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This paper aims to develop an SI (structural identification) technique using theKEOT and theDMUMto decide on optimal location
of sensors and to update FE model, respectively, which ultimately contributes to a composition of more effective SHM. Owing to
the characteristic structural flexing behavior of cable bridges (e.g., cable-stayed bridges and suspension bridges), whichmakes them
vulnerable to any vibration, systematic and continuous structural healthmonitoring (SHM) is pivotal for them. Since it is necessary
to select optimal measurement locations with the fewest possible measurements and also to accurately assess the structural state
of a bridge for the development of an effective SHM, an SI technique is as much important to accurately determine the modal
parameters of the current structure based on the data optimally obtained. In this study, the kinetic energy optimization technique
(KEOT) was utilized to determine the optimal measurement locations, while the direct matrix updating method (DMUM) was
utilized for FE model updating. As a result of experiment, the required number of measurement locations derived from KEOT
based on the target mode was reduced by approximately 80% compared to the initial number of measurement locations. Moreover,
compared to the eigenvalue of the modal experiment, an improved FE model with a margin of error of less than 1% was derived
from DMUM. Thus, the SI technique for cable-stayed bridges proposed in this study, which utilizes both KEOT and DMUM, is
proven effective in minimizing the number of sensors while accurately determining the structural dynamic characteristics.

1. Introduction

During their service period, structures are exposed not only
to gradual aging but also to unspecified harmful environmen-
tal effects, such as earthquakes, strong winds, impacts, and
structural instability due to external forces that can give rise
to various structural defects. These defects can in turn lead
to reduced life expectancy and unexpected serious structural
damage. Thus, from a long-term perspective, continuous
structural health monitoring (SHM), systematic evaluation,
and maintenance efforts are pivotal, especially for structures
that are vulnerable to vibration occurring during service,
such as cable-stayed bridges. For these efforts, a technique
for accurate structural identification (SI) is of utmost impor-
tance.

SI is defined as the process of defining a mathemat-
ical model of a given structure using measured physical

information acquired from the actual target structure. Since
Lie and Yao (1978) [1] introduced the concept of SI into
structural engineering, many experiments have been con-
ducted to identify a mathematical model that can represent
the behavioral characteristics (equations of motion) of a
target structure [2–5]. Despite such efforts, the SI technique
has been applied in everyday practice in only a few cases
and with limited effectiveness. It has not been adapted to
convenient everyday application in general structural design
and maintenance [6–8]. Appropriate utilization of the SI
technique not only allows for thorough SHM of the target
structure but also reduces the amount of effort required
for evaluation and maintenance of the structure and can
contribute to ensuring structural safety.

As explained above, to conduct SI, physical struc-
tural information must be obtained from the target struc-
ture through experimentation. In such experimentation, if
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the number of sensor locations can be selectively reduced
such that all measurement locations are optimized to the
target mode, both efficiency and economic viability can
be improved from an administrative viewpoint. Soundness
monitoring, which requires long-term, real-time measure-
ments, involves figure-intensive data processing and requires
repetitive operations. Thus, maximizing the quality of the
monitored information while minimizing the number of
sensors is of particular importance [9–16]. To achieve
this, Kammer [13] used estimated error covariance matrix
(EECM) to develop a new approach called the effective
independence method (EIM). This method incorporates the
concept of spatial independence and is typically applied to
truss structures. EIM guarantees linear independence, and its
calculations are very effective with regard to sensor location
selection.

On the other hand, Gwanghee [12] proposed the kinetic
energy optimization technique (KEOT) based on principles
of structural kinetic energy under the premise that optimiz-
ing the composition and location of sensors by maximizing
the kinetic energy (KE) of a structure would be the most
effectiveway of determining damage in structures that feature
low and close interval frequencies and high attenuation [9–
11]. This method acquires optimal modal information by
maximizing the kinetic energy measured from the structural
system, thus ensuring the independence of the measuring
mode used in KEOT. These types of advantages became
handy when applied to large structures, thus proving the
usefulness of KEOT [12].

Moreover, for SI, the mathematical model of the tar-
get structure must be defined using physical information
measured from the target structure [17, 18]. In this process,
an FE model that represents the structural state of the
target structure is developed based on the measured data
of the target structure. In addition, if the numerical modal
parameters can be derived, they can be used to define the
state of the baseline structure. At this point, it is typical for
a certain margin of error to come into play with respect
to the modeling. This is because the method of FE model
interpretation can vary depending on factors such as lifespan,
economics, expected value of the structural model, and the
fact that it is constructed based on initial architectural draw-
ings. FE models developed to particularly resolve dynamic
structural problemsmust effectively predict changes inmodal
parameters caused by alterations in design parameters. In this
regard, FE model improvement not only provides dynamic
characteristics that conform to the target structure but also
can be utilized in the future as an objective and reasonable
standard based on which aging and localized damage to
a structure can be measured [19, 20]. In accordance with
these needs, a range of FE model improvement methods [21]
have been introduced. Namely, Friswell andMottershead [22]
have systematically organized classical theories such as the
direct matrix updating method (DMUM) [23, 24] and the
error matrix updating method (EMUM) [25, 26] and math-
ematically verified them to prove their validity. Thus, in this
study, experiments were conducted to evaluate SI techniques
aimed at accurately determining the modal parameters of
a target structure based on optimal measurement locations

(i.e., minimum number of sensors), which are the required
parameters for efficient and practical SHM. To this end, the
optimal sensor locations were selected based on a model of a
cable-stayed bridge and then the responses from the selected
measurement locations were used to improve the FE model.
Taking into account the structural characteristic of cable-
stayed bridges, which feature relatively natural frequency
of narrow interval and short cycle, KEOT was applied to
select the optimal sensor locations. Moreover, to improve
the FE model, DMUM was utilized because it requires fewer
calculations, has high accuracy, and is practical for everyday
use.

In conclusion, for structures such as cable-stayed bridges
where the characteristic flexing behavior creates a natural
frequency of narrow interval and short cycle, situations
where multiple sensors are required because of structural
complexity, and situations where there exist uncertainties
in the FE model used for interpreting the data, KEOT and
DMUM can facilitate rational and effective SI by enabling
identification of the optimal sensor locations and improve-
ment of the FE model. Ultimately, this study proves through
experimentation that a combination of KEOT and DMUM
is the ideal hybrid method to provide both practical and
effective SHM.

2. Optimal Sensor Location and Finite Element
(FE) Model Update

2.1. Kinetic Energy Optimization Technique (KEOT). In this
study, the KEOT method was applied and evaluated for its
effectiveness in selecting optimal sensor locations. KEOT
recommends selecting optimal measurement locations by
utilizing the strain-kinetic energy of the structure [9–12]. To
do this, Kammer’s EIM approach [13] involves optimizing
and selecting a set of target modes in order to identify
the structure based on FE analysis. An initial candidate
set of transducer locations is also selected. These locations
are then ranked based on their contribution to the linear
independence of the corresponding FE model target mode
partitions, and locations that do not contribute are removed
from the candidate set. The described energy optimization
technique algorithm is a modification of EIM, and it is
designed to improve the modal information and maximize
the measured kinetic energy of the structural system. The
spatial independence of the identifiedmode shapes is satisfied
by the sensing configuration obtained using the KEOT
algorithm [11, 12]. The kinetic energy in the system is

KE = Φ𝑇𝑀Φ, (1)

where Φ is the measured mode shape vector. After decom-
posing the mass matrix 𝑀 into upper and lower triangular
Cholesky factors, the kinetic energy matrix can be derived as

KE = Ψ𝑇Ψ, (2)

where Ψ = 𝑈Φ and 𝑀 = 𝐿𝑈. The matrices 𝐿 and 𝑈
denote the lower and upper triangular Cholesky factors.
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The projection of the mode shapes onto the reduced configu-
ration is denoted by

Φ = projection (Φ) ,

Ψ = projection (Ψ) .
(3)

Similarly, the energy measured by the reduced set of trans-
ducers is obtained from the initial energy by removing the
contribution of all transducers that have been eliminated:

KE = Ψ𝑇Ψ. (4)

The objective of the transducer placement is to find a reduced
configuration that maximizes the measurement of the kinetic
energy of the structure. It is desirable to stop eliminating the
transducers when doing so results in a rank deficiency of the
energymatrix. Assuming that themassmatrix is nonsingular,
the column rank𝑁 of the quantity KE is equal to the number
of linearly independent projected vectors in matrix Φ. The
problem is solved iteratively by the following procedure. First,
the eigenvaluesΛ and eigenvectors𝜓 of the energymatrix are
extracted:

KE𝜓 = Λ𝜓. (5)

Computing the eigenpairs at each iteration of the energy
optimizing technique (EOT) procedure does not significantly
increase the computational cost because the matrix KE is a
square, symmetric, and positive-definite matrix of size 𝑁.
Then, using an approach similar to Kammer’s EIM [13], the
fractional contributions of each remaining transducer are
assembled into the KEOT vector:

KEOT = ∑

𝑖=1,...,𝑚

[Ψ𝜓Λ

−1/2
]

2

. (6)

The transducer location with the minimum contribution in
the KEOT vector is then selected for removal. Subsequently,
the contribution of the removed transducer to the kinetic
energy matrix is deleted, and the new matrix is checked for
rank deficiency. If the removal of the transducer produces
a rank deficiency, it implies that the transducer location in
question cannot be removed. If removing the transducer does
not produce a rank deficiency, the transducer location is
removed from the candidate set and the process is repeated
until the required number of transducers is ascertained.
Because it can be verified that the quantity between the brack-
ets in (6) represents a linear combination of the measured
mode shapes that is designed to produce orthogonal vectors,

[Ψ𝜓Λ

−1/2
]

𝑇

[Ψ𝜓Λ

−1/2
] = 𝐼.

(7)

Furthermore, each KEOT of the vector is a heuristic measure
of the contribution of each transducer to the measured
energy. The normalization factor Λ−1/2 prevents the con-
tributions of high frequency modes from dominating the
low frequency modes. In theory, the number of remaining
transducers is equal to the size of the target modal set.
However, the apparent rank is often increased due to noise
in the experimental data, and more than𝑀 transducers are
required to identify𝑁 independent modes.

2.2. Direct Matrix Updating Method (DMUM). In general,
when a modified structure is added to or removed from the
initial structure, changes occur in the dynamic characteristics
of the structure. Dynamic characteristics before and after
a structural change can be derived as eigenvalue formulas
shown below:

([𝐾] − Λ [𝑀]) {Φ} = 0,

(([𝐾] + [Δ𝐾]) − Λ ([𝑀] + [Δ𝑀])) {Φ} = 0,

(8)

where [𝐾] is the stiffness matrix, [𝑀] is the mass matrix,
and [Δ𝐾] and [Δ𝑀] are changes in the stiffness and mass of
the structure, respectively, due to structural changes.The ele-
mentsΛ and {Φ} are eigenvalue and eigenvector, respectively,
andΛ and {Φ} are changes in eigenvalue and eigenvector due
to structural changes, respectively. Regarding the derivation
methods available for calculating changes in stiffness [Δ𝐾]
and mass [Δ𝑀] due to structural changes, this study selected
and appliedDMUMconsidering its effectiveness in FEmodel
improvement as well as its convenience and practicality for
everyday use. Here, using Lagrange multipliers, objective
functions, composed to limit the range of change in the stiff-
ness and mass matrices while simultaneously satisfying the
eigenvalue, are shown below as (9). DMUM is advantageous
from the perspective of usability because it can calculate
the changes in stiffness and mass from just a single matrix
operation [23, 24]:
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(9)

where [𝐾
𝐴
] and [𝑀

𝐴
] are the stiffness and mass matrices

before structural change and [𝐾
𝑈
] and [𝑀

𝑈
] are the stiffness

and mass matrices after structural change. The correlation
between [𝐾

𝐴
] and [𝐾

𝑈
] can be expressed as shown in (10),

and the correlation between [𝑀
𝐴
] and [𝑀

𝑈
] can be expressed

as shown in (11):

[𝐾
𝑈
] = [𝐾

𝐴
] + [Δ𝐾] , (10)

[𝑀
𝑈
] = [𝑀

𝐴
] + [Δ𝑀] . (11)

The element [Δ𝐾] in (10) can be defined as (14) using the
interaction formulas of (12) and (13) [27]:

[𝐾
𝑈
] − [𝐾

𝑈
]

𝑇
= 0, (12)

[Φ
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𝑇
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𝑈
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𝑋
] − [Λ
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𝑋
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𝑋
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𝑋
]

𝑇
[𝐾
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]
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(14)
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The element [Δ𝑀] in (11) can be defined as (17) using the
interaction formulas of (15) and (16) [28]:

[𝑀
𝑈
] − [𝑀

𝑈
]

𝑇
= 0, (15)

[Φ
𝑋
]

𝑇
[𝑀
𝑈
] [Φ
𝑋
] − [𝐼] = 0, (16)

[Δ𝑀] = − [𝑀𝐴
] [Φ
𝑋
] ([Φ
𝑋
]

𝑇
[𝑀
𝐴
] [Φ
𝑋
])
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𝑋
]

𝑇
[𝐾
𝐴
]

+ ([𝐼] − [Φ𝑋
]

𝑇
[𝑀
𝐴
] [Φ
𝑋
]) ([Φ

𝑋
]

𝑇
[𝑀
𝐴
] [Φ
𝑋
]) .

(17)

In this study, the objective of FE model improvement is FE
interpretation andmodal experiment results, so the subscript
𝐴 in each equation is the result value based on analysis and
subscript𝑋 is the result value based on experimentation.

3. FE Analysis and Modal Test of
Model Structure

3.1. Setup of the Model Structure (Cable-Stayed Bridge). The
second moment of inertia of the cable-stayed bridge model
used in this study was reduced as much as possible so that the
bridge slabwould be sensitive to vibrations caused by external
forces. Moreover, to make FEmodel configurationmore con-
venient, the cross-sectional shape and the materials used for
the members were simplified and unified. Further, to reduce
the possibility of a production error, cross section dimensions
were equalized and initial changes were minimized. The
model used in this study is a three-span continuous beam
structure with a total length of 4220mm, a width of 170mm,
and a pylon height of 1000mm. The cables are 0.8mm steel
wires, with ten wires connected to corresponding points on
the crossbeam from each side of the pylon. The anchors
located at each end of the model were composed of rollers,
and the anchors of the pylons were composed of rollers and
hinges. Finally, 1 kg of additional mass was added to the top
of the bridge slab at each of the 39 points where the wires
join the cross beam to maximize the flexibility of the bridge
without creating any initial deflections.Themodel built using
the components explained above is shown in Figure 1, and
detailed design data is shown in Table 1.

During the assembly of the model, the cables were
tensioned taking into consideration the effect of gravity
on the superstructure across all sections. Thus, the self-
weight of the superstructure was assumed to be a uniformly
distributed load distributed at equal intervals across the cross
beams and was utilized as the tensile force of the cables.
To quantify the tensile force, a force gauge was utilized
when tensioning the cables. After the completion of cable
tensioning, a level was used to inspect the horizontality of
the superstructure. In addition, the cables were tensioned
progressively outward from the pylons and symmetrically left
and right in accordance with the cable tensioning order of an
actual cable-stayed bridge structure, as shown in Figure 2.

3.2. FE Analysis of Model Structure (Cable-Stayed Bridge).
In order to analyze the structural dynamic properties of

Table 1: Design data of the cable-stayed bridge model.

Category Data
Total length 4.22m
Length of the center span 2.22m
Length of each side span 1.0m
Width of the superstructure 0.17m
Pylon height 1.00m
Pylon anchor type Roller and hinge (Pin)
Bridge end anchor type Roller
Diameter of cable 0.8mm

the produced model bridge, in this paper, FE modeling-
based numerical analysis was conducted. For this purpose, I-
DEAS from UGS, a commercial structural analysis program,
was used, and a three-dimensional detailed FE model was
organized as in Figure 3 by applying the physical properties
of Table 2. Here, 1D beam element was considered for the
bridge deck and the tower of the structure, rigid element was
considered for the bridge deck boundary conditions, and 1D
rod element was considered for cable; as for the floor beam
and lumped mass, 1 kg size of lumped mass was considered
for each of the 39 nodes, which are the positions of the floor
beams on the area of the central bridge deck excluding the
pylon and both sides. Next, as for the boundary condition,
clampwas considered for the substructure of the pylon, roller
was considered for the both sides of superstructure and the
right-side pylon connection, and Pin was considered for the
left-side pylon connection. Lastly, as for the freedom degree
condition of the structure, DOF was given in the direction
of 𝑦-axis with the 39 nodes on the central bridge deck as the
base to complete the three-dimensional detailed FEmodel. In
this context, the FE analysis of the model bridge considered a
total of two lowest flection modes for the purpose of vertical
vibration control, and the natural frequency and mode shape
of the model bridge that has been analyzed with Guyan
reduction method applied are as in Figure 4.

In this paper, the DOFs of FE model were reduced into
thirty-nine, with application ofGuyan reductionmethod [29]
by which a structural analysis of eigenvalues is made by
reducing removed DOFs into unremoved ones and in turn
composing a matrix of reduced strength and mass as in (18).
Therefore, it has become possible to reduce the DOFs by
selecting a desired point of measurement and to effectively
perform structural FE analysis. Here, each 𝑟 refers to a
retained set and 𝑜 to an omitted set. Equation (18) is applied
for an analysis of eigenvalues, based on an optimal location
of measurement determined in Section 4.1:

𝐾
𝑟
= 𝐾
𝑟𝑟
− 𝐾
𝑟𝑜
𝐾

−1

𝑜𝑜
𝐾

𝑇

𝑟𝑜
,

𝑀
𝑟
= 𝑀
𝑟𝑟
−𝑀
𝑟𝑜
𝐾

−1

𝑜𝑜
𝐾

𝑇

𝑟𝑜
− 𝐾
𝑟𝑜
𝐾

−1

𝑜𝑜
𝑀

𝑇

𝑟𝑜

+ 𝐾
𝑟𝑜
𝐾

−1

𝑜𝑜
𝑀
𝑜𝑜
𝐾

−1

𝑜𝑜
𝐾

𝑇

𝑟𝑜
.

(18)

As shown in Figure 4, based on the total of 39 DOF, Guyan
reduction method was applied to interpret the frequency of
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Table 2: Material properties of the cable-stayed bridge model.

Material
property

Modulus of
elasticity
(kgf/mm2)

Shear modulus of
elasticity
(kgf/mm2)

Poisson’s
ratio

Unit weight
(kgf/mm3)

Yield
strength

(kgf/mm2)
Steel 2.10 × 10

4
8.10 × 10

3
0.30 7.85 × 10

−6
40

4200

1000 10001100

170

1100

100

605

1002

Figure 1: View of the cable-stayed bridge model.

vibration and the mode shape, with the results shown in
Table 3.

3.3. Modal Test of the Model Structure (Cable-Stayed Bridge).
To confirm the validity of the composed FE model and to
analyze the fundamental kinetic characteristics of the model
bridge, this study employed a modal test conducted using an
impact hammer. An HP-VXI 1432 was used to measure the
response signals from the structure, and data was obtained
and analyzed by utilizing T-DAS by MTS. In order to obtain
acceleration responses of the structure, Dytran model 3134D

was used for a total of 39 points on the bridge deck that had
been selected in equal intervals. To connect the accelerometer
to the experimental bridge model and the measurement
system, 10 ft cables were used for each channel. The impact
hammer used to create vibratory forces in the structure was a
5850A model produced by Dytran, and the center of the slab
was selected as the location of the impact.

The size of each frame of the measured frequency
response function (FRF) was set to 2048, and the maximum
frequency range was set to 35Hz. Data was collected by
averaging the results of 30 tests. Finally, the acquired time and
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(a) Jig for cable tensioning (b) Tensioning the cables (c) Inspecting the horizontality

Figure 2: Steps for tensioning the cables of the cable-stayed bridge model.

Table 3: FE analysis results of the cable-stayed bridge model.

1st bending 2nd bending 3rd bending

Analysis
results

Y

Z

Y

Z

Y

Z

9.1719Hz 11.2544Hz 16.8643Hz

Y

Y

Z

Figure 3: Initial FE modeling of the model bridge using I-DEAS.

Y

Z

Figure 4: Initial FEmodeling of themodel bridge using I-DEAS (39
DOF).

frequency responses are as shown in Figure 5, and the results
of the modal test analysis are as shown in Table 4.

To confirm the validity of using the FE model to under-
stand the dynamic behavior characteristics of the model
bridge and for use in deriving themodal parameters for future
SHM and maintenance, this study compares and contrasts
the frequency results of the FE model analysis and the
modal experiment as shown in Table 5. As observed from
the data in the table, reliable results were achieved, with
an error ratio of around 1% between the FE analysis and
the modal experiment. These results prove that the detailed
FE model constructed in this study reliably mimicked the
behavioral characteristics of the actual structural model,
thereby confirming its validity.

The analysis and experimental results above were
acquired using a total of 39 DOF and sensors. From
the standpoint of long-term continuous SHM and from the
practical standpoint of everyday evaluation andmaintenance,
using the whole structure to acquire signals as done in this
study may be inefficient and impractical. Doing so would
require a great number of sensors as well as a great deal of
labor to install them. Moreover, interpreting and sorting
through the resulting massive amount of data would be
a laborious task. To resolve this problem, an alternative
approach is required. This study therefore considers an
approach whereby optimal sensor locations are selectively
chosen in order to acquire the maximum information
about the behavioral characteristics of the structure from
a minimum number of sensors. By selecting the optimal
locations, the sensors can thus be positioned at the most
rational and efficient points to acquire the target information.
Moreover, the sensor locations selected through this
approach can later be utilized as real-time sensor locations
for actual structures.

4. Optimal Sensor Location and FE Model
Updating of the Model Bridge

4.1. Optimal Sensor Location Using the KEOT. The aim of this
study is to conduct SI with a limited number of sensors by
selecting the optimal sensor locations. To select the optimal
sensor locations, we utilized KEOT, which maximizes the
structure’s strain-kinetic energy to enable consideration of
the optimal measurement conditions.TheKEOTmethod has
proven to be effective for ascertaining the kinetic parameters
of structures that feature low and short-interval frequencies,
such as the cable-stayed bridge used in this study [9–12].
In this study, we set out to use KEOT to select the optimal
sensor locations to represent the three lowest bending modes
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Figure 5: Modal test results.

Table 4: Results of the modal test of the cable-stayed bridge model.

1st bending 2nd bending 3rd bending

Modal
test
results 9.0890Hz 11.2557Hz 17.1442Hz

Table 5: Comparison of analysis and experimental frequency.

Analysis and experimental results
FE analysis results (Hz) Modal experiment results (Hz) Error ratio (%)

1st bending mode 9.1719 9.0890 0.9120
2nd bending mode 11.2544 11.2557 0.0115
3rd bending mode 16.8643 17.1442 1.0326

Table 6: FE analysis results per DOF of cable-stayed bridge model using EOT.

Target mode 1st bending 2nd bending 3rd bending
DOF Reduction (%) Freq. (Hz) Error (%) Freq. (Hz) Error (%) Freq. (Hz) Error (%)
39 (full) — 9.1719 — 11.2544 — 16.8643 —
30 23.07 9.1728 0.0009 11.2567 0.0204 16.8691 0.0284
25 35.89 9.1757 0.0414 11.2651 0.0950 16.8856 0.1263
20 48.71 9.1890 0.1864 11.3049 0.4487 16.9834 0.7062
15 61.53 9.2219 0.5451 11.7537 4.4364 17.2843 2.4904
10 74.35 9.3253 1.6724 11.7537 4.4364 18.1914 7.8692
5 87.17 9.5531 4.1561 12.3951 10.1355 18.8781 11.9412

among the 39 DOF nodes. The three lowest bending modes
are important and interesting modes that can occur during
vertical vibration and thus should be the target modes for SI.
Also, the optimal sensor locations were selected with a low
error rate based on these target modes. Figure 6 and Table 5
show the optimal sensor locations selected and the results
of interpretation using the KEOT method compared to the
rate of error in frequency evaluated per DOF node. Rank
deficiency in the energy matrix did not occur until the 39
sensor locations had been reduced to 2. This study therefore
limited the final reduced DOF count to 5 and selected

the optimal sensor locations based on analysis of changes in
eigenvalue.

By observing the trends in optimal sensor locations
selected through gradual removal of DOF nodes (as shown
in Table 6), it can be observed that when the total of 39
locations had been reduced to 10 (at the 75% reduction
point), all of the left- and right-side span sensor locations had
been removed. Thus, it was concluded that the strain-kinetic
energy due to the 1st, 2nd, and 3rd bending mode behaviors
was smaller in the side spans than in the center span. On
the other hand, within the center span, the remaining sensor
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Figure 6: Study of optimal sensor locations selected using the EOT method.

locations grouped around nodes 19, 22, and 25 accounted
for all the 1st, 2nd, and 3rd bending modes. These three
nodes remained until only three sensor locations were left
(at the 92.5% reduction point). Thus, it was concluded that
nodes 19, 22, and 25 were the essential sensor locations that
can most optimally represent the 1st, 2nd, and 3rd bending
modes simultaneously. In conclusion, for comprehensive
representation of the 1st, 2nd, and 3rd resonance modes,
which have the greatest impact on bending, it is essential that
these three sensor locations are included.

On the other hand, when sensor locations or DOF nodes
are removed using the KEOT method explained above,
changes in eigenvalue can be impacted due to the reduction in
DOF. This study evaluated changes in eigenvalue when DOF
nodes are removed using KEOT. Table 6 shows the results of
eigenvalue analysis when the 39 DOF nodes are reduced to
30, 25, 20, 15, 10, and finally 5.

As shown in Table 6, changes in eigenvalue were clearly
observed as the total of 39 DOF nodes was reduced to 25, 25,
20, 15, 10, and 5. Looking closely at the changes in frequency, it
was also observed that, with the reduction in the number of
DOF nodes, the frequency steadily increased. In the case of
the 1st bending mode, the frequency error ratio significantly
increased when DOF nodes were reduced to 10 (reduction
rate of about 75%) and the error ratio exceeded 4% when
they were reduced to 5 (reduction rate of about 87%). In
the case of the 2nd bending mode, the frequency error ratio

increased significantly when the DOF nodes were reduced to
15 (reduction rate of about 60%). It was close to 4.5%when the
nodes were reduced to 10 (reduction rate of about 75%) and
exceeded 10% when the nodes were reduced to 5 (reduction
rate of about 87%). Moreover, in the case of the 3rd bending
mode, the frequency error ratio significantly increased when
the DOF nodes were reduced to 15 (reduction rate of about
60%). It was close to 8% when the nodes were reduced to 10
(reduction rate of about 75%) and reached about 12% when
the nodes were reduced to 5 (reduction rate of about 87%).

These tendencies are due to the fact that stiffness is the
most considered factor in the process of condensing the
behavioral characteristics of an entire structure to a limited
number of DOF nodes. In conclusion, to derive FE analysis
results using Guyan reduction [29], it is important to select
the range of allowable error ratio and the corresponding
reduction of DOF nodes. Otherwise, excessive reduction in
the number of DOF nodes will increase the frequency error
ratio and lead to discrepancies in the initial FE analysis and
modal test results, ultimately producing distorted frequency
results.

Using the above results, a total of seven sensor locations
were selected to include the three optimal sensor locations
19, 22, and 25, to limit the frequency error ratio to less than
10% and to clearly observe the shape of the modes. Using the
KEOTmethod, the optimal sensor locations selected were 18,
19, 21, 22, 23, 25, and 26.
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Table 7: Frequency and mode shape of 7 DOF using KEOT.

DOF FE model 1st mode shape 2nd mode shape 3rd mode shape

7
Y

Z

Y

Z

Y

Z

Y

Z

9.4244Hz 12.0453Hz 18.8065Hz

Table 8: Comparison of 7 DOF analysis results and full DOF cases.

Analysis (7 DOF) versus analysis (39 DOF) Analysis (7 DOF) versus experimental (39 DOF)
Analysis
(7 DOF)

Analysis
(39 DOF) Error (%) Analysis

(7 DOF)
Experimental
(39 DOF) Error (%)

1st mode 9.4244Hz 9.1719Hz 2.7529 9.4244Hz 9.0890Hz 3.6900
2nd mode 12.0453Hz 11.2544Hz 7.9160 12.0453Hz 11.2557Hz 7.0151
3rd mode 18.8065Hz 16.8643Hz 11.5166 18.8065Hz 17.1442Hz 9.6959
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Figure 7: Kinetic energy matrix values to DOF modification.

Figure 7 illustrates the distribution of kinetic energy
for each DOF condition as calculated and derived in this
experiment using the KEOT. It can be observed fromFigure 7
that as the number of DOF nodes (sensor locations) was
gradually reduced, the total kinetic energy contribution of the
remaining nodes was also reduced. In the case of the model
bridge used in this study, when the number of DOF nodes
was reduced to 15, the kinetic energy contribution was 90%.
The contribution of kinetic energy decreased significantly
with subsequent removals of DOF nodes. Moreover, when
the number of DOF nodes was reduced to the seven optimal
sensor locations selected in this study, the kinetic energy
contribution was about 10%.

In this study,we conducted SI on amodel of a cable-stayed
bridge using seven sensors. As described above, the locations
of the seven sensors, selected using the KEOT method, were
nodes 18, 19, 21, 22, 23, 25, and 26. The total contribution of
kinetic energy from these nodes was about 10%.The selection
of the seven sensor locations used in this study was verified

by the inclusion of the three DOF nodes (19, 22, and 25)
that were considered to be the essential sensor locations for
most effectively and simultaneously representing the 1st, 2nd,
and 3rd bending modes even at a 92.5% reduction in the
number ofDOFnodes.The results derived from the FEmodel
and frequency analysis based on the seven selected sensor
locations are shown in Table 7.

Table 7 shows that reducing the number of DOF nodes
results in changes in frequency. For quantitative analysis of
the changes in frequency, the frequency results and error ratio
derived from the initial study with all 39 DOF nodes along
with those derived from the modal test are shown in Table 8.

As observed in Table 8, using seven DOF nodes (approx-
imately 82% reduction of DOF nodes) resulted in an error
ratio of approximately 2.7–11.5% compared to that in the
results of FE analysis using all 39 DOF nodes. In addition,
using seven DOF nodes resulted in an error ratio of about
3.6–9.6% compared to the modal test results. The correlation
between the mode shape acquired from the FE analysis using
seven DOF nodes and the mode shape acquired from the
modal test was further evaluated using the modal assurance
criterion (MAC) shown in (19) [30]:

MAC (𝐴,𝑋)

=
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(19)

Here, Φ
𝐴
and Φ

𝑋
are the mode shapes as calculated and

acquired from the analysis and test, respectively. When the
two modes are the same, the MAC value equals 1, and when
the two modes have no correlation, the MAC value equals 0
[31]. Similarly, Ewins [30] points out in his study that themost
highly correlatedmodes will have aMAC value of around 0.9,
with MAC values as low as 0.7 considered fair in some cases.
He also asserts thatmodes with no correlationwill haveMAC
values of around 0.005. Figure 8 and Table 9 illustrate that
the mode shapes studied in this research showed satisfactory
correlations, but the 3rd bending mode had a relatively lower
correlation than those of the 1st and 2nd modes.
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Table 9: MAC values (7 DOF anal. and exp.).

FE analysis modes
1st 2nd 3rd

Experimental modes
1st 0.9886 0.0000 0.4304
2nd 0.0055 0.9953 0.0017
3rd 0.0259 0.0000 0.7663
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Figure 8: MAC plot (7 DOF anal. and exp.).

The changes in frequency shown in Table 8 and the
changes in mode shape shown in Figure 8 and Table 9 are
interpretation errors (FE modeling errors) created as a result
of reduction of the DOF nodes. To accomplish a thorough SI
of a structure as targeted in this study, more accurate modal
informationneeds to be provided regarding themodel bridge,
and the discrepancies between the analysis results using the
seven DOF nodes and the modal test results need to be
overcome. Therefore, DMUM was utilized in this study in
order to overcome FE modeling errors based on modal test
values and to derive a baseline structure that can provide valid
modal information.

4.2. FE Model Updating Using DMUM. FE model updating
is a technique designed to overcome modeling errors in
FE analysis and to secure an accurate model for numerical
analysis of the current state of the structure taking into
account potential construction errors. In FEmodel updating,
the modal test results derived from the actual structure
are applied to the FE analysis results to ultimately create
an ideal FE model that contains the modal information of
the current structure. This updated FE model can reliably
reflect the dynamic behavioral characteristics of the actual
structure.The updatedmodel also plays a very important role
in acquiring numerical analysis results, which is necessary
for accurate assessment of structural states. To achieve FE
model updating using DMUM, this study utilized frequency,
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Figure 9: MAC plot (update and exp.).

mode shape, and mass and stiffness matrix results derived
from the FE analysis along with frequency and mode shape
results acquired from the modal test. Table 10 reflects the
error ratio between the frequency results derived from the
FE model updated using DMUM and the frequency results
acquired from the modal test. As shown in Table 10, it was
confirmed that the results derived from FE model updating
had a significantly lower error rate (close to 0).

Next, to verify the effectiveness of DMUM in FE model
updating, MAC tests were conducted on the mode shapes.
The results of the correlation analysis between the mode
shapes derived from the updated FEmodel and those derived
from the modal test are as shown in Figure 9 and Table 11.
The results show that using DMUM to update the FE
model results in a MAC value of “1,” thus demonstrating an
outstanding correlation with the modal test results.

In addition, in order to visualize the mode correlation
evaluated usingMAC and to evaluate the correlation between
mode shapes before and after FE model updating, the mode
shapes derived from analysis using seven DOF nodes or
sensor locations and the mode shapes derived from the
updated FE model were graphed as shown in Figure 10. As
the graphs illustrate, the mode shape from the updated FE
model follows the mode shape of the modal test, and not
the mode shape of the FE analysis. This verifies the fact that
by incorporating the modal information of the structure, FE
model updating not only provides more accurate frequency
values but also provides more accurate mode shape patterns.
Ultimately, this proves that FEmodel updating using DMUM
can overcome modeling errors and it is an effective way to
create an accurate model for numerical analysis that can take
into account the actual state of the structure.

5. Conclusion

The aim of this study was to research the formulation of a
baseline structure through optimal sensor location selection
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Table 10: Comparison of experimental results and updating results.

Analysis and experimental results using EOT Error ratio
FE model update Experimental %

1st mode 9.0880Hz 9.0890Hz 0.0110
2nd mode 11.2543Hz 11.2557Hz 0.0124
3rd mode 17.1418Hz 17.1442Hz 0.0139
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Figure 10: Comparison of 7 DOF analysis, updating, and experimental mode shapes.

and FE model updating for conducting SI on cable-stayed
bridges. The conclusions are as follows:

(1) By comparing the contribution of each DOF node to
the total kinetic energy and progressively removing

those that do not contribute based on the target
modes, the KEOT method was proven to be an
effective approach for selecting the optimal number
and location of sensors among the multiple sensor
locations (DOF) in order to acquire the desired
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Table 11: MAC values (updating and exp.).

FE analysis modes (update)
1st 2nd 3rd

Experiment
modes

1st 1.0000 0.0003 0.0225
2nd 0.0002 1.0000 0.0005
3rd 0.0226 0.0005 1.0000

responses. In this study, using seven sensors out of
a total of 39 sensor locations to consider the three
lowest bending modes (about 20% of the total) was
sufficient to effectively acquire relevant structural
information on the cable-stayed bridge.

(2) In addition, by applying structural information mea-
sured from the actual structure and constructing a
corresponding FE model to overcome initial errors
in FE modeling, the DMUM method was proven
to be an effective method for defining a baseline
structure that incorporates the behavioral character-
istics of the actual structure. DMUM has particularly
strong potential for practical use from temporal and
economical standpoints because it calculates stiffness
and mass values from just a single matrix operation
as opposed to other methods that require repetitive
operations such as EMUM.

(3) In conclusion, for structures such as cable-stayed
bridges where the characteristic flexing behavior
creates low and short-interval frequencies, situations
where multiple sensor locations (DOF) are required
because of structural complexity, and situationswhere
SHM and evaluation and maintenance needs to be
performed on structures with low and short-interval
frequencies, the use of both KEOT and DMUM can
be the most effective approach for conducting SI
from the standpoints of both economy and usability
because they provide accurate results with minimum
number of measurement locations.
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