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Time history analysis is becoming the routine process to quantify the response of the structure under dynamic loads. In this paper, a
novel two-step unconditionally stable explicit integration algorithm, named Unconditional Stable Two-Step Explicit Displacement
Method (USTEDM), is proposed for vibration analysis of structure. USTEDM is unconditionally stable, requires low memory,
produces no overshoot, and is third order accurate. The accuracy and efficiency of USTEDM are presented and compared with
other commonly used integration algorithms. The result shows that the proposed algorithm has superior performance and can be
used efficiently in solving vibration response of civil engineering structure.

1. Introduction

With the advance of computer hardware, more advanced
computer software is being used to solve the response of
the structure under dynamic loads. Hence, more advanced
numerical methods have been developed to efficiently and
accurately predict the dynamic response of the structure. In
the past,multiple implicit [1–7] and explicit [8–12] integration
algorithms have been developed, whose relationship [13] and
design methods are comprehensively analyzed [14–16]. The
explicit method has high computational efficiency, while the
implicit method has higher stable. The commonly referenced
explicit algorithm is Central DifferenceMethod (CDM) (ref),
CDM is easy to use, but it is only conditionally stable.
Many new explicit methods which are unconditionally stable
[17–19] have been developed. Though these methods are
unconditionally stable, they require multiple steps which are
not as efficient as the CDM. The paper presents a novel
2-step explicit integration method, named Unconditional
Stable Two-Step Explicit Displacement Method (USTEDM),

that is used to solve the dynamic response of a structure.
USTEDM is efficient to use and unconditionally stable. The
performance of USTEDM is compared with other explicit
algorithms. The result shows that USTEDM has superior
performance and can be used efficiently in solving vibration
response of civil engineering structures.

2. Derivation of the Two-Step
Integration Algorithm

Equation (1) shows the generalized dynamic equations of
motion of a structure:

𝑚𝑎 (𝑡) + 𝑐V (𝑡) + 𝑘𝑢 (𝑡) = 𝑓 (𝑡) , (1)

where 𝑎(𝑡), V(𝑡), 𝑢(𝑡) are the acceleration, velocity, and dis-
placement of the structure, respectively.𝑚, 𝑐, 𝑘 are the mass,
damping, and stiffness of the structure, respectively. 𝑓(𝑡) is
external applied force.
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In this paper, a two-step integration algorithm, as pre-
sented in (2), is proposed to solve the dynamic equation as
presented in (1):

𝑢𝑡+2Δ𝑡 = 𝑓 (𝑢𝑡+Δ𝑡, 𝑢𝑡, 𝑓𝑡+2Δ𝑡, 𝑓𝑡+Δ𝑡, 𝑓𝑡, 𝑚, 𝑐, 𝑘, Δ𝑡) , (2)
where 𝑢𝑡+2Δ𝑡 is the displacement at time step 𝑡 + 2Δ𝑡 and Δ𝑡
is the integration time step. Similarly, 𝑢𝑡+Δ𝑡 and 𝑢𝑡 are the
displacement at time 𝑡 + Δ𝑡 and 𝑡, while 𝑓𝑡+2Δ𝑡, 𝑓𝑡+Δ𝑡 and 𝑓𝑡
are the force at 𝑡 + 2Δ𝑡, 𝑡 + Δ𝑡, and 𝑡, respectively.

It should be noted that (2) as presented above has physical
units, where the displacement could be in the unit of “meter”
or “feet,” while the mass can be in the unit of “kg” or “slugs.”
To make the equation dimensionless, (2) can be rewritten in
form of dimensionless quantity as

𝑢𝑡+2Δ𝑡𝑢𝑡+Δ𝑡 =
𝑢𝑡+2Δ𝑡𝑢𝑡+Δ𝑡 (1,

𝑢𝑡𝑢𝑡+Δ𝑡 ,
𝑓𝑡+2Δ𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡 ,

𝑓𝑡+Δ𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡 ,
𝑓𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡 ,

1, 𝑐Δ𝑡𝑚 , 𝑘Δ𝑡2𝑚 , 1) .
(3)

To construct function 𝑢𝑡+2Δ𝑡/𝑢𝑡+Δ𝑡 at the right hand of
(3), the linear combination of 𝑢𝑡+2Δ𝑡/𝑢𝑡+Δ𝑡 with the arguments
including 1, (𝑢𝑡/𝑢𝑡+Δ𝑡)(𝑓𝑡+2Δ𝑡Δ𝑡2/𝑚𝑢𝑡+Δ𝑡), 𝑓𝑡+Δ𝑡Δ𝑡2/𝑚𝑢𝑡+Δ𝑡
and 𝑓𝑡Δ𝑡2/𝑚𝑢𝑡+Δ𝑡, can be used:

𝑟1 𝑢𝑡+2Δ𝑡𝑢𝑡+Δ𝑡 = 𝑟2 + 𝑟3
𝑢𝑡𝑢𝑡+Δ𝑡 + 𝑟4

𝑓𝑡+2Δ𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡 + 𝑟5
𝑓𝑡+Δ𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡

+ 𝑟6 𝑓𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡 ,
(4)

where 𝑟𝑖 (𝑖 = 1, . . . , 6) are undetermined coefficients.
The effects of the dimensionless arguments 𝑐Δ𝑡/𝑚, 𝑘Δ𝑡2/𝑚
that represent the structure’s material properties to the
displacements can be expressed by replacing the coefficients𝑟𝑖 (𝑖 = 1, 2, 3) with linear combination of constant term1, 𝑐Δ𝑡/𝑚, 𝑘Δ𝑡2/𝑚:

𝑟1 = 𝑙1 + 𝑙2 𝑐Δ𝑡𝑚 + 𝑙3 𝑘Δ𝑡2𝑚 ,
𝑟2 = 𝑙4 + 𝑙5 𝑐Δ𝑡𝑚 + 𝑙6 𝑘Δ𝑡2𝑚 ,
𝑟3 = 𝑙7 + 𝑙8 𝑐Δ𝑡𝑚 + 𝑙9 𝑘Δ𝑡2𝑚 ,

(5)

where 𝑙𝑖 (𝑖 = 1, . . . , 9) are coefficients.
Substituting (5) into (4) yields

(𝑙1 + 𝑙2 𝑐Δ𝑡𝑚 + 𝑙3 𝑘Δ𝑡2𝑚 ) 𝑢𝑡+2Δ𝑡𝑢𝑡+Δ𝑡
= (𝑙4 + 𝑙5 𝑐Δ𝑡𝑚 + 𝑙6 𝑘Δ𝑡2𝑚 )
+ (𝑙7 + 𝑙8 𝑐Δ𝑡𝑚 + 𝑙9 𝑘Δ𝑡2𝑚 ) 𝑢𝑡𝑢𝑡+Δ𝑡 + 𝑙10

𝑓𝑡+2Δ𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡
+ 𝑙11𝑓𝑡+Δ𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡 + 𝑙12

𝑓𝑡Δ𝑡2𝑚𝑢𝑡+Δ𝑡 ,

(6)

where 𝑙𝑖 (𝑖 = 1, . . . , 12) are coefficients to be determined and𝑙10 = 𝑟4, 𝑙11 = 𝑟5, 𝑙12 = 𝑟6.
Equation (6) can be simplified to be

(𝑙1𝑚 + 𝑙2𝑐Δ𝑡 + 𝑙3𝑘Δ𝑡2) 𝑢𝑡+2Δ𝑡
= (𝑙4𝑚 + 𝑙5𝑐Δ𝑡 + 𝑙6𝑘Δ𝑡2) 𝑢𝑡+Δ𝑡
+ (𝑙7𝑚 + 𝑙8𝑐Δ𝑡 + 𝑙9𝑘Δ𝑡2) 𝑢𝑡 + 𝑙10𝑓𝑡+2Δ𝑡Δ𝑡2
+ 𝑙11𝑓𝑡+Δ𝑡Δ𝑡2 + 𝑙12𝑓𝑡Δ𝑡2.

(7)

In order to decrease the number of undetermined coeffi-
cients 𝑙𝑖, (7) can be simplified by dividing 𝑙1 at both sides:

(𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡2) 𝑢𝑡+2Δ𝑡
= (𝑏3𝑚 + 𝑏4𝑐Δ𝑡 + 𝑏5𝑘Δ𝑡2) 𝑢𝑡+Δ𝑡
+ (𝑏6𝑚 + 𝑏7𝑐Δ𝑡 + 𝑏8𝑘Δ𝑡2) 𝑢𝑡 + 𝑏9𝑓𝑡+2Δ𝑡Δ𝑡2
+ 𝑏10𝑓𝑡+Δ𝑡Δ𝑡2 + 𝑏11𝑓𝑡Δ𝑡2,

(8)

where 𝑏𝑖 = (𝑙𝑖+1/𝑙1) (𝑖 = 1, . . . , 11) are undetermined coeffi-
cients.

Equation (8) is the preliminary form of USTEDM.

3. Determination of Coefficients

3.1. Accuracy Analysis. The accuracy of USTEDM can be
examined using convergence test. Equation (9) shows the
Taylor series expansion of the displacement, velocity, and
acceleration of the structure at time step of 𝑡 + 2Δ𝑡, 𝑡 + Δ𝑡,
respectively.

𝑢(𝑡+Δ𝑡) = 𝑢(𝑡) + V(𝑡)𝑑𝑡 + 12𝑎(𝑡)𝑑𝑡2 + 16 �̇�(𝑡)𝑑𝑡3 + ⋅ ⋅ ⋅ ,
V(𝑡+Δ𝑡) = V(𝑡) + 𝑎(𝑡)𝑑𝑡 + 12 �̇�(𝑡)𝑑𝑡2 + 16 �̈�(𝑡)𝑑𝑡3 + ⋅ ⋅ ⋅ ,
𝑎(𝑡+Δ𝑡) = 𝑎(𝑡) + �̇�(𝑡)𝑑𝑡 + 12 �̈�(𝑡)𝑑𝑡2 + 16 ...𝑎(𝑡)𝑑𝑡3 + ⋅ ⋅ ⋅ ,
𝑢(𝑡+2Δ𝑡) = 𝑢(𝑡) + 2V(𝑡)𝑑𝑡 + 2𝑎(𝑡)𝑑𝑡2 + 43 �̇�(𝑡)𝑑𝑡3 + ⋅ ⋅ ⋅ ,
V(𝑡+2Δ𝑡) = V(𝑡) + 2𝑎(𝑡)𝑑𝑡 + 2�̇�(𝑡)𝑑𝑡2 + 43 �̈�(𝑡)𝑑𝑡3 + ⋅ ⋅ ⋅ ,
𝑎(𝑡+2Δ𝑡) = 𝑎(𝑡) + 2�̇�(𝑡)𝑑𝑡 + 2�̈�(𝑡)𝑑𝑡2 + 43 ...𝑎(𝑡)𝑑𝑡3 + ⋅ ⋅ ⋅ .

(9)

Similarly, the dynamic equilibriums at 𝑡 + 2Δ𝑡, 𝑡 + Δ𝑡, 𝑡
are expressed in

𝑓𝑡+2Δ𝑡 = 𝑚𝑎(𝑡+2Δ𝑡) + 𝑐V(𝑡+2Δ𝑡) + 𝑘𝑢(𝑡+2Δ𝑡),
𝑓𝑡+Δ𝑡 = 𝑚𝑎(𝑡+Δ𝑡) + 𝑐V(𝑡+Δ𝑡) + 𝑘𝑢(𝑡+Δ𝑡),
𝑓𝑡 = 𝑚𝑎(𝑡) + 𝑐V(𝑡) + 𝑘𝑢(𝑡).

(10)
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Substituting (9) into (10) yields

𝑓𝑡+2Δ𝑡 = 𝑚 (𝑎(𝑡) + 2�̇�(𝑡)𝑑𝑡 + ⋅ ⋅ ⋅)
+ 𝑐 (𝑢(𝑡) + 2V(𝑡)𝑑𝑡 + ⋅ ⋅ ⋅)
+ 𝑘 (𝑢(𝑡) + 2V(𝑡)𝑑𝑡 + ⋅ ⋅ ⋅) ,

𝑓𝑡+Δ𝑡 = 𝑚 (𝑎(𝑡) + �̇�(𝑡)𝑑𝑡 + ⋅ ⋅ ⋅) + 𝑐 (V(𝑡) + 𝑎(𝑡)𝑑𝑡 + ⋅ ⋅ ⋅)
+ 𝑘 (𝑢(𝑡) + V(𝑡)𝑑𝑡 + ⋅ ⋅ ⋅) ,

𝑓𝑡 = 𝑚𝑎(𝑡) + 𝑐V(𝑡) + 𝑘𝑢(𝑡).

(11)

Substituting (9)–(11) into (8) yields

(𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡2) 𝜀𝑢𝑡+2Δ𝑡
= (𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡2) 𝑢(𝑡+2Δ𝑡)
− (𝑏3𝑚 + 𝑏4𝑐Δ𝑡 + 𝑏5𝑘Δ𝑡2) 𝑢(𝑡+Δ𝑡)
− (𝑏6𝑚 + 𝑏7𝑐Δ𝑡 + 𝑏8𝑘Δ𝑡2) 𝑢(𝑡) − 𝑏9𝑓𝑡+2Δ𝑡Δ𝑡2
− 𝑏10𝑓𝑡+Δ𝑡Δ𝑡2 − 𝑏11𝑓𝑡Δ𝑡2

= 𝑑0 + 𝑑1Δ𝑡 + 𝑑2Δ𝑡2 + 𝑑3Δ𝑡3 + ⋅ ⋅ ⋅ ,

(12)

where

𝑑0 = (1 − 𝑏3 − 𝑏6) 𝑢(𝑡)𝑚,
𝑑1 = (2 − 𝑏3) V(𝑡)𝑚 + (𝑏1 − 𝑏4 − 𝑏7) 𝑢(𝑡)𝑐,
𝑑2 = (2 − 0.5𝑏3 − 𝑏9 − 𝑏10 − 𝑏11) 𝑎(𝑡)𝑚

+ (2𝑏1 − 𝑏4 − 𝑏9 − 𝑏10 − 𝑏11) V(𝑡)𝑐
+ (𝑏2 − 𝑏5 − 𝑏8 − 𝑏9 − 𝑏10 − 𝑏11) 𝑢(𝑡)𝑘,

𝑑3 = (43 − 16𝑏3 − 2𝑏9 − 𝑏10) �̇�(𝑡)𝑚
+ (2𝑏1 − 0.5𝑏4 − 2𝑏9 − 𝑏10) 𝑎(𝑡)𝑐
+ (2𝑏2 − 𝑏5 − 2𝑏9 − 𝑏10) V(𝑡)𝑘,

𝑑4 = (23 − 124𝑏3 − 2𝑏9 − 12𝑏10) �̈�(𝑡)𝑚
+ (43𝑏1 − 16𝑏4 − 2𝑏9 − 12𝑏10) �̇�(𝑡)𝑐
+ (2𝑏2 − 12𝑏5 − 2𝑏9 − 12𝑏10) 𝑎(𝑡)𝑘,

𝑑5 = ( 415 − 1120𝑏3 − 43𝑏9 − 16𝑏10) ...𝑎(𝑡)𝑚
+ (23𝑏1 − 124𝑏4 − 43𝑏9 − 16𝑏10) �̈�(𝑡)𝑐
+ (43𝑏2 − 16𝑏5 − 43𝑏9 − 16𝑏10) �̇�(𝑡)𝑘 ⋅ ⋅ ⋅ .

(13)

USTEDM having first-order accuracy means

lim
Δ𝑡→0

𝜀𝑢𝑡+2Δ𝑡Δ𝑡 = 0. (14)

Combining (12) and (14) leads to

lim
Δ𝑡→0

(𝑑0Δ𝑡 + 𝑑1 + 𝑑2Δ𝑡 + 𝑑3Δ𝑡2 + . . .)

= lim
Δ𝑡→0

((𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡2) 𝜀𝑢𝑡+2Δ𝑡Δ𝑡 )
= 𝑚 lim
Δ𝑡→0

(𝜀𝑢𝑡+2Δ𝑡Δ𝑡 ) = 0.
(15)

Equation (15) is satisfied only when

𝑑0 = 𝑑1 = 0. (16)

Combining (16) and (13) yields

1 − 𝑏3 − 𝑏6 = 0,
2 − 𝑏3 = 0,

𝑏1 − 𝑏4 − 𝑏7 = 0.
(17)

Similarly, (8) has second-order accuracy only when 𝑑0 =𝑑1 = 𝑑2 = 0. This means that

1 − 𝑏3 − 𝑏6 = 0,
2 − 𝑏3 = 0,

𝑏1 − 𝑏4 − 𝑏7 = 0,
2 − 0.5𝑏3 − 𝑏10 − 𝑏9 − 𝑏11 = 0,
2𝑏1 − 𝑏4 − 𝑏9 − 𝑏10 − 𝑏11 = 0,

−𝑏9 + 𝑏2 − 𝑏8 − 𝑏11 − 𝑏5 − 𝑏10 = 0.

(18)

Solving (18) yields

𝑏1 = 1 − 𝑏7,
𝑏2 = 1 + 𝑏8 + 𝑏5,
𝑏3 = 2,
𝑏4 = 1 − 2𝑏7,
𝑏6 = −1,
𝑏11 = 1 − 𝑏10 − 𝑏9.

(19)

This shows that USTEDM is second order accurate.
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Similarly, (8) has third-order accuracy only when 𝑑0 =𝑑1 = 𝑑2 = 0. This means that

𝑏1 = 0.5,
𝑏2 = −𝑏8,
𝑏3 = 2,
𝑏4 = 0,
𝑏5 = −2𝑏8 − 1,
𝑏6 = −1,
𝑏7 = 0.5,
𝑏9 = 𝑏11,
𝑏10 = −2𝑏11 + 1,
𝑏11 = 𝑏11.

(20)

Equation (8) has fourth-order accuracy when 𝑑0 = 𝑑1 =𝑑2 = 𝑑3 = 𝑑4 = 0, which can be satisfied when

𝑏1 = 0.5,
𝑏2 = −𝑏8,
𝑏3 = 2,
𝑏4 = 0,
𝑏5 = −2𝑏8 − 1,
𝑏6 = −1,
𝑏7 = 0.5,
𝑏9 = 𝑏11,
𝑏10 = −2𝑏11 + 1,

− 124𝑏3 − 2𝑏9 − 12𝑏10 + 23 = 0,
43𝑏1 − 16𝑏4 − 2𝑏9 − 12𝑏10 = 0,
2𝑏2 − 12𝑏5 − 2𝑏9 − 12𝑏10 = 0.

(21)

Equations (21) are contradictory equations, which shows
that two-step displacementmethod expressed by (8) can have
third-order accuracy at most, and (20) are adopted in the
following derivation.

3.2. Stability Analysis. According to Lax theorem, (8) is
convergent if and only if it is stable. The stability of (8) can

be analyzed through studying a single degree-of-freedom
(SDOF) system. For a SDOF system, (8) can be rewritten as

{𝑢𝑡+2Δ𝑡𝑢𝑡+Δ𝑡 }

= [
[
𝑏3𝑚 + 𝑏4𝑐Δ𝑡 + 𝑏5𝑘Δ𝑡2𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡2

𝑏6𝑚 + 𝑏7𝑐Δ𝑡 + 𝑏8𝑘Δ𝑡2𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡21 0
]
]
{𝑢𝑡+Δ𝑡𝑢𝑡 }

+ {{{
𝑏9𝑓𝑡+2Δ𝑡Δ𝑡2 + 𝑏10𝑓𝑡+Δ𝑡Δ𝑡2 + 𝑏11𝑓𝑡+Δ𝑡Δ𝑡2𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡20

}}}
.

(22)

Amplification matrix 𝐴 in (22) determining (8)’s stability
is

𝐴 = [𝐴11 𝐴12𝐴21 𝐴22]

= [
[
𝑏3𝑚 + 𝑏4𝑐Δ𝑡 + 𝑏5𝑘Δ𝑡2𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡2

𝑏6𝑚 + 𝑏7𝑐Δ𝑡 + 𝑏8𝑘Δ𝑡2𝑚 + 𝑏1𝑐Δ𝑡 + 𝑏2𝑘Δ𝑡21 0
]
]
.
(23)

Substituting 𝑐 = 2𝜉𝜔𝑚, 𝑘 = 𝑚𝜔2, 𝜔Δ𝑡 = Ω (𝜉-damp
ratio, 𝜔-natural frequency) into (23) yields

𝐴 = [𝐴11 𝐴12𝐴21 𝐴22]

= [
[
𝑏3 + 2𝑏4𝜉Ω + 𝑏5Ω21 + 2𝑏1𝜉Ω + 𝑏2Ω2

𝑏6 + 2𝑏7𝜉Ω + 𝑏8Ω21 + 2𝑏1𝜉Ω + 𝑏2Ω21 0
]
]
.

(24)

The characteristic equation of matrix 𝐴 can be written as

det (𝐴 − 𝜆𝐼) = 𝜆2 − 2𝐴1𝜆 + 𝐴2 = 0, (25)

where 𝐼 is the identity matrix, 𝜆 denotes eigenvalue of𝐴, and
𝐴1 = 12 tr (𝐴) = 𝐴11 + 𝐴222 = 12 𝑏3 + 2𝑏4𝜉Ω + 𝑏5Ω

2

1 + 2𝑏1𝜉Ω + 𝑏2Ω2 ,
𝐴2 = |𝐴| = −𝑏6 + 2𝑏7𝜉Ω + 𝑏8Ω21 + 2𝑏1𝜉Ω + 𝑏2Ω2 .

(26)

The stability of (8) depends on spectral radius 𝜌(𝐴) of
matrix 𝐴 and (8) is stable only when

𝜌 (𝐴) ⩽ 1. (27)

Because 𝜌(𝐴) is determined by 𝐴1, 𝐴2, the stability
domain of (8) can be expressed by functions 𝐴1 and 𝐴2. In
similar way, the study of stability made by Hilber and Hughes
[20] is performed. Firstly, the boundary line of stability
domain of (8) where 𝜌(𝐴) = 1 is to be derived. 𝜌(𝐴) = 1
means that

|𝜆|max = 1, (28)

where |𝜆|max is the maximum amplitude of 𝜆. Complex value𝜆 whose amplitude is 1 can be expressed by 𝜆 = 𝑒𝑖𝜑, where
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𝑖 = √−1 and 𝜑 is argument of 𝜆. Substituting 𝜆 = 𝑒𝑖𝜑 into
(25) yields

𝑒𝑖2𝜑 − 2𝐴1𝑒𝑖𝜑 + 𝐴2 = 0. (29)

The identities including 𝑒𝑖𝜑 = cos𝜑 + 𝑖 sin𝜑, cos 2𝜑 =2 cos2𝜑 − 1, sin 2𝜑 = 2 sin𝜑 cos𝜑 are used and (29) can be
rewritten as

(2 cos𝜑 (cos𝜑 − 𝐴1) + 𝐴2 − 1)
+ 𝑖 (2 sin𝜑 (cos𝜑 − 𝐴1)) = 0. (30)

Equation (30) is satisfied only when

2 cos𝜑 (cos𝜑 − 𝐴1) + 𝐴2 − 1 = 0,
2 sin𝜑 (cos𝜑 − 𝐴1) = 0. (31)

The boundary lines of stability domain of (8) can be
determined by (31) when 𝜑 ∈ [0, 2𝜋]. It can be derived that
when 0 < 𝜑 < 𝜋, 𝜋 < 𝜑 < 2𝜋, (31) are satisfied when

𝐴1 = cos𝜑,
𝐴2 = 1. (32)

When 𝜑 = 0, 𝜑 = 2𝜋, (31) are satisfied when

1 − 2𝐴1 + 𝐴2 = 0. (33)

When 𝜑 = 𝜋, (31) are satisfied when

1 + 2𝐴1 + 𝐴2 = 0. (34)

The boundary of stability domain of (8) is then made up
with three lines described by (32), (33), and (34), respectively,
in 𝐴1-𝐴2 plane as shown in Figure 1. Because 𝜌(𝐴) is
continuous function of 𝐴1𝐴2 and when 𝐴1 = 𝐴2 =0, 𝜌(𝐴) = 0 < 1, the stability domain of (8) is the inner part
of the triangle as shown in Figure 1 and can be expressed by

−1 ≤ 𝐴2 ≤ 1,
−12 (1 + 𝐴2) ≤ 𝐴1 ≤ 12 (1 + 𝐴2) .

(35)

3.3. Final Form of Two-Step Displacement Method withThird-
Order Accuracy. Combining (20) and (8) yields

(𝑚 + 0.5𝑐Δ𝑡 − 𝑏8𝑘Δ𝑡2) 𝑢𝑡+2Δ𝑡
= (2𝑚 + (−2𝑏8 − 1) 𝑘Δ𝑡2) 𝑢𝑡+Δ𝑡
+ (−1𝑚 + 0.5𝑐Δ𝑡 + 𝑏8𝑘Δ𝑡2) 𝑢𝑡 + 𝑏11𝑓𝑡+2Δ𝑡Δ𝑡2
+ (−2𝑏11 + 1) 𝑓𝑡+Δ𝑡Δ𝑡2 + 𝑏11𝑓(𝑡)Δ𝑡2.

(36)

Combining (20), (26), and (35) yields, after simplification,
the stability domain of (36):

1 − 𝑏8Ω2 ⩾ 0,
1 + 𝜉Ω − 𝑏8Ω2 > 0,

4 + (−4𝑏8 − 1)Ω2 ⩾ 0.
(37)

(1, 1)

0.5

A2

A1

(−1, 1)

−0.5

−1

𝜌 < 1 𝜌 > 1

Figure 1: Stability domain of (8).

According to (36) and (37), the two-step displacement
methods satisfying different requirements can be obtained.
The explicitness ofmethod can be obtained only when 𝑏11 = 0
and the unconditional stability can be obtained when (37) are
always satisfiedwhenΩ ∈ [0,∞). It can be found that (37) are
always satisfied only when

𝑏8 ⩽ −0.25. (38)

Substituting 𝑏8 = −0.25, 𝑏11 = 0 into (36) yields
(𝑚 + 0.5𝑐Δ𝑡 + 0.25𝑘Δ𝑡2) 𝑢𝑡+2Δ𝑡
= (2𝑚 − 0.5𝑘Δ𝑡2) 𝑢𝑡+Δ𝑡
+ (−𝑚 + 0.5𝑐Δ𝑡 − 0.25𝑘Δ𝑡2) 𝑢𝑡 + 𝑓𝑡+Δ𝑡Δ𝑡2.

(39)

Equation (39) shows the final form of USTEDM, which
is an unconditionally stable two-step explicit integration
algorithm. USTEDM is third order accurate. The analysis
shows that USTEDM has very similar numerical attributes as
Newmark’s average acceleration method. Figure 2 shows that
the spectral radius of amplification matrix of USTEDM is 1,
which is the same as that of Newmark’s average acceleration
method.

Figure 3 shows that the numerical damping of USTEDM
is zero, which is the same as that of Newmark’s average
acceleration method. Figure 4 shows the relative period
error of USTEDM is minimal compared with other methods
including Houbolt Method, Wilson-𝜃Method (𝜃 = 1.4), and
Generalized 𝛼 Method (𝛼𝑚 = 0.3, 𝛼𝑓 = 0.35). Though with
similar numerical attributes as Newmark’s average accelera-
tion method, USTEDM is explicit and has great computation
advantage over the implicit Newmark’s average acceleration
method.

The applicability of the USTEDM for nonlinear problem
is also investigated. Compared with other unconditional
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Figure 2: Comparison of spectral radius.
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Figure 3: Comparison of numerical damping ratio.

stable explicit algorithms [17–19], whose main calculation
amount includes at least solving two-reverse matrix of
nondiagonal matrix for displacement and velocity, respec-
tively, USTEDM shows higher calculation efficiency since
its main calculation amount includes solving only one-
reverse matrix of nondiagonal matrix for displacement. In
addition, USTEDM shows minimal memory requirements,
since its calculation only involves displacement when only
displacement-related nonlinearity occurs. This shows that
USTEDM can be viewed as a complementary or improved
form of conditional stable explicit CDM.
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Figure 4: Comparison of relative period error.

3.4. Implementing USTEDM for Nonlinear Problem. The pro-
cedure to use USTEDM is similar to that of CDM and is
outlined as follows.

(A) Initial input and calculation:

(1) Input the initial stiffnessmatrix𝐾0, massmatrix𝑀, and damping matrix C.
(2) Input initial displacement vector {𝑢0} and initial

velocity vector {V0}, solving initial acceleration
vector {𝑎0}: {𝑎0} = 𝑀−1({𝑓0} − 𝐾0{𝑢0} − 𝐶{V0}).

(3) Select time step duration Δ𝑡.
(4) Calculate

{𝑢−Δ𝑡} = {𝑢0} − {V0} Δ𝑡 + 12 {𝑎0} Δ𝑡2. (40)

(B) For each time step (from time point 𝑡 to time point𝑡 + Δ𝑡):
(1) based on known {𝑢𝑡}, {𝑢𝑡−Δ𝑡},𝐾𝑡, and outer force

vector {𝑓𝑡}, calculate the “effective” load vector{𝑓𝑡+Δ𝑡};
{𝑓𝑡+Δ𝑡} = (2𝑀 − 0.5𝐾𝑡Δ𝑡2) {𝑢𝑡}

+ (−𝑀 + 0.5𝐶Δ𝑡 − 0.25𝐾𝑡Δ𝑡2) {𝑢𝑡−Δ𝑡}
+ {𝑓𝑡} Δ𝑡2

(41)

(2) form “effective”massmatrix: �̂� = 𝑀+0.5𝐶Δ𝑡+0.25𝐾𝑡Δ𝑡2;
(3) calculate {𝑢𝑡+Δ𝑡} = �̂�−1{�̂�𝑡+Δ𝑡};
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u2 u200u1

m2 m200m1

k2 k200k1

· · ·

Figure 5: 200-DOF spring-mass system.

Table 1: Total time consumption (sec).

USTEDM Houbolt Average acceleration
0.4825 353.0519 292.1621

(4) if necessary, calculate velocity vector and accel-
eration vector at time point 𝑡 + Δ𝑡:

{V𝑡+Δ𝑡} = 3 {𝑢𝑡+Δ𝑡} − 4 {𝑢𝑡} + {𝑢𝑡−Δ𝑡}2Δ𝑡 ,
{𝑎𝑡+Δ𝑡} = 𝑀−1 (𝑓𝑡+Δ𝑡 − 𝐾𝑡+Δ𝑡 {𝑢𝑡+Δ𝑡} − 𝐶 {V𝑡+Δ𝑡}) .

(42)

3.5. Numerical Example. In this example [7, 17], the forced
vibration response of an 200-degree-of-freedom spring-mass
system as shown in Figure 5 is examined using the proposed
numerical method. The structural properties of this system
are assumed to be 𝑚𝑖 = 100 kg and 𝑘𝑖 = 107[1 − (𝑢𝑖 −𝑢𝑖−1)2]N/m in which 𝑖 = 1, 2, . . . , 200. This system is sub-
jected to a ground acceleration of 10 sin(𝜋𝑡). The lowest
and highest natural frequency is 2.62 rad/s and 632.4 rad/s,
respectively [17]. According to the highest natural frequency,
a time step duration of Δ𝑡 = 0.001 s is obtained from the
Newmark’s average acceleration method and is selected to be
the exact solution. Displacement responses versus time of the
largest degree of freedom are plotted in Figure 6. Analysis is
accomplished by considering time step duration to be equal
to 0.02 s. The displacement errors are presented in Figure 7.
It can be seen that here USTEDM provides the most accurate
displacement solutions, compared with Houbolt Method and
commonly used Newmark’s average acceleration method.
More importantly, without needs of iteration calculation, the
unconditionally stable explicit USTEDM has much less time
consumption of calculation, compared with those uncondi-
tionally stable implicit methods, which are listed in Table 1.

4. Conclusions

Anovel two-step unconditionally stable explicit displacement
method, named Unconditional Stable Two-Step Explicit Dis-
placement Method (USTEDM), is proposed in this paper.
USTEDM has third-order accuracy and is unconditionally
stable. The conclusions mainly include the following:

(1) The novel way of constructing direct time integration
methods from the start point of dimensional analysis

Exact solution
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Newmark average acceleration method
Houbolt method
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Figure 6: Displacement responses of 200th DOF system.
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Figure 7: Comparison of displacement errors of 200-DOF system.

is applicable, and it is believed that it will contribute
to improvement of numerical calculation in structural
dynamics.

(2) With no prerequisite difference assumption of veloc-
ity and acceleration, the derivation of USTEDM is
completely different from any documented one. With
unconditional stability, third-order accuracy, higher
calculation efficiency, and lower storage requirement,
USTEDM is promising in solving vibrations of struc-
tures, especially those with displacement-dependent
nonlinearity.

The zero numerical damping of USTEDM is its short-
coming, and the introduction of numerical damping will be
studied.
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