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Bearing fault is usually buried by intensive noise because of the low speed and heavy load in direct drive wind turbine (DDWT).
Furthermore, varying wind speed and alternating loads make it difficult to quantize bearing fault feature that indicates the degree
of deterioration. This paper presents the application of multiscale enveloping spectrogram (MuSEnS) and cepstrum to detect and
quantize bearing fault in DDWT. MuSEnS can manifest fault modulation information adaptively based on the capacity of complex
wavelet transform, which enables the weak bearing fault in DDWT to be detected. Cepstrum can calculate the average interval of
periodic components in frequency domain and is suitable for quantizing bearing fault feature under varying operation conditions
due to the logarithm weight on the power spectrum. Through comparing a faulty DDWT with a normal one, the bearing fault
feature is evidenced and the quantization index is calculated, which show a good application prospect for condition monitoring
and fault diagnosis in real DDWT.

1. Introduction

Wind energy has developed rapidly in the last decade, espe-
cially in China; the accumulated installed capacity has ranked
at the top of the world since 2012 [1, 2]. However, suffering
from harsh operation environments such as varying wind
speed, alternating loads, and extreme difference in tempera-
ture, wind turbine (WT) is prone to break down,which causes
high maintenance cost and economic loss [3, 4]. Large scale
horizontal axis wind turbine can be categorized into gearbox-
driven anddirect drivemachines based on the structure of the
drive train [5]. In a gearbox-drivenWT, a gearbox is adopted
to transfer the mechanical energy from rotor hub with low
rotational speed to double fed induction generator with high
speed. Oppositely, in a direct drive wind turbine (DDWT),
the rotor hub is coupled to permanent magnet synchronous
generator directly, and a full-rated converter is used to
transform varying mechanical speed to consistent frequency
of power grid [6]. The removal of gearbox simplifies the
structure of DDWT; however, heavy rotor system consisting
of blades, rotor hub, and rotor of generator acts on the two
supporting bearings installed on themain shaft, which causes
bearings to be failure readily. Correspondingly, the faults

such as air gap eccentricity, rubbing, and scrapping between
stator and rotor of generator arise inevitably and may induce
catastrophic results for DDWT. Therefore, we should pay
more attention to detect and diagnose bearing fault inDDWT
to improve the operational reliability.

The researches about bearing fault detection and diag-
nosis accumulated abundant achievements. McFadden and
Smith [7, 8] developed single point andmultiple point defects
model of inner race of a rolling element bearing, which
provided fundamental research for bearing fault detection.
Afterwards, a variety of technologies and methods were
applied to diagnose bearing fault with the development of the
signal processing. Tandon and Choudhury [9] summarized
the vibration and acoustic methods for the detection of
bearing localized and distributed defects based on the anal-
ysis in time, frequency, and time-frequency domain. Bearing
fault often excites resonance at certain natural frequency of
the bearing components, which causes a phenomenon of
resonancemodulation. Enveloping demodulation combining
narrow-band filtering is referred to as an effective tool to
find the bearing fault features [10]. To overcome the disad-
vantage of the selection of narrow band manually, Antoni
and Randall [11] proposed a method of spectral kurtosis,
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which can decompose signal into different frequency bands
and regard the band with maximum kurtosis as the optimal
filtering narrow band. To enhance the impact brought from
bearing fault in vibration signals, autoregressive model and
minimum entropy deconvolution were developed to restrain
the periodic components of gear mesh and background noise
[12, 13]. Randall et al. [14] presented cepstrum prewhitening
to remove deterministic components in cepstral domain, and
Borghesani et al. [15] applied thismethod to diagnose bearing
faults under variable speed conditions. Due to necessary
random slips, possible speed fluctuations, and variations of
the axial to radial load ratio, the vibration signal from real
bearing fault was considered as cyclostationary, and cyclic
spectral analysis was performed by Antoni to evidence a fault
in high level of background noise [16]. Rai and Mohanty
[17] diagnosed bearing fault using FFT and Hilbert-Huang
transform based on the ability of nonstationary signal pro-
cessing. Randall and Antoni [18] summarized some effective
methods to detect incipient defect of bearing including linear
prediction, adaptive noise cancellation, discrete separation,
time synchronous averaging, and so forth.

Due to the large scale and heavy load of direct drive WT,
the vibratory impact of bearing fault is usually weak and
buried by intensive background noise. Moreover, low speed
of rotor hub makes the fault feature frequency of bearing too
small to be observed. For example, the bearing fundamental
train frequency at rated rotational speed of DDWT is less
than 0.2Hz, which is possible out of the linear measurement
range of acceleration transducer. Therefore, it is difficult
to extract and quantize bearing fault feature in DDWT.
The minority studies referred to the fault diagnosis about
DDWT, especially for bearing fault feature extraction and
quantization under the operation condition of varying speed
and alternating loads. An et al. [19] applied the ensemble
empirical mode decomposition and Hilbert transform to
analyze pedestal looseness of a DDWT; however, the study
is based on small scale test rig which cannot represent the
characteristic of real wind turbine.

In this paper, a comparative analysis of a faulty DDWT
with a normal one is made to detect and quantize the bearing
fault. Firstly, the structure ofDDWT is described and its char-
acteristic is analyzed. Then, the multiscale enveloping spec-
trogram (MuSEnS) that can decompose signal at different
frequency bands and obtain multiscale envelope spectrum
is introduced to evidence bearing fault feature frequency in
the faulty DDWT. Next, a cepstrum based fault quantization
index is proposed to represent the degree of bearing fault,
which can exclude the influence of operation conditions.
Finally, a summary ismade to discuss the noteworthymatters
in the real test for DDWT. The proposed methods show a
good application prospect for conditionmonitoring and fault
diagnosis in real DDWT.

2. Direct Drive Wind Turbine

2.1. Structure of Direct Drive Wind Turbine. External rotor
with permanent magnets excited is the mainstream structure
of the DDWTdue to the high energy yield [20].The structure
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Figure 1: Structure of the direct drive wind turbine.

of DDWT is shown as in Figure 1. The external rotor of
generator glued with permanent magnets, the connector, and
the rotor hub form the rotor system that is driven by three
blades. The pitch system connects the three blades to the
rotor hub and adjusts absorbed wind energy through tuning
the pitch angles. The stator system is comprised of the stator
of generator with coils and the irrotational main shaft. The
rotor system and stator system are installed on the tower in
its entirety and covered by a nacelle. All the parts in nacelle
rotate to face the wind via a yaw system.

The rated rotational speed of DDWT is much lower than
double fed induction generator because of the absence of
speed-up gearbox. Therefore, the number of pole pairs in
direct drive generator should be enough to achieve a relatively
high grid frequency (50Hz in China), which can enhance
the weight and volume of the DDWT. In addition to the
heavy rotor systemof generator, theweight of the three blades
and the stochastic impact of wind acting on bearings bring a
challenge for safety operation of the bearings.

2.2. Bearing Fault Feature. The rotor system in this case is
supported by two bearings, as shown in Figure 1, the fore
bearing is double row tapered roller bearing, and the rear one
is cylindrical roller bearing.The fault analysis is implemented
for the rear bearing.

For cylindrical roller bearing, the roller pass frequency of
inner race (RPFI), roller pass frequency of outer race (RPFO),
and roller spin frequency (RSF) of rolling element can be
calculated as
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Due to the outer race rotation, the fundamental train fre-
quency (FTF) can be shown as
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Figure 2: Structure of the cylindrical roller bearing.

where 𝑓
𝑟
is the rotational frequency of the external rotor,

𝑑 is the roller diameter which is 40 millimeter, 𝐷 is the
pitch diameter which is 791 millimeter, 𝑁

𝑏
is the number of

the cylinder rollers which is 49, and 𝜑 is the contact angle
of bearing. The parameters of cylindrical roller bearing are
shown in Figure 2.

In the rear bearing of the DDWT, as the rolling elements
strike a local defect on the inner race or outer race, a shock
is generated. As shown in Figure 3(a), while defect exists on
inner race, the interval of vibration shock is the reciprocal of
the RPFI and there is no modulation phenomenon because
the inner race is stationary. When defect arises on outer race,
the rollers strike the defective part on outer race which can
introduce the shock with interval of the reciprocal of the
RPFO. Meanwhile, the vibration shock is modulated by the
rotational frequency of the external rotor, with the defective
part on the outer race entering into the load zone (on the
top) and leaving the load zone, shown as in Figure 3(b).
Similarly in Figure 3(c), the vibration shock happens when a
defect on a roller strikes either inner race or outer race and is
modulated by the FTF, with the defective roller entering and
leaving the load zone.The motion processes of external rotor
bearing with outer race defect and roller defect are shown as
in Figure 4.

3. Multiscale Enveloping Spectrogram

3.1. Comparison of Demodulation Methods. Demodulation
analysis is an impactful tool to detect modulation informa-
tion that represents fault component in bearing diagnosis.
There are many demodulation methods applied to rotating
machinery fault diagnosis, such as generalized detection-
filtering demodulation [21, 22], Hilbert transform [10], and
cyclostationary demodulation [6, 23–25].

An integral arithmetic is adopted in Hilbert transform
to convert signal to an imaginary part. Combining the
signal itself as a real part, an analytic signal is generated
whose module is the enveloping signal including modulation
information. However, Hilbert demodulation analysis needs
selecting certain frequency band includingmodulation infor-
mation to filter original vibration signal. Since the selection
of narrow-band range depends on human’s experiences to a
great extent, it may cause incorrect demodulation results.

Second-order cyclostationary (CS2) demodulation is
effective to diagnose machinery fault because most of rev-
olutions in gear or bearing system can be considered as
cyclostationary process. It firstly converts autocorrelation of
original signal to cyclic autocorrelation function (CACF)
using Fourier transform in alpha domain. Then, CACF is

converted to cyclic spectral density (CSD) using Fourier
transform in frequency domain.Therefore, an original signal
can be shown in a f -𝛼 surface that evidences carrier and
modulation components. However, modulation frequency
and its harmonics still distribute on both sides of carrier
frequency in f -𝛼 surface and cannot be separated alone,
whichmay lead to identification difficulty especially; there are
multifault sources.

Compared with the above demodulation methods, com-
plex wavelet transform exhibits its excellent ability in demod-
ulation analysis. It enables simultaneous filtering signals
at different bandwidth and obtaining multiscale envelope
spectrum (MuSEnS) based on the characteristic of complex
wavelet transform. MuSEnS just reveals the modulation
information ignoring the carrier components.

3.2. Definition ofMuSEnS. Complexwavelet has the property
of being analytic in nature and is defined as [26, 27]
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Figure 5 shows the complexMorlet wavelet used in this paper.
The complex wavelet transform of 𝑥(𝑡) is
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in (5) and (6), 𝑎 denotes the scale factor and 𝜏 denotes the
shift factor.

The result after complex wavelet transform is analytic.
From the modulus of the analytic result 𝑤𝑡

𝐶
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envelope signal is derived as
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Therefore, the band-pass filtering and multiscale enve-
lope analysis can be finished simultaneously. Further, using
Fourier transform, MuSEnS can be calculated as
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Figure 3: Bearing fault signals. (a) Inner race fault, (b) outer race fault, and (c) roller fault.
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Figure 4: Motion processes of external rotor bearing with defect. (a) Outer race fault and (b) roller fault.

4. Cepstrum Analysis

4.1. Definition of Cepstrum. Spectral analysis can reveal the
periodic components in time signal using Fourier transform.
Correspondingly, the Fourier transform of spectrum can also
reveal the periodic components in frequency domain. The
cepstrum of signal was defined as the “power spectrum of
the log power spectrum” originally [28]. Afterwards it was

revised as the “inverse Fourier transform of the log power
spectrum,” which is defined as [29, 30]
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Figure 5: Complex Morlet wavelet. (a) Real part (black line), imaginary part (dash line), and envelope (red line); (b) FFT of the complex
Morlet wavelet.

where 𝑋(𝑓) denotes the Fourier transform of 𝑥(𝑡), 𝐹−1 is an
indicator of inverse Fourier transform, and 𝜏 is the quefrency.

The cepstrum calculates the average interval of multiple
harmonics in frequency domain, and thus it can distinguish
the neighbor frequency components accurately. And it has
been recognized as a powerful tool to detect gear and bearing
defect in industrial applications [31, 32].

4.2. Characteristic of the Cepstrum. The time signal 𝑥(𝑡)
collected from vibration transducer is the convolution prod-
uct of vibration source 𝑠(𝑡) itself and the impulse response
function ℎ(𝑡) of transmission path, which is described as

𝑥 (𝑡) = 𝑠 (𝑡) ∗ ℎ (𝑡) = ∫
∞

0

𝑠 (𝜏) ℎ (𝑡 − 𝜏) 𝑑𝜏. (10)

It is difficult to identify the vibration source and transmission
path in time domain, so Fourier transform is applied for 𝑥(𝑡).
According to the convolution theorem [33], the convolution
product of 𝑠(𝑡) and ℎ(𝑡) can be replaced by the multiplication
of 𝑆(𝑓) and 𝐻(𝑓), which is shown as

𝑋(𝑓) = 𝑆 (𝑓) ⋅ 𝐻 (𝑓) , (11)

where 𝑋(𝑓), 𝑆(𝑓), and 𝐻(𝑓) are the Fourier transforms of
𝑥(𝑡), 𝑠(𝑡), and ℎ(𝑡) respectively. Further, the logarithm is
applied as

log [𝑋 (𝑓)] = log [𝑆 (𝑓)] + log [𝐻 (𝑓)] . (12)

Then, the inverse Fourier transform is used to process the
logarithm result, which is shown as

𝐹−1 {log [𝑋 (𝑓)]} = 𝐹−1 {log [𝑆 (𝑓)]}

+ 𝐹−1 {log [𝐻 (𝑓)]} .
(13)

Here, the convolution product of 𝑠(𝑡) and ℎ(𝑡) in time domain
is transformed in addition to cepstrum domain

𝐶
𝑥
(𝑞) = 𝐶

𝑠
(𝑞) + 𝐶

ℎ
(𝑞) , (14)

where 𝐶
𝑥
(𝑞), 𝐶

𝑠
(𝑞), and 𝐶

ℎ
(𝑞) are the cepstrum of 𝑥(𝑡), 𝑠(𝑡),

and ℎ(𝑡), respectively.
From (10) to (14), the characteristic of cepstrum can

be summarized as follows: (1) the cepstrum calculating the
inverse Fourier transform of the periodic components in
frequency domain makes a high identification precision for
multiple harmonics that may represent fault features; (2) the
convolution product of the vibration source and transmission
path in time domain is converted in addition to cepstrum
domain, which can be separated easily; (3) the logarithm
gives higher weights for weak amplitudes and lower weights
for intensive amplitudes in frequency domain, which can
evidence the incipient fault features in cepstrum domain;
(4) inverse Fourier transform of the logarithm of multiple
harmonics in frequency domain makes the cepstrum steady
and robust, and it is insensitive to a change in load. Thus,
cepstrum is suitable for quantizing the fault feature of bearing
in DDWT.

4.3. Quantization Index of the Fault Feature. As shown in
Figure 3, defects on bearing component usually generatemul-
tiple fault features. Correspondingly, the fault features should
be emerged in cepstrum domain. Taking the roller defect
in Figure 3(c), for example, RSF and FTF are fault feature
frequencies in frequency domain, and they are transformed
as corresponding spectral lines in cepstrum domain. Then, a
cepstrum based bearing fault index for faulty DDWT can be
calculated as

𝐶
𝑄

=
(𝐶FTF + 𝐶RSF)

2
, (15)
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Figure 6: Test platform of direct drive wind turbine. (a) Platform and (b) transducer installation.
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where𝐶FTF and𝐶RSF denote the amplitudes corresponding to
the FTF and RSF in cepstrum, respectively.

5. Testing and Analysis

5.1. Test Platform. The tested DDWT has been put into
operation for about two years, and field technician found that
its health condition was abnormal. In order to clarify the
concrete fault in the DDWT, it was carried to test lab and
connected with a normal DDWT to construct a full-scale test
rig that is shown as in Figure 6(a). In this platform, the normal
DDWT was used as driving motor and the faulty one was
used as generator. Figure 6(b) shows the installation process
of acceleration transducers. The rated power of the tested
DDWT is 1.5MW, the diameter of blades is 77 meters, the
height of the rotor hub is 65 meters, and the rated rotational
speed of the external rotor is 17.3 r/min. The structures of the
two tested DDWT are the same, which are shown in Figure 1.

Four triaxial accelerometers are installed in the tested
faulty DDWT and the normal one, respectively, which is
shown as in Figure 7. Therefore, there are 12 channels totally
for each tested wind turbine. The acceleration transducers
Kistler 8795 are adopted to monitor and diagnose bearing
fault, and they are glued on the surface of the stationary main
shaft. The piezoelectric effect based acceleration transducer

Table 1: 9 operation conditions and the fault feature frequencies.

𝑓
𝑟
(Hz) 𝑃 (kW) RPFI (Hz) RPFO (Hz) RSF (Hz) FTF (Hz)

C1 0.133 0 3.432 3.101 1.315 0.070
C2 0.15 40 3.861 3.489 1.479 0.079
C3 0.17 60 4.376 3.954 1.676 0.089
C4 0.25 205 6.435 5.815 2.466 0.131
C5 0.262 125 6.735 6.087 2.581 0.137
C6 0.267 300 6.864 6.203 2.630 0.140
C7 0.273 200 7.035 6.358 2.696 0.143
C8 0.283 345 7.293 6.590 2.794 0.149
C9 0.283 485 7.293 6.590 2.794 0.149

has a dynamic response range from 1Hz to 2000Hz and
a resonance frequency about 20 kHz, and its sensitivity is
100mV/g. The sampling frequency is 5000Hz.

Real wind turbine often operates under harsh condition
of varying speed and alternating loads. Thus, the vibration
test is performed considering nine different operational
conditions shown as in Table 1. The corresponding fault
feature frequencies of rear bearing in DDWT are also listed
in Table 1 according to (1) and (2).

In Table 1, 𝑓
𝑟
denotes the rotational frequency of the

DDWT, and 𝑃 denotes the power at the same time.
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Figure 8: Time signals.

5.2. Fault Feature Extraction. Shown as in Table 1, the
fault feature frequencies of rear bearing in DDWT are low,
especially for FTF. Therefore, the vibration signals must be
recorded for a long time to identify them. So the record
time of vibration signals is more than 60 s for every test
condition. Figure 8 shows the time signals of 24 channels
at the condition C9. The first and the third rows represent
the vibration signals from normal DDWT, while the second
and the forth rows represent the vibration signals from the
faulty one. Observing the 12 channels of the normal DDWT,
the vibration amplitudes have obvious differences, especially
in chn02, chn03, chn05, chn06, chn09, and chn12, which
are more than other normal channels. Figure 9 shows the
vibration signals in chn02, chn05, and chn12, where the
periodic fluctuation 3.54 s is evidenced. 3.54 s represents the
rotational period of DDWT, and it may show an eccentricity
between rotor and stator because the DDWT is normal as
a prior. On the contrary, the vibration amplitudes of the
faulty DDWT in Figure 8 are relatively steady, which do not
exceed ±5m/s2. Just comparing the vibration amplitudes of
the normal DDWTwith the faulty one, we cannot find useful
information representing bearing defect of the faulty DDWT.

Then, the vibration signals in chn08 and chf08 denoting
axis-direction are analyzed in frequency domain, and the
corresponding power spectra are shown as in Figure 10.
Figure 10(a) represents the normal DDWT and Figure 10(b)
represents the faulty one. There is distinct difference at the
frequency range from 100Hz to 200Hz (enclosed by ellipse).
Bearing fault may be buried in the enclosed frequency band.

So the signals in chn08 and chf08 are filtered by band-pass
filter with the cut-off frequencies 100Hz and 200Hz and the
envelope spectra are shown in Figure 11. In Figure 11(a), there
are multiharmonic components of 𝑓

𝑟
(0.283Hz) that denotes
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2
)

3.54 s 3.54 s

5 10 15 20 25 300

−10

0

10

Chn12

A
 (m

/s
2
)

3.54 s 3.54 s

5 10 15 20 25 300
t (s)

−10

0

10

Chn02 3.54 s3.54 s

5 10 15 20 25 300

A
 (m

/s
2
)

−10

0

10

Figure 9: Time signals of three channels in normal DDWT.

the rotational frequency of external rotor, which accord
with the periodic fluctuation in Figure 9. In Figure 11(b),
besides the components of rotational frequency, 5.58Hz, the
second harmonic of RSF emerges. Although all the features in
Figure 11(b) are weak, they still present that there are possible
defects on the rollers of the rear bearing.The fault of the roller
elements is usually modulated by the feature of FTF, shown
as in Figure 3(c); however, there are no FTF components in
Figure 11(b).

Next, the vibration signals in chn08 and chf08 are
processed based on complex Morlet wavelet transform. The
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Figure 10: Amplitude spectra of vibration signals in chn08 and chf08. (a) Normal and (b) fault.

f
r
2f

r

3
f
r

4
f
r
5
f
r

0

0.05

0.1

5 10 150
f (Hz)

Sp
ec

 ((
m

/s
2
)2

)

(a)

2R
SF

f
r 2
f
r

3
f
r

0

0.05

0.1

5 10 150
f (Hz)

Sp
ec

 ((
m

/s
2
)2

)
(b)

Figure 11: Envelope spectrum after band-pass filtering. (a) Normal and (b) fault.
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(a) Normal and (b) fault.

range of wavelet scale is from 10 to 45 and the step is 0.25.
According to (7) and (8), the corresponding MuSEnSs are
shown as in Figures 12 and 13. In Figure 12(a), the rotational
frequency and its harmonics are obvious, which accord with
the demodulation results in Figure 11(a). In Figure 12(b), there
emerges a frequency component of 0.15Hz, enclosed by the
ellipse, which accords with the FTF at conditionC9 in Table 1.
Figure 13 shows the frequency range from 0 to 30Hz, and it
manifests more fault information about RSF and FTF. There
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Figure 13: Multiscale enveloping spectrogram in chn08 and chf08.
(a) Normal and (b) fault.

are frequency components of 2.94, 5.59, 8.54, 11.33, 16.77,
22.36, and 27.95Hz in Figure 13(b), which represent the sum
of FTF and RSF, two-time RSF, the sum of three-time RSF
and FTF, and the sum of four-time RSF and FTF, the six-time
RSF, the eight-time RSF, and the ten-time RSF, respectively.
All the above information indicates there are defects on the
roller in the rear bearing. Figures 14 and 15 are the slices of
MuSEnSs of the normal and faulty DDWTs at scales 15 and
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Table 2: Detection results of FTF under different conditions and directions.

Chf01 Chf02 Chf03 Chf04 Chf05 Chf06 Chf07 Chf08 Chf09 Chf10 Chf11 Chf12
C1 × × × × × × × × × × × ×

C2 × × × × × √ × × × × × ×

C3 × √ × × √ √ × × × × × ×

C4 × √ × × × × × √ × × × √

C5 × √ × × × × √ √ × × √ √

C6 × × √ × √ √ × √ × × √ √

C7 √ √ × √ √ √ √ √ × √ √ ×

C8 × √ × × √ √ × × × × √ √

C9 × √ × √ √ × × √ × × √ ×

× represents that FTF cannot be detected;√ represents that FTF can be detected.
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Figure 14: Slices of the MuSEnS at scale 15 in chn08 and chf08. (a) Normal and (b) fault.
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Figure 15: Slices of the MuSEnS at scale 35 in chn08 and chf08. (a) Normal and (b) fault.

35, respectively, which show the fault frequency components
of MuSEnS accurately.

From Figures 12 and 14, the weak feature of FTF can be
detected distinctly. Further, all the operation conditions and
test channels are considered to induce the defect position.The
detection results about FTF of all 12 channels at 9 operation
conditions are listed in Table 2. In C1 and C2, the FTF feature
can hardly be detected because of the low rotational speed
and load. In most cases from C2 to C9, FTF can be detected
in chf02, chf05, chf08, and chf11, which denotes that the defect
on roller is sensitive to the axis-direction vibration.Thedefect
on roller is inferred on the position enclosed by circles in
Figure 2.

5.3. Fault Feature Quantization. Suffering from varying
speed and alternating loads from stochastic wind, it is a

challengeable task to quantize fault feature of bearing in
DDWT. The whole vibration signals in chn08 and chf08
are analyzed using cepstrum, and the results are shown in
Figure 16. Figure 16(a) is the cepstrum of the normal DDWT,
where 1/𝑓

𝑟
(3.53 s) and its harmonics emerge, which are the

reciprocal of 0.283Hz representing the rotational frequency
of the DDWT. In Figure 16(b), the cepstrum of faulty DDWT
shows the components of 0.358 s and 6.717 s denoting the
reciprocal of RSF and FTF, respectively. However, there are
also 1/RSF and 1/FTF components in Figure 16(a), and the
amplitudes are lower than those in Figure 16(b). The reason
is that the two DDWTs are connected concentrically, and the
vibration impact from defective part of the faulty DDWT can
be transferred to the normal one.

The bulges corresponding to FTF and RSF in cepstrum
are collected from all the operation conditions and test
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Figure 16: Cepstrum of vibration signals in chn08 and chf08. (a) Normal and (b) fault.

channels, and the fault index is calculated according to (15).
There are total 12 × 9 = 108 test points. The fault indices of
normal and faulty DDWT are shown in Figure 17, which fluc-
tuate slightly following with different operational conditions.
Taking the fault index in normal DDWT as reference, the
quantization index of fault feature can be obtained through
subtracting the fault index in normal DDWT from the one
in faulty DDWT. The quantization index of fault feature is
steady and is little affected by the varying rotational speed and
loads, which is effective for long time condition monitoring
for DDWT.

As a contrast, we extract the amplitude of two-time
RSF based on enveloping demodulation in Figure 11 as the
fault index, which is shown in Figure 18. The fault index
using enveloping demodulation in faulty DDWT fluctuates
acutely following with different operational conditions, while
the fault index in normal DDWT is almost steady because
there are no faults in the normal DDWT. Therefore, the
quantization index based on enveloping demodulation is not
suitable for long time condition monitoring for DDWT.

Most fault quantization indicators were derived as the
ratio of extracted feature energy to total signal energy [12, 25,
34] because the extracted feature energy was always a part of
the original signal (reference value in denominator). In this
case, we set the fault index in normal DDWT as reference
value. As shown in Figure 18, the amplitude at enveloping
frequency (modulation information) is sensitive to varying
operation speeds and loads.Therefore, the ratio of fault index
in faulty DDWT to the one in normal DDWT will fluctuate
more fiercely than the difference in Figure 18. By comparison,
the cepstrum based difference in Figure 17 between faulty
DDWT and normal one is little sensitive to loads because
it benefits from the two characteristics: (1) the logarithm
gives higher weights for weak amplitudes and lower weights
for intensive amplitudes in frequency domain, which can
evidence the incipient fault features in cepstrum domain;
(2) the integral calculation of all vibration amplitudes in
frequency domain during inverse Fourier transform makes
cepstrum steady and robust.

5.4. Discussion. Considering the concrete characteristic of
direct drive wind turbine, to detect and quantize the bearing
fault in DDWT, we should pay attention to the following
instructions: (1) the record time of vibration signals must
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Figure 17: Fault indices using cepstrum analysis.
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be long enough to cover low fault feature frequencies of
bearing; (2) the acceleration transducer should be installed
in a correct direction, which can be used to detect defect
position accurately; (3) the test under nine different operation
conditions is performed within one day, and the degree of
bearing fault is supposed to be steady and not deteriorate
during the short time test; (4) although MuSEnS can detect
bearing defect in most sensitive direction, it is incapable of
FTF detection in other directions in most cases; (5) generally,
the features of both FTF and RSF can arise in cepstrum of
the faulty DDWT; however, they also cross into the normal
DDWT due to the concentric connection.

6. Conclusion

It is significant to monitor and diagnose the fault of bearing
that is a critical component in direct drive wind turbine. In
this paper, a faulty DDWT and a normal one are connected
concentrically to construct a test platform of comparative
analysis. The MuSEnS that can decompose signal into dif-
ferent scales and provide multiscale enveloping information
is applied to detect the FTF and RSF of rear bearing in the
faulty DDWT. Based on the detection results, a cepstrum
based fault index is proposed to quantize the fault feature
of bearing, which can exclude the influence of operation
condition and just reflect the degree of bearing defect. The
presented application ofMuSEnS and cepstrum is suitable for
the condition monitoring and fault diagnosis of direct drive
wind turbine.
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