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For the frequency response analysis of acoustic fieldwith randomand interval parameters, a nonintrusive uncertain analysismethod
named Polynomial Chaos Response Surface (PCRS)method is proposed. In the proposedmethod, the polynomial chaos expansion
method is employed to deal with the randomparameters, and the response surfacemethod is used to handle the interval parameters.
The PCRSmethod does not require efforts to modify model equations due to its nonintrusive characteristic. By means of the PCRS
combined with the existing interval analysis method, the lower and upper bounds of expectation, variance, and probability density
function of the frequency response can be efficiently evaluated. Two numerical examples are conducted to validate the accuracy and
efficiency of the approach.The results show that the PCRSmethod is more efficient compared to the direct Monte Carlo simulation
(MCS) method based on the original numerical model without causing significant loss of accuracy.

1. Introduction

It is well known that the numerical method for the frequency
response analysis of the acoustic field with determined
parameters has achieved great attention. However, a com-
plicated acoustic field contains many uncertain factors, such
as the model inaccuracies produced by the manufacturing
tolerance and measuring error, the admittance coefficients
variation induced by the inhomogeneity of absorber mate-
rials, and the unpredictability of environment. Hence, the
response of an acoustic field is always subjected to these
uncertain parameters. The main approaches to model these
uncertainties are the probabilistic methods and the nonprob-
abilistic methods. In the probabilistic methods, uncertain
parameters can be modeled as random variables through the
description of predefined probability distribution functions.
Among these probabilisticmethods, theMCSmethod [1, 2] is
widely used due to the ease of implementation, while its main
shortcoming is time consuming to obtain accurate results.
Therefore, the MCS method is usually used as an approach
for validating the accuracy and efficiency of other methods.
Perturbation stochastic method is an alternative approach for

the probabilistic problems [3, 4]. In this method, both input
and output structural parameters are expanded using Taylor
series with random parameters. However, this approach may
be only suitable for small uncertainty level of parameters.
Spectral stochastic method is also an efficient alternative for
stochastic problems. The basic idea of the spectral stochastic
method is to employ a series expansion tomodel the relation-
ship between the input uncertainty and the output variability.
The polynomial chaos expansion, one of the spectral stochas-
ticmethods, has been previously applied in uncertainty prop-
agation in various fields, such as structural dynamics [5], fluid
dynamics [6], and acoustic fields [7–10]. Sarkar and Ghanem
[5] introduced the polynomial chaos expansion method to
study the midfrequency vibration of linear random systems
with random parameters. Sepahvand et al. [7] applied the
generalized polynomial chaos to study the vibroacoustic
performance of laminated composite plates with uncertain
elastic parameters. LePage [8] adopted the polynomial chaos
expansion method to investigate sonar system performance
in uncertain environments.The simulation results agree very
closely with the results estimated by MCS with less com-
putational involvement. The polynomial chaos expansion
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method is suitable for studying the uncertainty propagation
of systems with uncertainties in model parameters, initial
conditions, or inputs [11].More information about the advan-
tages of the polynomial chaos expansion over other methods,
such as MCS and perturbation techniques, in uncertainty
modeling can be found in [12–16]. From the overall per-
spective, probabilistic methods have achieved great success
in predicting the statistic information of system response,
when the probability density functions (PDFs) of uncertain
parameters are available. Unfortunately, in many practical
applications, it is hard or costly to construct the probability
density distributions of uncertain parameters.

For the system with limited information, the nonproba-
bilistic methods are the suitable alternatives. Interval anal-
ysis, one of the nonprobabilistic methods, has attracted
widespread attention. The fundamentals on the interval
mathematics were first introduced in [17]. After the pioneer-
ing work of Alefeld and Herzberger [18], various interval
methods [19, 20] have been developed to solve static struc-
tural systems with interval parameters. The lower and upper
bounds of response can be calculated directly using the inter-
val mathematics. The main drawback of these methods is the
overestimation caused by the wrapping effect. Reducing over-
estimation has been an active area of research and the related
articles can be found in [21–23]. Xia and Yu [21] proposed
a modified interval perturbation finite element method for
the frequency response analysis of the structural-acoustic
system with interval parameters. Xia et al. [22] introduced a
subinterval perturbation finite elementmethod to predict the
structural-acoustic field with large uncertain-but-bounded
parameters. The numerical results of these methods verify
the effectiveness on reducing the overestimation, but these
methods require more efforts on modifying the governing
equations. Recently, Fang et al. [24] developed a new inter-
val response surface model for the purpose of efficiently
implementing the interval model updating procedure. In this
method, a simple interval surrogate model was built based
on traditional response surface method, and the response
intervals can be calculated efficiently. Zou et al. [25] proposed
a method by combining MCS method and response surface
method to study the uncertainty propagation in accident
reconstruction.

As mentioned above, most researches on uncertain prob-
lems have been carried out by using either interval model
or random model. However, the real uncertain engineer-
ing problems involve the random parameters and interval
parameters simultaneously. Thus, it is desirable to construct
a hybrid uncertain method to handle the system with hybrid
parameters. Guo and Du [26] proposed a sensitivity analysis
method for a mixture of random and interval variables. Gao
et al. [27] developed a mixed perturbation Monte Carlo
method (HPMCM) for static and reliability analysis of the
structural systems with hybrid parameters. To reduce the
excessive computational efforts of HPMCM suffering from
MCS, a hybrid perturbation vertex method (HPVM) for the
frequency response analysis of hybrid uncertain acoustic field
was proposed by Xia et al. [28]. However, the simulation
results of HPVMcannot be accurate when the extreme values
of the response are not at the vertexes.

For the numerical analysis of the uncertain acoustic field
and the structural-acoustic field, a large number of uncertain
methods have been developed. According to the approaches
to describe the uncertain parameters, the uncertain acoustic
model is mainly divided into the probabilistic model, the
interval model, the convex model, and the two-type hybrid
uncertain models. For the response analysis of acoustic field
with random parameters, a probabilistic method named as
the change-of-variable perturbation stochastic finite element
method has been proposed by Xia and Yu [29]. For the
response analysis of the acoustic field with interval param-
eters, two interval analysis methods named as the interval
perturbation method and the modified interval perturbation
method have been proposed [22, 30–32]. For the response
analysis of acoustic field with convex parameters, two convex
methods named as first-order convex perturbation method
and second-order convex perturbation method have been
proposed by Xia and Yu [33]. For the response analysis of
acoustic field with both random and interval parameters,
two numerical methods named as the hybrid perturbation
Monte Carlo method and the hybrid perturbation vertex
method have been proposed by Xia et al. [28, 34]. For
the response analysis of acoustic field with interval random
parameters, Xia et al. [35, 36] proposed an interval random
model inwhich the uncertain parameters are quantified as the
random variables, while some of the probability distribution
parameters of randomvariables can only be providedwith the
variation intervals but not the precise values.

From the overall perspective, current research on uncer-
tain acoustic field is mainly based on perturbation theory,
which requires additional efforts on the deduction of math-
ematical formula. To overcome such inconveniences, nonin-
trusive methods can be attractive alternatives. However, up
to now, to the best of the authors’ knowledge, the relevant
research on the nonintrusive methods for response analysis
of the acoustic field with random parameters and interval
parameters is still not reported. In this work, our efforts
are concentrated specifically on developing a nonintrusive
uncertain analysis method for acoustic systems with hybrid
parameters. Firstly, a nonintrusive polynomial chaos expan-
sion method is employed to handle the random parameters
due to its easiness to recover information and characterize
the variability, in particular the mean and the variance.Then,
the response surface method is used to deal with the interval
parameters because of its simplicity and ease of use. Finally,
the upper and lower bounds of the probabilistic character-
istics can be calculated by means of the existing interval
analysis methods.

The organization of this paper is as follows. In Section 2,
the dynamic equation of the acoustic system with random
parameters and interval parameters is derived. In Section 3,
the polynomial chaos expansion method for random vari-
ables is presented. In Section 4, the response surface method
for interval variables is presented. In Section 5, the proposed
PCRS is constructed for frequency response analysis of the
acoustic systemwith random variables and interval variables.
In Section 6, two acoustic models with random and inter-
val parameters are conducted to verify the effectiveness of
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the proposed methods. Several conclusions drawn based on
the current study are given in the last section.

2. Acoustic FE Model with Random and
Interval Variables

Consider an acoustic cavity of volume Ω, whose boundary
Γ of the acoustic cavity Ω is composed of three parts. These
are the Dirichlet boundary condition Γ

𝐷
, the Neumann

boundary condition Γ
𝑁
, and the Robin boundary condition

Γ
𝑅
, respectively.
Assuming that the state of the acoustic field is steady, the

sound pressure 𝑝 is governed by the Helmholtz equation:

∇
2
𝑝 + 𝑘
2
𝑝 = 0, (1)

where∇2 is the Laplace operator, 𝑘 = 𝑤/𝑐 is the wave number,
𝑤 is the angular frequency, and 𝑐 is the sound speed.The three
types of boundary condition can be expressed as

𝑝 = 𝑝 on Γ
𝐷
,

𝜕𝑝

𝜕n
= −𝑗𝜌𝑤V

𝑛
on Γ
𝑁
,

𝜕𝑝

𝜕n
= −𝑗𝜌𝑤𝐴𝑝 on Γ

𝑅
,

(2)

where 𝑝 is the imposed sound pressure on boundary Γ
𝐷
, n

is the exterior unit-normal vector, 𝑗 = √−1 is an imaginary
unit, 𝜌 is the density of the fluid in acoustic field, V

𝑛
is the

normal velocity imposed on boundary Γ
𝑁
, and𝐴 is the admit-

tance coefficient of the damping material on boundary Γ
𝑅
.

In the standard finite element analysis, the acoustic
domain Ω is discretized into a number of acoustic elements.
The governing equation of the acoustic field in finite element
framework can be written as

(K + 𝑗𝑤C − 𝑤2M) p = q, (3)

where K, M, C, and q represent the acoustic system stiffness
matrix, mass matrix, damping matrix, and load vector,
respectively. They can be expressed as follows:

K = ∑
𝑛
𝑒

∫
Ω
𝑒

(∇N)𝑇 ∇N 𝑑Ω𝑒,

M = ∑
𝑛
𝑒

∫
Ω
𝑒

1

𝑐2
N𝑇N 𝑑Ω

𝑒
,

C = ∑
𝑛
𝑒

∫
Γ
𝑒

𝑅

𝜌𝐴
𝑒
N𝑇N 𝑑Γ,

q = 𝑗𝑤𝜌∑
𝑛
𝑒

∫
Ω
𝑒

N𝑇𝑞
𝑎
𝑑Ω
𝑒
,

(4)

where N denotes the element shape function, the subscript 𝑒
after Ω, Γ, and 𝐴 represents the corresponding quantity for a
finite element, and 𝑞

𝑎
is the volume velocity per unit volume.

The governing equation in acoustic field can be written as

ZP = q, (5)

whereZ denotes the acoustic dynamic stiffnessmatrix, which
can be expressed as

Z = (K + 𝑗𝑤C − 𝑤2M) . (6)

For actual acoustic problem, uncertainties in material
properties, external loads, and geometric dimensions are
unavoidable due to the manufacturing errors and the mea-
sured errors. Assume that the uncertain parameters of the
acoustic cavity are independent. The uncertain parameters
whose probability distributions are known can be modeled
as random variables. The uncertain parameters with limited
information can be described as the interval variables. Then
the finite element equation of the acoustic field with both
random and interval variables can be written as

Z (𝜉, 𝜂)P (𝜉, 𝜂) = q (𝜉, 𝜂) , (7)

P (𝜉, 𝜂) = Z−1 (𝜉, 𝜂) q (𝜉, 𝜂) , (8)

where 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) denotes the random vector and 𝜂 =

(𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑚
) is the interval vector. From (7), it can be seen

that the frequency response P is the function of both random
vector 𝜉 and interval vector 𝜂.

3. The Polynomial Chaos Expansion
Method for Random Variables

The basic idea of the polynomial chaos expansion method
is that any random process can be approximated by a lin-
ear combination of orthogonal polynomials of independent
random variables [7]. Wiener [37] first introduced the poly-
nomial chaos in the form of homogeneous expansion using
orthogonalHermite polynomial basis.The approach has been
extended to the generalized polynomial chaos [14] to deal
with more general random fields such as multidimensional
random fields and non-Gaussian random fields.

In this section, we assume that the acoustic system
only contains random variables. If the input parameters are
described as the uniformly distributed random variables, the
frequency response 𝑃 can be expressed by an expansion
of multidimensional Legendre polynomials function of the
input vector 𝜉 = (𝜉

1
, . . . , 𝜉

𝑛
). For other types of random

variable, different polynomial bases can be found in [14].
Considering the uniformly distributed random variable, the
frequency response can be expressed as follows:

𝑃 (𝜉) =
∞

∑

𝑘=0

𝑢
𝑘
𝜓
𝑘 (𝜉) , (9)

where 𝑢
𝑘
represents the deterministic coefficient to be esti-

mated and 𝜓
𝑘
(𝜉) is the Legendre polynomial chaos of order

𝑘. Naturally, for the purposes of numerical computation, the
terms given by (9) must be truncated. Assuming that the
number of the truncated terms is 𝑠, 𝑃(𝜉) can be written as

𝑃 (𝜉) =
𝑠−1

∑

𝑘=0

𝑢
𝑘
𝜓
𝑘 (𝜉) . (10)
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The number of the truncated terms 𝑠 depends on the number
of random dimensions (𝑛) of 𝜉 and the highest order (𝛾) of
the polynomials 𝜓, which is given by

𝑠 =
(𝑛 + 𝛾)!

𝑛!𝛾!
. (11)

Considering the one-dimensional Legendre polynomial,
the three-term recurrence relation can be given by

𝐻
0 (𝜉) = 1,

𝐻
1 (𝜉) = 𝜉,

𝐻
𝑗+1 (𝜉) =

2𝑗 + 1

𝑗 + 1
𝜉𝐻
𝑗 (𝜉) −

𝑗

𝑗 + 1
𝐻
𝑗−1 (𝜉) ,

(𝑗 = 1, . . . , 𝑛) ,

(12)

where 𝑗 denotes the order of Legendre polynomials. For
example, the one-dimensional Legendre polynomials are

𝜓
0
= 1,

𝜓
1
= 𝜉,

𝜓
2
=
3

2
𝜉
2
−
1

2
,

𝜓
3
=
5

2
𝜉
3
−
3

2
𝜉, . . . .

(13)

For multidimensional random variable 𝜉 = (𝜉
1
, . . . , 𝜉

𝑛
), the

Legendre polynomials can be expressed as follows:

𝐻
𝑚
1
,𝑚
2
,...,𝑚
𝑛

(𝜉
1
, . . . , 𝜉

𝑛
) =

𝑛

∏

𝑘=1

𝐻
𝑚
𝑘

(𝜉
𝑘
) ,

(𝑚
𝑘
= 0, 1, . . . , 𝛾) .

(14)

Then, the two-dimensional Legendre polynomials are given
by

𝜓
0
= 𝐻
0,0
(𝜉
1
, 𝜉
2
) = 1,

𝜓
1
= 𝐻
1,0
(𝜉
1
, 𝜉
2
) = 𝜉
1
,

𝜓
2
= 𝐻
0,1
(𝜉
1
, 𝜉
2
) = 𝜉
2
,

𝜓
3
= 𝐻
2,0
(𝜉
1
, 𝜉
2
) =
3

2
𝜉
2

1
−
1

2
,

𝜓
4
= 𝐻
1,1
(𝜉
1
, 𝜉
2
) = 𝜉
1
𝜉
2
,

𝜓
5
= 𝐻
0,2
(𝜉
1
, 𝜉
2
) =
3

2
𝜉
2

2
−
1

2

.

.

.

(15)

The orthogonality relation of the Legendre polynomial chaos
takes the form

⟨𝜓
𝑖
, 𝜓
𝑗
⟩ = ⟨𝜓

2

𝑖
⟩ 𝛿
𝑖𝑗
, (16)

where 𝛿
𝑖𝑗

is the Kronecker delta and ⟨⋅, ⋅⟩ denotes the
ensemble average:

⟨𝑓, 𝑔⟩ = ∫𝑓 (𝜉) 𝑔 (𝜉) 𝑤 (𝜉) 𝑑𝜉. (17)

𝑤(𝜉) is the joint probability density of the random variable 𝜉
[38]. The coefficients 𝑢

𝑘
in (10) can be obtained as follows:

𝑢
𝑘
=
⟨𝑃 (𝜉) , 𝜓𝑘⟩

⟨𝜓
2

𝑘
⟩
=
1

⟨𝜓
2

𝑘
⟩
∫𝑃 (𝜉) 𝜓𝑘 (𝜉) 𝑤 (𝜉) 𝑑𝜉. (18)

There are two broad approaches to calculating these
coefficients: the intrusive approach and the nonintrusive
approach. The intrusive approach requires the complete
reformulation of any existing code, which is often difficult
and prohibitively costly for complex systems. Thus, the non-
intrusive approach is an attractive alternative, where we do
not require changes to deterministic solvers for𝑃 aswe gener-
ate realizations of 𝜉 to obtain𝑃(𝜉). Tensor product quadrature
approach [39] can be used to calculate the numerical integra-
tion in (18), which can be expressed by

∫𝑃 (𝜉) 𝜓𝑘 (𝜉) 𝑤 (𝜉) 𝑑𝜉 ≈
𝑁

∑

𝑞=1

𝑃 (𝜉
𝑞
) 𝜓
𝑘
(𝜉
𝑞
)𝑤 (𝜉

𝑞
) , (19)

where 𝑞 denotes the 𝑞th collocation points and 𝑁 denotes
the total number of collocation points. In this paper, the
collocation points are selected from the roots of the Legendre
polynomial of a one degree higher than the order 𝛾. Then the
coefficient 𝑢

𝑘
can be calculated by the following equation:

𝑢
𝑘
≈
1

⟨𝜓
2

𝑘
⟩

𝑁

∑

𝑞=1

𝑃 (𝜉
𝑞
) 𝜓
𝑘
(𝜉
𝑞
)𝑤 (𝜉

𝑞
) . (20)

We can also rewrite (20) as

𝑢
𝑘
≈

𝑁

∑

𝑞=1

𝑃 (𝜉
𝑞
) 𝑎
𝑘
(𝜉
𝑞
) , (21)

where

𝑎
𝑘
(𝜉
𝑞
) =

1

⟨𝜓
2

𝑘
⟩
𝜓
𝑘
(𝜉
𝑞
)𝑤 (𝜉

𝑞
) . (22)

Repeating (21) from 𝑘 = 0 to 𝑘 = 𝑠 − 1, the coefficients vector
can be determined as

[𝑢
0
, . . . , 𝑢

𝑠−1
] = [𝑃 (𝜉

1
) , . . . , 𝑃 (𝜉

𝑁
)]A (𝜉) , (23)

A (𝜉) =
[
[
[
[

[

𝑎
0
(𝜉
1
) ⋅ ⋅ ⋅ 𝑎

𝑠−1
(𝜉
1
)

.

.

. d
.
.
.

𝑎
0
(𝜉
𝑁
) ⋅ ⋅ ⋅ 𝑎

𝑠−1
(𝜉
𝑁
)

]
]
]
]

]

. (24)

Once the coefficients are determined, the statistics of the
frequency response𝑃(𝜉) can be obtained.Themean 𝜇 and the
variance 𝜎2 of the frequency response 𝑃(𝜉) can be calculated
as follows:

𝜇 (𝑃 (𝜉)) = 𝑢0,

𝜎
2
(𝑃 (𝜉)) =

𝑠−1

∑

𝑘=1

𝑢
2

𝑘
⟨𝜓
2

𝑘
⟩ .

(25)
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4. The Response Surface Method for
Interval Variables

The polynomial chaos expansion method is applied to
approximate to the frequency response 𝑃 with random vari-
ables using the sum of orthogonal polynomials. In this sec-
tion, we consider the interval variable. Assume that the input
vector 𝜂 belongs to a bounded interval vector:

𝜂 ∈ 𝜂
𝐼
= [𝜂, 𝜂] = (𝜂

𝐼

𝑙
) ,

𝜂
𝑙
∈ 𝜂
𝐼

𝑙
= [𝜂
𝑙
, 𝜂
𝑙
] ,

𝑙 = 0, 2, . . . , 𝑚 − 1,

(26)

where 𝜂
𝑙
and 𝜂
𝑙
denote the upper and lower bounds of the 𝑙th

interval parameter 𝜂
𝑙
.𝑚 denotes the total number of interval

parameters. Referring to the work of Zou et al. [25], the
response surface method can be employed to construct the
approximate relationship between the response 𝑄 and input
variable 𝜂. The construction of the response surface is most
frequently performed by a least-squares fit to a linear meta-
model [40], which can be given by

𝑄 ≈ 𝑔 (𝜂) = 𝑏
0
+

𝑚

∑

𝑙=1

𝑏
1𝑙
𝜂
𝑙
+∑

𝑙<𝑛

𝑏
𝑙𝑛
𝜂
𝑙
𝜂
𝑛
+ ⋅ ⋅ ⋅ , (27)

where 𝑏
0
, 𝑏
𝑙
, 𝑏
𝑙𝑛
, . . . are undetermined coefficients. For exam-

ple, the first-order response surface function can be expressed
by

𝑄 ≈ 𝑔 (𝜂) = 𝑏
0
+

𝑚

∑

𝑙=1

𝑏
1𝑙
𝜂
𝑙
. (28)

The terms in (28) can be divided into two parts: one is the
coefficient and the other is the base. If 𝑚 = 2, the bases in
(28) can be shown as follows:

𝑓
0
(𝜂
1
, 𝜂
2
) = 1,

𝑓
1
(𝜂
1
, 𝜂
2
) = 𝜂
1
,

𝑓
2
(𝜂
1
, 𝜂
2
) = 𝜂
2
.

(29)

The second-order response surface function can be written as

𝑄 ≈ 𝑔 (𝜂) = 𝑏
0
+

𝑚

∑

𝑙=1

𝑏
1𝑙
𝜂
𝑙
+

𝑚

∑

𝑙=1

𝑏
2𝑙
𝜂
2

𝑙
+∑

𝑙<𝑛

𝑏
3𝑙
𝜂
𝑙
𝜂
𝑛
. (30)

Assume that the total number of the terms in (30) is 𝑡. Then
(30) can be expressed by

𝑄 ≈ 𝑔 (𝜂) =
𝑡−1

∑

𝑙=0

𝑏
𝑙
𝜑
𝑙
= b𝑇𝜑, (31)

b = [𝑏
0
, . . . , 𝑏

𝑡−1
]
𝑇
, (32)

𝜑 = [𝜑
0
, . . . , 𝜑

𝑡−1
]
𝑇
. (33)

The bases in (33) can be shown as follows:

𝜑
0
= 𝑓 (𝜂

1
, 𝜂
2
) = 1,

𝜑
1
= 𝑓 (𝜂

1
, 𝜂
2
) = 𝜂
1
,

𝜑
2
= 𝑓 (𝜂

1
, 𝜂
2
) = 𝜂
2
,

𝜑
3
= 𝑓 (𝜂

1
, 𝜂
2
) = 𝜂
2

1
,

𝜑
4
= 𝑓 (𝜂

1
, 𝜂
2
) = 𝜂
2

2
,

𝜑
5
= 𝑓 (𝜂

1
, 𝜂
2
) = 𝜂
1
𝜂
2
.

(34)

The undetermined coefficient vector b can be calculated by
the linear regression method, and the sampling points are
generated by Latin hypercube design [41]. It is recommended
that the selected sampling pointsmust bemore than twice the
number of coefficients for obtaining robust estimates. Assum-
ing that the number of the selected sampling points is 𝑟, the
coefficient vector b can be obtained by

b = (F (𝜂)𝑇 F (𝜂))
−1

F (𝜂)𝑇G, (35)

F (𝜂) =
[
[
[
[

[

𝜑
0
(𝜂
1
) ⋅ ⋅ ⋅ 𝜑

0
(𝜂
𝑟
)

.

.

. d
.
.
.

𝜑
𝑡−1
(𝜂
1
) ⋅ ⋅ ⋅ 𝜑

𝑡−1
(𝜂
𝑟
)

]
]
]
]

]

, (36)

G = [𝑔 (𝜂
1
) , . . . , 𝑔 (𝜂

𝑟
)]
𝑇
, (37)

where F(𝜂) denotes the transform matrix, G is the model
output vector at the selected points, and the superscript “𝑇”
suggests a transposition operator.

After constructing the response surface function 𝑔(𝜂), all
existing interval analysis methods can be employed to calcu-
late the intervals of the simulation results in acoustic field.
Since 𝑔(𝜂) is the function with respect to the interval vector
𝜂, the overestimation is unavoidable according to interval
mathematics.MCSmethod is a reliable and robust alternative
for calculating the range of simulation results by a combina-
tion with 𝑔(𝜂). The main steps of MCS method can be found
in [25, 42].

5. The Hybrid Method for Random and
Interval Variables

In this section, we consider that the acoustic system contains
both uniform random vector 𝜉 and interval vector 𝜂. The
PCRS method is proposed, which is designed with nonin-
trusiveness and effectiveness in calculating the intervals of
probabilistic characteristics of response of the acoustic system
with hybrid parameters. The PCRS method stems from the
incorporation of polynomial chaos method and response
method. Then, the upper and lower bounds of probabilistic
characteristics can be calculated by means of the PCRS
combined with the existing interval analysis method.

5.1.TheConstruction of the PCRSMethod. Firstly, the interval
vector 𝜂 is regarded as a constant vector. Based on the
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polynomial chaos expansionmethod, the frequency response
𝑃(𝜉, 𝜂) can be expanded by (10):

𝑃 (𝜉, 𝜂) ≈
𝑠−1

∑

𝑘=0

𝑢
𝑘
𝜓
𝑘 (𝜉) . (38)

As 𝜓
𝑘
(𝜉) is the Legendre polynomials which is only the

function of 𝜉, 𝑢
𝑘
will be the function of 𝜂, namely, 𝑢

𝑘
(𝜂).

Secondly, based on the response surface method, 𝑢
𝑘
(𝜂)

can be expanded using (31):

𝑢
𝑘
(𝜂) ≈

𝑡−1

∑

𝑙=0

𝑏
𝑘𝑙
𝜑
𝑙
(𝜂) . (39)

Substituting (39) into (38), we can obtain the approximation
of the frequency response as follows:

𝑃 (𝜉, 𝜂) ≈
𝑠−1

∑

𝑘=0

𝑡−1

∑

𝑙=0

𝑏
𝑘𝑙
𝜑
𝑙
(𝜂) 𝜓
𝑘 (𝜉) . (40)

In order to obtain the explicit format of the frequency
response 𝑃(𝜉, 𝜂), the undetermined coefficient 𝑏

𝑘𝑙
in (40)

is required to be solved. The coefficient vector b
𝑘
= [𝑏
𝑘,0
,

. . . , 𝑏
𝑘,𝑡−1
]
𝑇 can be calculated by (35) as follows:

[
[
[
[

[

𝑏
𝑘,0

.

.

.

𝑏
𝑘,𝑡−1

]
]
]
]

]

= (F (𝜂)𝑇 F (𝜂))
−1

F (𝜂)𝑇
[
[
[
[

[

𝑢
𝑘
(𝜂
1
)

.

.

.

𝑢
𝑘
(𝜂
𝑟
)

]
]
]
]

]

, (41)

where 𝑢
𝑘
(𝜂
𝑙
) denotes 𝑢

𝑘
(𝜂) at the sampling points 𝜂

𝑙
. Travers-

ing 𝑘 from 0 to 𝑠 − 1, the coefficient vector B can be obtained:

B =
[
[
[
[

[

𝑏
0,0
⋅ ⋅ ⋅ 𝑏

𝑠−1,0

.

.

. d
.
.
.

𝑏
0,𝑡−1
⋅ ⋅ ⋅ 𝑏
𝑠−1,𝑡−1

]
]
]
]

]

= (F (𝜂)𝑇 F (𝜂))
−1

F (𝜂)𝑇
[
[
[
[

[

𝑢
0
(𝜂
1
) ⋅ ⋅ ⋅ 𝑢

𝑠−1
(𝜂
1
)

.

.

. d
.
.
.

𝑢
0
(𝜂
𝑟
) ⋅ ⋅ ⋅ 𝑢

𝑠−1
(𝜂
𝑟
)

]
]
]
]

]

.

(42)

Then using (23), the function value vector [𝑢
0
(𝜂
𝑖
), . . . ,

𝑢
𝑠−1
(𝜂
𝑖
)] can be calculated as

[𝑢
0
(𝜂
𝑖
) , . . . , 𝑢

𝑠−1
(𝜂
𝑖
)]

= [𝑃 (𝜉
1
, 𝜂
𝑖
) , . . . , 𝑃 (𝜉

𝑁
, 𝜂
𝑖
)]A (𝜉) ,

(43)

where 𝜂
𝑖
denotes the 𝑖th of the sampling points vector 𝜂.

Repeating (43) from 𝑖 = 0 to 𝑖 = 𝑟, the function value vector
in the right side of (42) can be expressed as

[
[
[
[

[

𝑢
0
(𝜂
1
) ⋅ ⋅ ⋅ 𝑢

𝑠−1
(𝜂
1
)

.

.

. d
.
.
.

𝑢
0
(𝜂
𝑟
) ⋅ ⋅ ⋅ 𝑢

𝑠−1
(𝜂
𝑟
)

]
]
]
]

]

=

[
[
[
[

[

𝑃 (𝜉
1
, 𝜂
1
) ⋅ ⋅ ⋅ 𝑃 (𝜉

𝑁
, 𝜂
1
)

.

.

. d
.
.
.

𝑃 (𝜉
1
, 𝜂
𝑟
) ⋅ ⋅ ⋅ 𝑃 (𝜉

𝑁
, 𝜂
𝑟
)

]
]
]
]

]

A (𝜉) .

(44)

Substituting (44) into (42), the coefficient vector B can be
rewritten as

B = (F (𝜂)𝑇 F (𝜂))
−1

F (𝜂)𝑇 PA (𝜉) , (45)

P =
[
[
[
[

[

𝑃 (𝜉
1
, 𝜂
1
) ⋅ ⋅ ⋅ 𝑃 (𝜉

𝑁
, 𝜂
1
)

.

.

. d
.
.
.

𝑃 (𝜉
1
, 𝜂
𝑟
) ⋅ ⋅ ⋅ 𝑃 (𝜉

𝑁
, 𝜂
𝑟
)

]
]
]
]

]

, (46)

where P is the frequency response value matrix of original
system at the collocation points and sampling points. As
mentioned above in Sections 3 and 4, the total number of
collocation points is𝑁 and the collocation points are selected
from the roots of the Legendre polynomial of a one degree
higher than the order 𝛾. And the number of the selected sam-
pling points that is 𝑟must be more than twice the number of
coefficients 𝑡 for obtaining robust estimates. Once the collo-
cation points and sampling points are selected, the frequency
response value matrix of P can be obtained by calculating (8)
𝑁 × 𝑟 times.

By substituting the frequency response value matrix of P
in (46) into (45), the coefficient vector B can be obtained.
Then the original model in (8) can be approximated by (40),
which can be written as follows:

P (𝜉, 𝜂) = Z−1 (𝜉, 𝜂) q (𝜉, 𝜂) ≈
𝑠−1

∑

𝑘=0

𝑡−1

∑

𝑙=0

𝑏
𝑘𝑙
𝜑
𝑙
(𝜂) 𝜓
𝑘 (𝜉) . (47)

5.2. The Bounds of the Statistical Characteristics of the Fre-
quency Response. After constructing the PCRS model via
(47), the mean and variance of the frequency response need
to be evaluated. Substituting (39) into (25), the mean of the
frequency response 𝑃(𝜉, 𝜂) can be written as

𝜇 (𝑃 (𝜉, 𝜂)) = 𝑢
0
(𝜂) =

𝑡−1

∑

𝑙=0

𝑏
0,𝑙
𝜑
𝑙
(𝜂) . (48)
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Table 1: Characteristics of the uncertain parameters of the 2D rectangular cavity.

Parameters 𝑐 (m/s) 𝜌 (kg/m3) 𝐴
1
(m/s/Pa) 𝐴

2
(m/s/Pa)

Values 𝑈(329.8, 350.2) 𝑈(1.1495, 1.2705) [0.0009, 0.0011] [0.0018, 0.0022]

Similarly, the variance of the frequency response 𝑃(𝜉, 𝜂) can
be expressed by

𝜎
2
(𝑃 (𝜉, 𝜂)) =

𝑠−1

∑

𝑘=1

𝑢
2

𝑘
(𝜂) ⟨𝜓

2

𝑘
⟩

=

𝑠−1

∑

𝑘=1

(

𝑡−1

∑

𝑙=0

𝑏
𝑘𝑙
𝜑
𝑙
(𝜂))

2

⟨𝜓
2

𝑘
⟩ .

(49)

It is obvious that the mean and variance of the frequency
response also contain interval variables. The direct imple-
mentation of interval arithmetic is difficult to obtain reliable
estimates of the mean and variance, as interval overesti-
mation occurs due to the multioccurrence of the interval
variables. In interval analysis, when the evaluated functions
are multimodal, the MCS or global optimization algorithms
are often employed to obtain the bounds of the functionswith
interval variables. If the dimension of the interval variable
is less than 4, MCS can be a robust and convenient method
to determine the upper and lower bounds of the functions.
When the problem is high-dimensional, some global opti-
mization algorithms such as the particle swarm algorithm
and the genetic algorithms are effective to calculate the
minimum andmaximum values of the multimodal functions
[27, 43].Then (48) and (49) can be expressed in the following
optimization forms:

𝜇 (𝑃 (𝜉, 𝜂))
𝐼
= [𝜇 (𝑃 (𝜉, 𝜂)) , 𝜇 (𝑃 (𝜉, 𝜂))]

= [ min
−1≤𝜂≤1

𝑡−1

∑

𝑙=0

𝑏
0,𝑙
𝜑
𝑙
(𝜂) , max
−1≤𝜂≤1

𝑡−1

∑

𝑙=0

𝑏
0,𝑙
𝜑
𝑙
(𝜂)] ,

𝜎
2
(𝑃 (𝜉, 𝜂))

𝐼
= [𝜎
2
(𝑃 (𝜉, 𝜂)) , 𝜎

2
(𝑃 (𝜉, 𝜂))]

= [

[

min
−1≤𝜂≤1

𝑠−1

∑

𝑘=1

(

𝑡−1

∑

𝑙=0

𝑏
𝑘𝑙
𝜑
𝑙
(𝜂))

2

⟨𝜓
2

𝑘
⟩ ,

max
−1≤𝜂≤1

𝑠−1

∑

𝑘=1

(

𝑡−1

∑

𝑙=0

𝑏
𝑘𝑙
𝜑
𝑙
(𝜂))

2

⟨𝜓
2

𝑘
⟩]

]

.

(50)

As aforementioned, there are mainly four steps to deter-
mine the bounds of probabilistic features of the frequency
response: (1) produce the collocation points for random vari-
ables and the sampling points for interval variables according
to the order of the Legendre polynomials and the number of
undetermined coefficients of the response surface function,
respectively; (2) run the original acoustic model at each
points vector to obtain the values of the frequency response
value matrix P; (3) build the coefficient vector B and then
obtain the final expression of PCRS model of the frequency
response 𝑃(𝜉, 𝜂); (4) calculate the bounds of probabilistic

y = 0.5m

A1

y

x

S

A2

Figure 1: Finite element mesh of the 2D rectangular cavity.

features of the frequency response based on the PCRS model
using the interval analysis method.

6. Numerical Study

6.1. Numerical Study of a 2D Rectangular Cavity. To demon-
strate the effectiveness of the proposed PCRS method, a 2D
rectangular cavity is studied in this section. Figure 1 depicts a
2D cavitymodel of dimensions 1.5×0.6m.The acoustic cavity
is discretized by the 8-node quadrilateral elements.Themesh
counts 15×6 elements with a total of 313 nodes.The left-hand
side and the right-hand side of the cavity are covered with
absorbing material, named𝐴

1
and𝐴

2
, respectively.The fluid

is excited by a unit point sound source located at Node 197
(0.75m and 0.3m). Considering the unpredictable environ-
ment temperature, the density of air and the acoustic speed
of air surrounding the acoustic cavity are assumed as random
variables which follow the uniform distribution. Because of
themanufacturing errors and themeasured errors, the admit-
tance coefficients of the two absorbing materials are regarded
as interval variables.These uncertain parameters are assumed
to be independent of each other. The values of the uncertain
parameters are shown in Table 1.

The lower and upper bounds of expectation and variance
of the frequency response amplitude at nodes along the line
of 𝑦 = 0.5m are calculated by the PCRS method. In this
case, we choose the order of polynomial chaos as 2 and the
order of response surface as 2.The number of the collocation
points for random parameters is 9 (𝑁 = 9), and the sampling
points is 50 (𝑟 = 50). The total number of samples is 𝑁 ×
𝑟 = 9 × 50 = 450, which is used to obtain the frequency
response value matrix of original system. After obtaining
the coefficient vector B, the intervals of the expectation and
variance of the frequency response can be evaluated by (50).

The results obtained by the direct MCS method based
on the original numerical model are used as the reference
solutions for validating the accuracy of the proposedmethod.
It should be noted that in the directMCSmethod the number
of sampling points for interval parameters is 1000 and the
size of sampling points for random parameters is 104. In
other words, the total number of the samples is 1000 × 104.
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Table 2: Execution time of theMCSmethod and the PCRSmethod.

MCS PCRS

Total
execution
time (s)

The execution
time of

obtaining the
values of P (s)

The execution
time of

calculating the
values of B (s)

Total
execution time

(s)

322403.30 27.75 0.06 41.25
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Figure 2: The lower and upper bounds of expectation of the
frequency response amplitude at nodes along the line of 𝑦 = 0.5m
calculated by PCRS and MCS.

Compared with the direct MCS method, the PCRS method
is more efficient, as it only computes the original frequency
response value 300 times. As shown in Table 2, we can see that
the total execution time of the MCS method is much longer
than that of the PCRS method. Furthermore, it takes about
27.75 s to obtain the values of the frequency response matrix
P in the PCRSmethod. And it only takes 0.06 s to obtain coef-
ficient vector B, which means that it takes little time for con-
structing the PCRSmodel after obtaining the frequency value
matrix P.

The lower and upper bounds of expectation and variance
of the frequency response at nodes along the line of 𝑦 = 0.5m
are shown in Figures 2 and 3 for frequency 100Hz.The results
show that the intervals of expectation and variance obtained
by PCRS match the lower and upper bounds yielded by MCS
perfectly. So the PCRS can provide sufficient accuracy to eval-
uate the interval expectation and variance of the frequency
response. To investigate the accuracy of PCRS for predicting
the acoustic frequency response more clearly, the intervals of
expectation and variance and the relative errors are listed in
Tables 3 and 4. The results show that the relative errors of
the proposedmethod are acceptable compared with theMCS
solutions. Furthermore, the relative errors of the bounds of
variances are larger than those of the bounds of expectation,
which means that the bounds of the variance are more sensi-
tive to the uncertain parameters compared to the bounds of
the expectation.

Based on (47), the MCS method with 5 × 103 sampling
points for interval parameters and 103 collocation points for

PCRS (lower)
PCRS (upper)

MCS (lower)
MCS (upper)

0.25 0.5 0.75 1 1.25 1.50
Coordinate (m)

×10−3
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0.8
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Figure 3: The lower and upper bounds of variance of the frequency
response amplitude at nodes along the line of 𝑦 = 0.5m calculated
by PCRS and MCS.

random parameters can be used to compute the intervals
of PDF of the response. The direct MCS with total 5 × 106
samples based on the original numerical model is used as
the referenced solution. The lower and upper bounds of the
response PDF at node𝑅1 (𝑥 = 0.6, 𝑦 = 0.5) and node𝑅2 (𝑥 =
1.4, 𝑦 = 0.5) using the direct MCS and the PCRS are plotted
in Figures 4 and 5. It can be seen that the overall shapes of
the probability distribution mapped by the PCRS method
are close to the direct MCS results, which again verify the
effectiveness of the proposed method.

The effects of the uncertain levels of the interval variables
on the accuracy of the PCRS method are investigated. The
considered uncertain levels of admittance coefficients of the
two absorbing materials are 5%, 10%, 15%, and 20%, respec-
tively. Because the variance is more sensitive to uncertain
levels of interval variables than the expectation, we only
research the bounds of variance of the frequency response
amplitude of the nodes along the line of 𝑦 = 0.5mat different
uncertainty levels of the interval variables. The considered
frequency is 200Hz. It can be seen from Figures 6–9 that the
intervals of variance of the frequency response obtained by
the PCRS method match the intervals calculated by the MCS
method well until the uncertain level of the interval variables
reaches 15%. It indicates that the proposed method has good
accuracy to predict the intervals of expectation and variance
of the frequency response of the acoustic system with both
randomand interval variables.We can also find that the larger
the uncertain level of the interval variables is, the larger the
deviation is between the intervals calculated by the PCRS and
that obtained by the MCS method.

6.2. Numerical Study of a 2D Sedan Passenger Compartment.
In this section, a case of study of a 2D car cavity is adopted to
investigate the performance of PCRS.This cavity is similar to
the one used in the earlier studies by other authors [44, 45].
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Table 3: The relative errors of the lower and upper bounds of expectation of the frequency response amplitude along the line of 𝑦 = 0.5m.

Coordinate (m) Lower bounds Upper bounds
Monte Carlo PCRS Relative errors (%) Monte Carlo PCRS Relative errors (%)

0 6.77𝐸 − 01 6.75𝐸 − 01 0.39% 7.36𝐸 − 01 7.34𝐸 − 01 0.22%
0.1 6.68𝐸 − 01 6.66𝐸 − 01 0.39% 7.26𝐸 − 01 7.25𝐸 − 01 0.22%
0.2 6.42𝐸 − 01 6.39𝐸 − 01 0.39% 6.98𝐸 − 01 6.97𝐸 − 01 0.22%
0.3 6.00𝐸 − 01 5.98𝐸 − 01 0.40% 6.54𝐸 − 01 6.53𝐸 − 01 0.23%
0.4 5.47𝐸 − 01 5.44𝐸 − 01 0.41% 5.98𝐸 − 01 5.97𝐸 − 01 0.23%
0.5 4.87𝐸 − 01 4.85𝐸 − 01 0.43% 5.36𝐸 − 01 5.34𝐸 − 01 0.24%
0.6 4.28𝐸 − 01 4.26𝐸 − 01 0.46% 4.76𝐸 − 01 4.74𝐸 − 01 0.26%
0.7 3.80𝐸 − 01 3.78𝐸 − 01 0.52% 4.28𝐸 − 01 4.27𝐸 − 01 0.29%
0.8 3.48𝐸 − 01 3.46𝐸 − 01 0.60% 4.01𝐸 − 01 4.00𝐸 − 01 0.33%
0.9 3.37𝐸 − 01 3.35𝐸 − 01 0.68% 3.98𝐸 − 01 3.96𝐸 − 01 0.36%
1 3.42𝐸 − 01 3.39𝐸 − 01 0.75% 4.12𝐸 − 01 4.10𝐸 − 01 0.39%
1.1 3.56𝐸 − 01 3.53𝐸 − 01 0.80% 4.35𝐸 − 01 4.33𝐸 − 01 0.40%
1.2 3.71𝐸 − 01 3.68𝐸 − 01 0.83% 4.59𝐸 − 01 4.57𝐸 − 01 0.41%
1.3 3.86𝐸 − 01 3.82𝐸 − 01 0.85% 4.80𝐸 − 01 4.78𝐸 − 01 0.42%
1.4 3.95𝐸 − 01 3.92𝐸 − 01 0.87% 4.93𝐸 − 01 4.91𝐸 − 01 0.43%
1.5 3.98𝐸 − 01 3.95𝐸 − 01 0.87% 4.98𝐸 − 01 4.96𝐸 − 01 0.43%

Table 4: The relative errors of the lower and upper bounds of variance of the frequency response amplitude along the line of 𝑦 = 0.5m.

Coordinate (m) Lower bounds Upper bounds
Monte Carlo PCRS Relative errors (%) Monte Carlo PCRS Relative errors (%)

0 1.13𝐸 − 03 1.12𝐸 − 03 0.54% 2.03𝐸 − 03 2.08𝐸 − 03 2.22%
0.1 1.10𝐸 − 03 1.09𝐸 − 03 0.60% 1.98𝐸 − 03 2.02𝐸 − 03 2.16%
0.2 1.02𝐸 − 03 1.01𝐸 − 03 0.79% 1.82𝐸 − 03 1.85𝐸 − 03 1.97%
0.3 9.16𝐸 − 04 9.05𝐸 − 04 1.11% 1.59𝐸 − 03 1.61𝐸 − 03 1.62%
0.4 8.01𝐸 − 04 7.89𝐸 − 04 1.54% 1.33𝐸 − 03 1.35𝐸 − 03 1.07%
0.5 7.04𝐸 − 04 6.90𝐸 − 04 2.00% 1.11𝐸 − 03 1.11𝐸 − 03 0.34%
0.6 6.38𝐸 − 04 6.23𝐸 − 04 2.36% 9.49𝐸 − 04 9.44𝐸 − 04 0.45%
0.7 5.99𝐸 − 04 5.84𝐸 − 04 2.48% 8.52𝐸 − 04 8.43𝐸 − 04 1.07%
0.8 5.62𝐸 − 04 5.49𝐸 − 04 2.29% 7.91𝐸 − 04 7.80𝐸 − 04 1.37%
0.9 5.12𝐸 − 04 4.99𝐸 − 04 2.52% 7.39𝐸 − 04 7.29𝐸 − 04 1.37%
1 4.53𝐸 − 04 4.40𝐸 − 04 2.71% 7.03𝐸 − 04 6.95𝐸 − 04 1.18%
1.1 4.02𝐸 − 04 3.90𝐸 − 04 2.91% 6.94𝐸 − 04 6.88𝐸 − 04 0.88%
1.2 3.67𝐸 − 04 3.56𝐸 − 04 3.14% 7.09𝐸 − 04 7.05𝐸 − 04 0.56%
1.3 3.47𝐸 − 04 3.36𝐸 − 04 3.33% 7.35𝐸 − 04 7.32𝐸 − 04 0.32%
1.4 3.38𝐸 − 04 3.26𝐸 − 04 3.46% 7.57𝐸 − 04 7.56𝐸 − 04 0.17%
1.5 3.35𝐸 − 04 3.23𝐸 − 04 3.50% 7.66𝐸 − 04 7.65𝐸 − 04 0.12%

The finite element mesh of the cavity and boundary condi-
tions are shown in Figure 10. The finite element model of the
acoustic cavity consists of 152 eight-node quadrilateral acous-
tic elements with a total of 533 nodes. A unit point sound
source excitation is placed at Node 432 (0.9123m, −0.4905m)
and the pressure responses of Node 434 (1.3975m, 0.15522m)
and Node 519 (0.68246m, −0.48195m) are assumed to be
measured. Three boundaries are covered with three different
absorbers. Due to the unpredictability of environment tem-
perature, the air density and the sound speed are assumed
as random variables which follow the uniform distribution.
Because of manufacturing errors and measurement errors,

the admittance coefficients of the three different absorbers
are considered as the interval parameters. These parameters
are assumed to be independent of each other. The random
parameters and interval parameters are listed in Table 5.

The proposedmethod is adopted to calculate the acoustic
frequency response of the sedan passenger compartment. In
the implementation of the direct MCS method, the number
of sampling points for interval parameters is chosen as 5×103,
and the size of collocation points for random parameters
is chosen as 103. Figures 11–14 depict the lower and upper
bounds of expectation and variance of the frequency response
amplitude at nodes𝑅1 and𝑅2 in the frequencies ranging from
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Figure 4: The lower and upper bounds of the response probability density of node 𝑅1 calculated by (a) MCS and (b) PCRS.
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Figure 5: The lower and upper bounds of the response probability density of node 𝑅2 calculated by (a) MCS and (b) PCRS.

10Hz to 200Hz. It can be seen that the results obtained by the
proposed method are close to the results yielded by the MCS
method. Neglecting the variation of admittance coefficients
of the absorbers, when the ranges of sound speed 𝑐 and
air density 𝜌 are assumed to be those listed in Table 5,
the eigenfrequencies in the frequency band 𝑓 = 5–200Hz
are located in frequency ranges 𝑓 = 70.84–75.22Hz,
𝑓 = 100.94–107.18Hz, 𝑓 = 124.00–131.66Hz, 𝑓 =
150.63–159.94Hz, and 𝑓 = 172.33–182.99Hz, respectively.
From Figures 11 and 12, it can be found that the intervals
of expectation of the frequency response are insensitive to
the uncertainties of the absorbing material coefficients in the

frequency band except the frequencies around the eigenfre-
quencies. It can be seen from Figures 13 and 14 that the uncer-
tainties of the absorbing material coefficients have significant
effect on the intervals of variance of the frequency response
around the eigenfrequencies. It indicates that a small variance
of the absorbing material coefficients may result in a tremen-
dous change in the acoustic frequency response around
the eigenfrequencies, which will produce large variance.
Besides, the intervals of variance of the frequency response
are more sensitive to the uncertainties of the absorbing
material coefficients than the intervals of expectation of the
frequency response.
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Table 5: Characteristics of the uncertain parameters of the 2D car cavity.

Parameters 𝑐 (m/s) 𝜌 (kg/m3) 𝐴
1
(m/s/Pa) 𝐴

2
(m/s/Pa) 𝐴

3
(m/s/Pa)

Values 𝑈(329.8, 350.2) 𝑈(1.1495, 1.2705) [0.00186, 0.00214] [0.00279, 0.00321] [0.00372, 0.00428]
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Figure 6:The lower and upper bounds of variance of the frequency
response amplitude at uncertain level 5%.
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Figure 7:The lower and upper bounds of variance of the frequency
response amplitude at uncertain level 10%.

Based on (47), the MCS method with 5 × 103 sampling
points for interval parameters and 103 collocation points for
random parameters can be used to compute the intervals
of PDF of the response. The direct MCS with total 5 × 106
samples based on the original numerical model is used as
the referenced solution. The lower and upper bounds of
the response PDF at node 𝑅1 and node 𝑅2 using the direct
MCS and the PCRS are plotted in Figures 15 and 16. It can
be seen that the overall shapes of the probability distribution
mapped by the PCRSmethodmatchwell with the directMCS
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Figure 8:The lower and upper bounds of variance of the frequency
response amplitude at uncertain level 15%.
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Figure 9:The lower and upper bounds of variance of the frequency
response amplitude at uncertain level 20%.

results, and the intervals of the PDF obtained by the PCRS
have reasonable accuracy compared to the directMCS results.

7. Conclusion

The aim of the current study is to propose a new uncertain
method for uncertain propagation in acoustic system with
hybrid parameters. In the proposed method, the polynomial
chaos expansion method is employed to treat the random
parameters, and the response surface method is used to deal
with the interval parameters. Based on the PCRS model,
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Figure 11: The lower and upper bounds of expectation of the frequency response amplitude at node 𝑅1 calculated by PCRS and MCS in the
frequency band 𝑓 = 10∼200Hz.

PCRS (lower)
PCRS (upper)

MCS (lower)
MCS (upper)

Frequency (Hz)

Ex
pe

ct
at

io
n 

of
 th

e f
re

qu
en

cy
re

sp
on

se
 am

pl
itu

de
 (P

a)

20 40 60 80 100 120 140 160 180 200

101

100

10−1

10−2

Figure 12: The lower and upper bounds of expectation of the frequency response amplitude at node 𝑅2 calculated by PCRS and MCS in the
frequency band 𝑓 = 10∼200Hz.
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Figure 13: The lower and upper bounds of variance of the frequency response amplitude at node 𝑅1 calculated by PCRS and MCS in the
frequency band 𝑓 = 10∼200Hz.
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Figure 14: The lower and upper bounds of variance of the frequency response amplitude at node 𝑅2 calculated by PCRS and MCS in the
frequency band 𝑓 = 10∼200Hz.

the lower and upper bounds of expectation and variance of
response of the acoustic field with hybrid parameters can
be efficiently evaluated by the interval analysis method. It
is noted that this method is a nonintrusive method, in the
sense that no modification to the deterministic governing
system equations is required, which can be employed to solve
black-box-type problems. The proposed method can also be
applied to the other fields, such as structural-acoustic field,
structure dynamic field, reliability, and robust design field and
optimization field.

Two numerical examples are used to evaluate the perfor-
mance of the PCRS method. The direct MCS method based
on the original numerical method is implemented to validate
the results obtained by the proposed method. The numerical
results show that the PCRS method solutions match well
with those yielded by the direct MCS method. Furthermore,

the computational effort of the PCRS method is significantly
lower than that of the direct MCS method.

However, it should be pointed out that the proposed
method has its own limitations. The efficiency of the pro-
posed method decreases as the number of random variables
increases. To overcome this limitation, some efficient poly-
nomial chaos methods can be introduced as a substitute
for the generalized polynomial chaos in our future research.
Additionally, in order to achieve more accurate results for
the uncertain problems with hybrid uncertainties, other opti-
mization methods or subinterval theory can be employed,
which is our ongoing research.
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Figure 15: The lower and upper bounds of the response probability density of node 𝑅1 calculated by (a) MCS and (b) PCRS.
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Figure 16: The lower and upper bounds of the response probability density of node 𝑅2 calculated by (a) MCS and (b) PCRS.
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