (M, N)} - t,

. 17)
t € [0,log, {min (M, N)}],
where M and N are the sizes of the original image and ¢ is
logarithm of the minimum dimensionality of the top image.
To reflect the continuity of scale, the Gaussian pyramid
introduces the Gaussian filter on the simple downsampling,
as shown in Figure 1. The image in each stratum calculates the
Gaussian blur using different parameters; thus, each stratum
of the pyramid contains multiple Gaussian blur images.
The images in each stratum are named octaves. The initial
image (bottom image) of an octave in the Gaussian Pyramid
is obtained by sampling from the last third image of the
previous octave of images.

(4) DOG Pyramid. In 2002, Mikolajczyk found that the scale
normalization of the Laplacian Gaussian function can pro-
duce the most stable image features compared to other feature
extraction functions. The difference of Gaussian (DOG)
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function is similar to the scale normalization of the Laplacian
Gaussian function [17]. Therefore, the DOG filter is applied
to the input image. The image is gradually downsampled,
and the filtering is performed at several scales. Figure 2
demonstrates the creation process for the DOG filters at
different scales.

2.2.3. Extreme Point Detection. The key points are the local
extreme points (in the DOG space) whose initial exploration
is accomplished by comparing the two adjacent images of
each DOG in the same group. To determine the key points,
a 3 x 3 x 3 neighborhood comparison is used, as shown in
Figure 3. Each pixel processed by the DOG pyramid is com-
pared with 26 points of its 3-dimensional neighborhood to
obtain the maximum or minimum, as the preliminary feature
points.

2.2.4. Precise Location of Key Points

(1) Location of Interpolation. The extreme points detected by
the above methods are the extreme points of the discrete
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FIGURE 4: Difference between discrete space and continuous space.

space, which are not the real extreme points. Figure 4 shows
the difference of the extreme point of a two-dimensional
function in discrete and continuous space. SIFT utilizes the
linear interpolation method to obtain accurate key points.

(2) Remove Edge Response. The detected key points are further
examined to choose the “best” candidates. The stability of the
resulting set of key points is determined. Locations with low
contrast and unstable locations along edges are discarded by
calculating the ratio of the square of the matrix trace and
determining the Hessian matrix.

2.2.5. Orientation Assignment. To determine the descriptor
with rotation invariance, the local features of images are
needed to assign a reference orientation for each key point.
By calculating the gradient orientations of the neighborhood
pixels of key points, the orientation parameter is specified for
each feature point. The gradient values and orientations in
(x, y) are

m(x,y)

AL+ 1) - L= L)+ Ly D) -Lesy- DI (gg)

a[[Ley+1)-Lxy-1)]
6 (x, y) = tan {[L(x+1,y)—L(X—1>J’)]}.

The gradient histogram statistical method is employed to
further ascertain the orientation of the key point. The gra-
dient values of the key points in the neighborhood window
are calculated with the key point as the center and 1.50 as the
radius. The 360° of a circle are divided into 36 bins by drawing
the gradient histogram, the contribution of each neighbor-
hood point to the orientation of the gradient decreases
with the increase of the distance between the neighborhood
and the key point. The peak of the histogram is the main
orientation of the key points.

After selecting the main orientation, there may also be
one or more peaks whose values are more than 80% of the
main peak. To enhance the robustness of the match, some key
points whose locations and scales are the same as the original
key point will be employed.

2.2.6. Descriptor Calculation. After performing the above
steps, the key points have the location, scale, and orientation.
The next step is to create a descriptor for the key points. First,
the coordinate axes are rotated as the key points to ensure
the rotation invariance. Then, a 16 x 16 window is taken;
the center of this window has the key points shown in
Figure 5(a). Each grid represents a pixel in the scale space
of the neighborhood of the key point; the orientation of the
arrow represents the gradient orientation of the pixel, and
the length of the arrow represents the gradient mode. In
the figure, the circle represents the Gauss range weighted.
Next, the gradient orientation histogram of 8 orientations is
calculated in every 4x4 image, and the seed point is formed by
drawing the cumulative value of each gradient orientation, as
shown in Figure 5(b). In this figure, a key point is composed
of 16 (4 x 4) seed points, each of which has eight orientation
vectors. The key point can generate 128 (4 x4 x8) data sets and
then form a 128-dimensional feature vector. The concept of
the neighborhood orientation information alliance enhances
the antinoise ability and also provides good fault tolerance for
the feature matching with the localization error.

2.3. Kernel Principal Component Analysis. KPCA projects
the m dimensional observed data matrix (X € R™, input
space) onto a high-dimensional feature space F, which can
be expressed as

®:R™ —F. (19)

Similar to PCA, KPCA aims to project a high-dimensional
feature space onto a lower space, in which the principal
components are linear, uncorrelated combinations of the
feature space [33]. The covariance matrix in the feature space
can be formulated as

N
C- %;‘D (x) @7 (x,). (20)

The characteristic equation is
CV =1V, (21)

where @(x;) is ith sample in the feature space with zero mean,
N denotes the sample size, and T is the transpose operation.
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FIGURE 5: Image gradient and key point descriptor.

Let 0 = [®(x,),..., DP(xy)] be the data matrix in the feature
space. Hence, C can be expressed as C = 60" /N. Due to
the difficulty of obtaining ®, a Gram kernel matrix K is

determined as follows to directly avoid eigen-decomposition
C:

K (x; x) o (x,), (x]), (22)

where K = 070; therefore, the inner product in the feature
space (see (20)) can be obtained by introducing a kernel
function to the input space.

Let

N
V= Z“iq) (x:)- (23)
i=1

Simultaneously, (20), (21), and (22) obtain the following
equation:

N N N
Z Z (X ) ] 1] N/\Z(XI(I) (xi) . (24)
i=1 j=1 i=1
The vector of (23) is
Ka = Nla = M a. (25)

To extract the principal components, the projection of
feature vector V; in the feature space is calculated:

N N
(VJ)T D (x) = Y @ (x,) P (x) = Y %K (x;,x). (26)
i=1 i=1

2.4. Probabilistic Neural Network. The probabilistic neural
network was proposed by Specht in 1990 [34]. It is a feed-
forward neural network that was developed from the radial
basis function, and its theoretical basis is the Bayes minimum

risk rule (Bayes decision theory). As one of the radial basis
networks, the PNN is suited to pattern classification, it
places the Bayes decision analysis (with the Parzen window
function) into the framework of a neural network, and the
Bayes classification is produced by combining the Bayes
decision and nonparametric estimation of probability density
function. It can be described in the following manner. Assum-
ing that there are two fault modes (8, and 05) for a fault

feature sample X = (xy, x5, X3,...,X,),
if hylyfa(X) > hglgfp(X), then X €6,
(27)
if halyfu(X) < hglgfa(X), then X €0,

where h, and hy denote the prior probability of fault modes
0, and 0, generally, hy, = N,/N, hy = Ng/N, and N,
and Ny are the number of training samples of 8, and 0,
respectively, and N is the total number of training samples.
1, is the cost factor used to classify the feature X sample
belonging to 6, into mode 0y (falsely). I is the cost factor
used to classify the feature sample X belonging to 05 into
mode 0, (falsely). f, and fg are the probability density
functions of the fault modes 8, and 05, respectively.

Figure 6 shows the PNN structure that demonstrates
that the input mode X is divided into 2 types. As shown in
Figure 6, the PNN is a feed-forward neural network with a
4-layer structure: the input layer, pattern layer, summation
layer, and output layer. The input layer transmits input sam-
ples to each node of the pattern layer. The node of the pattern
layer calculates the weighted sum of the data passed by the
input node, following the operation of a nonlinear operator,
which transmits the results to the summation layer. The
nonlinear operator is

9(2) = exp [ (Zja; 1)] : (28)
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FIGURE 6: The basic PNN structure.

Assuming that X and W are standardized into unit lengths,
(1) is equivalent to

_(Wj - X)' (W, - X)

> )

9(z;) = exp

where W is the weight vector.

The summation layer sums up the input from the pattern
layer and then obtains the estimated probability densities.
The classification result selected by the output layer is the
maximum output of the summation layer.

The PNN is equal to the Bayes pattern classification
method, which utilizes the Gauss kernel multivariate proba-
bility density function. The density function can be estimated

as follows:
1 1
Fi(X)= ————

T (30)
Y exp (x-xy) (X-Xy)
262 ’

where X is input sample vector, s is the number of sample
vectors’ variables, X ; (the weight in the PNN) is jth training
vector of fault mode A, and m is the number of training
samples belonging to mode A; § is the smoothing parameter.

3. Method for Fault Diagnosis of Rolling
Bearing under Variable Working Conditions

Inspired by SIFT, this study proposes a novel fault diagnosis
for rolling bearings under variable conditions. The diagnostic
procedure is shown in Figure 7.

The diagnostic process generally consists of four steps.
First, the vibration signals in different fault modes under dif-
ferent conditions are transformed into RPs that are regarded
as the objects of SIFT. To more accurately reconstruct the
phase space, the delay time and embedded dimensionality
are calculated using the mutual information algorithm and
CAO algorithm is used to calculate the RPs. Second, the SIFT

extracts the invariable features of the RPs (as described in
Section 2), and the constructing scale space, extreme point
detection, precise locations of the key points, orientation
assignment, and descriptor calculation are determined to
achieve the salient invariable features. Third, due to the
high-dimensional vector of the extraction features, KPCA
is employed by introducing a kernel function to reduce the
dimensionality. Finally, the PNN is used as a classifier to
diagnose the fault classification using data from one of the
conditions to train the neural network and using data from
the other conditions to test the proposed method.

4. Results and Discussion

In this section, vibration data of rolling bearings collected
from the Case Western Reserve University Bearing Data Cen-
ter under different working conditions and fault modes were
utilized to validate the effectiveness of the proposed method.

4.1. Description of the Experimental Data. The experimental
data used to test and verify the proposed method were
obtained from the Bearing Data Center of Case Western
Reserve University, Cleveland, OH, USA. The experimental
setup used a Reliance Electric 2HP motor connected to a
dynamometer, which was used as the prime mover to drive
a shaft coupled with a bearing housing. Faults (i.e., size 7
mils, 14 mils, 21 mils, and 28 mils) were introduced into
the drive-end bearing (6205-2RS JEM SKF) and fan-end
(NTN equivalent bearing) of a motor using the electric
discharge machining (EDM) method, with the motor speed
varied at 1730, 1750, 1772, and 1797 rpm, respectively. These
faults were introduced separately at the inner raceway, rolling
element (ball), and outer raceway [35]. To quantify the
stationary effect of the outer raceway faults, experiments
were conducted for the FE and DE bearings, with outer
raceway faults located at 3 oclock, 6 oclock, and 12 oclock.
An impulsive force was applied to the motor shaft, and the
resulting vibration was measured using two accelerometers,
one mounted on the motor housing and the other placed
at the 12 oclock position of the outer race of the drive-end
bearing. Digital data were collected at 12,000 samples per
second, and data were also collected at 48,000 samples per
second for the drive-end bearing faults.

In this study, the DE bearing data for the normal, inner
race fault, outer race fault, and rolling element fault with the
speed varied between the 4 conditions were acquired for the
fault pattern classification, and the fault diameters were 21
mils. The fault information (21 mils and outer race fault at 6
oclock with four speeds), in terms of the test bearings, is listed
in Table 1.

4.2. Image Transformation of the Vibration Signals under Dif-
ferent Conditions. In this section, the vibration signals under
different conditions are transformed into 2-dimensional
images, which facilitate the extraction of invariable features
for the fault classification. As previously mentioned, RP can
uncover the hidden periodicities in a signal in the recurrence
domain, and it is important that the method analyzes the
periodic, chaotic, and nonstationary elements of the time
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FIGURE 7: A flowchart of the proposed method.
TaBLE 1: Data declaration.
Fault diameter (mils) Motor speed (rpm) Inner race Ball Outer race
3 oclock 6 oclock 12 oclock
1797 213.mat 226.mat 238.mat
21 1772 214.mat 227.mat 239.mat
1750 215.mat 228.mat 240.mat
1730 217.mat 229.mat 241.mat

series. Thus, RPs are particularly suitable for the image
transformation of vibration signals without loss of signal
information.

To accurately confirm the suitable embedding dimension,
m and delay time 7 of each signal for the phase-space

reconstruction, mutual information algorithm, and CAO
algorithm were used. The parameters m and 7 for each
condition are shown in Table 2. Unfortunately, to guarantee
the calculation speed, for the data segments of each vibration
signal, only 1,000 points were chosen to transform into an RP
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Fault 1 Fault 2

~ Fault 3

Condition 1

Condition 2

Condition 4 | Condition 3

FIGURE 8: RPs transformed by fault mode vibration data under
different conditions.

FIGURE 9: The normal DOG scale space under condition 1.

(with dimensionalities of N x N) when reconstructing the
phase-space due to calculating the ergodic Euclidean norms
of x; and x ;. This experiment selected a 20-set data segment
for each signal. Figure 8 shows the RPs in each fault mode
under 4 different conditions that were randomly selected in
a 20-set data segment. From the results, we see that the size
of the RPs in the different modes under different conditions
reveals slight differences.

In Figure 8, the row represents the condition changes, and
the column represents the different fault modes (i.e., the first
column shows the RPs in the normal state, the second column
shows the RPs in the inner fault state, the third column shows
the RPs in the element fault state, and the fourth column
shows the RPs in the outer fault state). In Figure 8, we can
see that the RPs of the different fault modes under different
conditions have different structural characteristics, while the
same fault modes under different conditions are notably
similar. Affected by the condition changes, the RPs under
the different conditions show the translation variation, scale
variation, and combination of these changes.

4.3. Feature Extraction Based SIFT and the Dimensionality
Reduction. In this section, the invariable features in each
fault mode under the different conditions are extracted from

BB D S RN S
im e e

FIGURE 10: The DOG scale space of the inner race fault under con-
dition 1.

FIGURE 11: The DOG scale space of the element fault under condition
1

the transformed RPs, based on SIFT. Using SIFT, the scales,
orientation, and locations of the key points are calculated. The
scale information is obtained by establishing the difference of
the Gaussian pyramid, which has 7 octaves. Each octave has
5 strata, and the scale factor o is utilized to make the image
fuzzy between the different strata. Because of the length of the
paper, the DOG scale space of four different fault modes (only
under condition 1) are shown in Figures 9-12; the locations of
the key points are calculated by locating the extreme value
points and through further interpolation to determine the
exact extreme points on a continuous space. The detected key
points of the RPs are shown in Figure 13, and the orientations
of the key points are obtained by calculating the gradient
orientation of the neighborhood pixels of the key points.
The orientation parameters are specified for each key point
through the gradient histogram statistics. After performing
the above steps, the descriptor of the key point is established
through a 128-dimensional vector.

Due to the essential features of RPs hidden in the high-
dimensional space, which makes the calculation difficult,
the aforementioned KPCA method was used to reduce
dimensionality. First, the input space is mapped onto a high-
dimensional feature space using the kernel function, and
then the PCA is used to reduce the dimensionality. However,
the features of the low-dimensional space are also too large
and complex to be taken as feature vectors. To solve this
problem and to improve the robustness of the feature vectors,
singular value decomposition (SVD) was utilized in this
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TABLE 2: The experiment parameters of each fault mode under different conditions.

Conditions Parameters Normal Inner race fault Element fault Outer race fault
Condition 1 mn 15 12 12 12

T 4 5 5 5
Condition 2 mn 15 12 13 12

T 4 5 5 5
Condition 3 mn 15 20 13 12

T 4 2 5 5
Condition 4 mn 16 11 13 12

T 4 5 5 5

= 0SS e e

St
b |

Rttt s & o

FIGURE 12: The DOG scale space of the outer race fault under con-
dition 1.

Fault 1 Fault 2 Fault 3

Condition 1

Condition 4 ' Condition 3 ! Condition 2

F1GURE 13: The detected interest points in RPs.

paper to compress the scale of the fault feature vectors and to
obtain more stable feature vectors [13]. Figure 14 shows the 3-
dimensional visual feature points reduced by KPCA and SVD.

4.4. Fault Classification Based on PNN. In this paper, PNN
is employed as the classifier to classify the extracted features
from vibration signals under different conditions, which are
processed by SIFT and KPCA. To verify that the training

o -N’o'rr'n.al data underv/ﬁ' .

20 ~ ‘ e
4 different conditions |

15

04 Outer race fault d@_@_ under\é/ Element fault data under
4 dlffe_r?’.‘t. conditions " 4 different conditions

Inner :_rz_ic_e fault'databubrbi T ‘
0 | -4different conditions o "~ . -- ..
30

10

50

0 ¢

FIGURE 14: The feature scatter diagram in the 3-dimensional space.

Result of classification

0 50 100 150 200 250

The serial number of prediction sample

FIGURE 15: The classification result of the first cross-validation group.

data for the different conditions are effective, cross-validation
is also necessary; the vibration data collected under each
condition are orderly selected as training data, and the data
collected under the other three conditions are used as test
data, as shown in Table 3.

In each cross-validation, the training data and test data
are composed as follows.
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0 50 100 150 200 250
The serial number of prediction sample

Result of classification
(3]

FI1GURE 16: The classification result of the second cross-validation

group.

0 50 100 150 200 250

The serial number of prediction sample

Result of classification
(3]

FIGURE 17: The classification result of the third cross-validation
group.

TABLE 3: The rolling bearing data composition under variable con-
ditions for cross-validation.

Cross-validation

Training data

Test data conditions

groups conditions

1 1 2 3 4
2 2 1 3 4
3 3 1 2 4
4 4 1 2 3

Note: 1, 2, 3, and 4 in the training data conditions and the test data denote
4 different speed conditions, 1797 rpm, 1772 rpm, 1750 rpm, and 1730 rpm,
respectively.

Training Data. 20 groups of data are selected for each fault
mode under only one working condition; thereby totally 80
groups of data are selected for 4 fault modes.

Test Data. 20 data groups for each fault mode under the other
3 conditions, a total of 240 groups of data: 1-80 groups of data
comprise the first condition, 81-160 groups of data comprise
the second condition, and 161-240 groups of data comprise
the third condition.

1

0 50 100 150 200 250

The serial number of prediction sample

Result of classification
(3]

FIGURE 18: The classification result of the fourth cross-validation
group.

The results of the PNN classification are shown in Figures
15-18, where Figure 15 is the result of the first group of cross-
validation, Figure 16 is the result of the second group of cross-
validation, Figure 17 is the result of the third group of cross-
validation, and Figure 18 is the result of the fourth group
of cross-validation. The red spots are the actual fault mode,
and the blue triangles are the result of the PNN classifier. In
the vertical axis, 1, 2, 3, and 4 represent the normal, inner
race fault, element fault, and outer race fault, respectively.
At last, the detailed error samples statistics and classification
accuracy of the cross-validation are shown in Tables 4 and 5.
From Table 5, it can be seen that the classification accuracy
values of the four groups of cross-validation are all higher
than 97%, indicating that the proposed method is of high
effectiveness.

5. Conclusions

A novel rolling bearing fault diagnosis method under vari-
able conditions, which was originally introduced for image
recognition, is described in this paper. First, this method
transforms the vibration signals into images, which are
expressed in RPs. Then, as mentioned above, through the
use of SIFT, the scales, orientation, and locations of the key
points are calculated to identify the angular points, peripheral
points, and bright points in the dark space of the RPs to
extract the invariant features under variable conditions. After
creating the key point descriptors, KPCA was employed to
reduce the dimensionality of the high-dimensional feature
vectors using kernel function to map the feature vector onto
a higher-dimensional feature space and then using PCA to
reduce the dimensionality. Finally, PNN was utilized as a
classifier to execute the fault classification.

Future plans include conducting more experimental and
object tests to further test the applicability of the proposed
fault diagnosis method. In addition, because of the calcu-
lation speed limitation of phase-space reconstruction, new
image transformation methods are also needed. To increase
the feature extraction speed, the improved SIFT algorithm
can be tested.
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TABLE 4: The detailed error samples statistics of cross-validation.
The work The work Inner race Outer race
conditions of conditions of Normal Element fault Mean value/sum
.. fault fault
training data test data
Number of data 20 20 20 20 80
2 Number of wrong samples
Error rate
Number of data 20 20 20 20 80
1 3 Number of wrong samples 6 6
Error rate 0.3 0.075
Number of data 20 20 20 20 20
4 Number of wrong samples 1 0 1
Error rate 0.05 0 0.0125
Number of data 20 20 20 20 80
1 Number of wrong samples
Error rate
Number of data 20 20 20 20 80
2 3 Number of wrong samples 1 5 6
Error rate 0.05 0.25 0.075
Number of data 20 20 20 20 80
4 Number of wrong samples 1 0 1
Error rate 0.05 0 0.125
Number of data 20 20 20 20 80
1 Number of wrong samples 1 5 6
Error rate 0.05 0.25 0.075
Number of data 20 20 20 20 80
3 2 Number of wrong samples 0
Error rate 0
Number of data 20 20 20 20 80
4 Number of wrong samples 0
Error rate 0
Number of data 20 20 20 20 80
1 Number of wrong samples 6 6
Error rate 0.3 0.075
Number of data 20 20 20 20 80
4 2 Number of wrong samples 0
Error rate 0
Number of data 20 20 20 20 80
3 Number of wrong samples

Error rate
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TABLE 5: The result of fault diagnosis for bearing under variable conditions.

Groups of cross validation 1 2 3 4 Mean value/sum
Number of wrong samples 7 7 6 6 26
Number of test data 240 240 240 240 960
Classification accuracy 97.08% 97.08% 97.5% 97.5% 97.29%
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