
Research Article
Railway Wheel Flat Detection Based on Improved Empirical
Mode Decomposition

Yifan Li,1 Jianxin Liu,2 and Yan Wang1

1Department of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, China

Correspondence should be addressed to Yifan Li; liyifan@home.swjtu.edu.cn

Received 6 November 2015; Revised 26 February 2016; Accepted 15 March 2016

Academic Editor: Sakdirat Kaewunruen

Copyright © 2016 Yifan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study explores the capacity of the improved empirical mode decomposition (EMD) in railway wheel flat detection. Aiming
at the mode mixing problem of EMD, an EMD energy conservation theory and an intrinsic mode function (IMF) superposition
theory are presented and derived, respectively. Based on the above two theories, an improved EMD method is further proposed.
The advantage of the improved EMD is evaluated by a simulated vibration signal. Then this method is applied to study the axle box
vibration response caused bywheel flats, considering the influence of both track irregularity and vehicle running speed on diagnosis
results. Finally, the effectiveness of the proposed method is verified by a test rig experiment. Research results demonstrate that the
improved EMD can inhibit mode mixing phenomenon and extract the wheel fault characteristic effectively.

1. Introduction

Wheel flat is the most common local surface defect in railway
wheels. It can result in cyclic wheel-rail impact during the
running process and cause coupled vibration in the entire
vehicle-track system [1]. Wheels with this fault affect the
running safety significantly and cause further damage to the
wheels and rails. Consequently, it is of great interest among
researchers to find out effective methods for early detection
and identification of wheel flats.

Large volume of methods has been developed over the
decades for this purpose. There is a common way to detect
wheel flats, which is the measurement of wheel-rail impact
forces in an instrumented rail [2–4]. Acceleration sensors are
also fixed on the rail instead of strain gauges or fiber Bragg
grating to measure rail vibration [5, 6]. Apart from the above
methods, some optical, mechanical, and supersonic systems
are also attempted to apply in the identification of wheel flat.

The aforementioned monitoring methods are all arrang-
ing transducers on or nearby the track; thus, they are
incapable of real-time detection of the vehicle running state
in the entire process. On-board monitoring techniques are

increasingly becoming popular in an attempt to improve the
quality and efficiency of vehicle condition monitoring and
fault diagnosis. If sensors can be installed on the vehicles, the
deficiencies of wayside monitoring can be overcome.

Specially adapted wheels are employed tomeasure wheel-
rail forces during train motion [7]. The drawback of the
instrumented wheel-set is the work volume required for its
preparation, including the tedious calibration process and
specific design of the instrumented wheels based on different
vehicles. Therefore, this technology is hard to generalize.
Axle box acceleration signals are a measure of the wheel in
the vehicle-track system and are excited during wheel-rail
interaction. Therefore, they can indicate irregularities at the
wheel-rail interface. Some measurement systems have been
designed based on this idea to diagnose track defects [8–
11]. Similarly, axle box acceleration is utilized to automati-
cally detect wheel defects [12, 13]. A significant advantage
of using axle box acceleration measurement is its ease of
implementation and maintenance in trains with lower cost.
In this paper, we present a detection method for wheel flats
based on the measurement of axle box vibration by installed
accelerometers.
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However, the vibration signals of axle box are always
contaminated by various interferences, such as track irreg-
ularity, vehicle speed alteration, and noise. Moreover, many
of the vibrations are also excited by normal wheel-rail rolling
contact. Therefore, it is a challenging problem to accurately
extract the fault relevant characteristic from raw vibration
signal in wheel fault diagnosis using axle box acceleration.

The use of intelligent methods to enhance the quality of
the signals has been crucial for railway wheel fault diagnosis.
Short time Fourier transform and wavelet transform are
employed in [12, 13]. However, both of the methods possess
common theoretical flaws. Regardless of how data change,
the same basic functions are used for approximation; when
the preselected window or basic function does not match
the characteristic of the raw signals, incorrect analysis results
may occur. EMD is an adaptive signal analysismethod, which
does not require predetermined basic function [14]. It can
be applied to the extraction of nonlinear and nonstationary
characteristic of axle box vibration response. However, mode
mixing is a significant drawback of EMD, which implies
that either a single IMF consists of signals with dramatically
disparate scales or a signal of the same scale appears in
different IMF components [15]. Aiming to solve this problem,
ensemble EMD (EEMD) is put forward by Wu and Huang
[16] and this technology is widely used in mechanical fault
diagnosis [17, 18]. However, EEMD tolerates the residue noise
of the signal reconstruction [19]. Therefore, in the present
paper, an energy conservation principle of EMD and an
IMF superposition principle are proposed for the purpose
of eliminating the mode mixing problem and extracting the
potential fault information of wheel flat.

The rest of this paper is organized as follows. Section 2
proposes energy conservation principle and IMF superpo-
sition principle to eliminate mode mixing of EMD. The
improved EMD method and the advantages of it over the
EEMD are demonstrated in Section 3. Sections 4 and 5
apply the improved EMD method to wheel flat detection
in simulated vehicle operation situations and the test rig
experimental situation, respectively. Conclusions are given in
Section 6.

2. A Mode Mixing Eliminating Method

In order to eliminate mode mixing phenomenon, an energy
conservation principle of EMD and an IMF superposition
principle are proposed and derived.

2.1. EMD Energy Conservation Principle. For a time series
𝑥(𝑡), the local maxima are connected by a cubic spline as
the upper envelope 𝑢(𝑡) and the local minima are similarly
connected as the lower envelop V(𝑡). The local mean 𝑚(𝑡) of
the two envelopes is

𝑚(𝑡) =

[𝑢 (𝑡) + V (𝑡)]
2

. (1)

The difference between 𝑥(𝑡) and𝑚(𝑡) is given by

ℎ
1
(𝑡) = 𝑥 (𝑡) − 𝑚 (𝑡) . (2)

ℎ
1
(𝑡) is approximately the first IMF. However, it may not

meet the requirements of IMFs [14].Therefore, ℎ
1
(𝑡) has to be

processed again as a new time series as (1) and (2). The new
mean𝑚
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(𝑡) .

(3)

ℎ
2
(𝑡) is again treated as a new time series, and the process,

referred to as “sifting,” is repeated many times until the
number of zero crossings of ℎ

𝑖
(𝑡) is equal to the number of

extrema or different atmost 1.The first IMF 𝑐
1
(𝑡) is designated

as

𝑐
1
(𝑡) = ℎ

𝑖
(𝑡) . (4)

Once 𝑐
1
(𝑡) is determined, the residue 𝑟

1
(𝑡) can be obtained

by separating 𝑐
1
(𝑡) from the raw time series; that is,

𝑟
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(𝑡) = 𝑥 (𝑡) − 𝑐

1
(𝑡) . (5)

By taking the residue 𝑟
1
(𝑡) as a new data and repeating the

above steps, the second IMF component is obtained:

𝑟
2
(𝑡) = 𝑟

1
(𝑡) − 𝑐

2
(𝑡) = 𝑥 (𝑡) − 𝑐
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(𝑡) . (6)

If 𝑐
𝑖
(𝑡) or 𝑟

𝑖
(𝑡) is smaller than a predetermined value or

𝑟
𝑖
(𝑡) becomes a monotone function, the sifting process is

stopped. A series of IMFs can be obtained:

𝑥 (𝑡) =

𝑛−1

∑

𝑖=1

𝑐
𝑖
(𝑡) + 𝑟 (𝑡) . (7)

The IMFs 𝑐
𝑖
(𝑡) are nearly monocomponent signals in

theory, which range from high frequency to low frequency.
Based on the completeness and orthogonality theory of EMD
[14], the energy of the signal 𝑥(𝑡) is constant before and after
decomposition in theory, which can be expressed as follows:
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(8)
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In (8), if IMF 𝑐
𝑘
(𝑡) obtained by EMD is not a real mode

component, then, after removing 𝑐
𝑘
(𝑡) from 𝑥(𝑡), the total
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(9)

Comparing with (8) and (9), the signal energy may
change if an IMF is nonorthogonal. To check the orthogo-
nality of the IMFs, Huang et al. [14] form the square of signal
𝑥(𝑡) as

𝑥
2
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inwhichwe have included 𝑟(𝑡) in (7) as an additional element.
If the decomposition is orthogonal, the cross terms given in
the second part on the right-hand side should be zero. In
reality, on account of the finite data length, some IMFs are not
orthogonal. Suppose that 𝑑

𝑘
(𝑡) is the orthogonal component

in theory. 𝑒
𝑘
(𝑡) is the error between 𝑑
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Substitute (11) into (9):
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(12)

In the derived process of (12), 𝑥(𝑡) and 𝑒
𝑘
(𝑡) are

nonorthogonal; thus ∫∞
−∞

𝑥(𝑡)𝑒
𝑘
(𝑡) = 0. Therefore, the third

row in (12) can be obtained from the second row. Analysis for
other components is similar.

Equation (12) shows that the signal energy remains
unchanged before and after decomposition when the decom-
position results are all orthogonal components; namely, at
this time, 𝑒(𝑡) = 0, 𝐸

𝑒𝑘
= 0, and 𝐸

𝑦
= 𝐸
𝑥
. If some of

the decomposition results are not orthogonal components,
the decomposition results disobey the energy conservation
principle and the energy increases after decomposition;
namely, at this time, 𝑒(𝑡) ̸= 0, 𝐸

𝑒𝑘
> 0, and 𝐸

𝑦
> 𝐸
𝑥
.

According to the above analysis, signal energy can be used
as a criterion to evaluate the decomposition effectiveness of
EMD.

2.2. IMF Superposition Principle. Some of the IMFs obtained
by EMD are false mode components. In order to eliminate
those IMFs and reserve intrinsic mode components, the
property of false mode components is illustrated. Here a
typical simulated signal 𝑦(𝑡) = cos(2𝜋220𝑡) is employed.
The sampling frequency of signal 𝑦(𝑡) is 1024Hz and the
sampling number is 500. EMD decomposition results and
their corresponding Fast Fourier Transform (FFT) spectrum
are shown in Figures 1 and 2, respectively.

There should be only one IMF obtained after EMD
decomposition in theory, while two IMFs emerge in Figure 1.
As a result, EMD decomposition produces a false mode
component (IMF2) and IMF1 has been polluted at the same
time. The above decomposition process can be described as

𝑦 (𝑡) = imf
1
(𝑡) + imf

2
(𝑡) . (13)

IMF1 contains raw signal 𝑦(𝑡) and decomposition error
𝑒(𝑡); IMF2 is a falsemode component, which can be expressed
as 𝑓(𝑡). Therefore, (13) can be written as

𝑦 (𝑡) = 𝑦 (𝑡) + 𝑒 (𝑡) + 𝑓 (𝑡) . (14)

From (14) we know that the amplitude of the false mode
component equals the decomposition errors hidden in the
IMFs, but the direction is opposite:

𝑒 (𝑡) = −𝑓 (𝑡) . (15)

The energy of raw signal 𝑦(𝑡) equals

𝐸
𝑟
= ∫

∞

−∞

𝑦
2
(𝑡) 𝑑𝑡 = ∫
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(𝑡)]
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2
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2

2
(𝑡)

+ 2 imf
1
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2
(𝑡)] 𝑑𝑡 = ∫
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−∞
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2
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2
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= ∫

∞

−∞

[imf
1

2
(𝑡) + imf

2

2
(𝑡) − 2𝑓

2
(𝑡)] 𝑑𝑡.
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Figure 1: EMD decomposition results of 𝑦(𝑡).
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Figure 2: FFT spectrum of the signal presented in Figure 1.

The energy of the signal after decomposition is

𝐸
𝑑
= ∫

∞

−∞

[imf
1

2
(𝑡) + imf

2

2
(𝑡)] 𝑑𝑡. (17)

In (16), imf
1
(𝑡) is a real mode component, whereas

imf
2
(𝑡) is a false mode component. When the real mode

component imf
1
(𝑡) is added to the false mode component

imf
2
(𝑡), the total energy 𝐸

𝑟
of imf

1
(𝑡) + imf

2
(𝑡) would be less

than the sum of the energy 𝐸
𝑑
of imf

1
(𝑡) and imf

2
(𝑡). At this

time, 𝑓(𝑡) > 0. That is to say, if a false mode component
is added to a real mode component, the energy of this new
signal would be less than the sum of false mode component’s
energy and real mode component’s energy.

Therefore, according to this property, the false mode
component can be picked out easily. What is more, from (16)
and (17), we know that 𝐸

𝑟
< 𝐸
𝑑
, which is consistent with the

viewpoint in Section 2.1.

2.3.The Procedure of Removing FalseMode Components. This
paper presents a novel approach that detects and eliminates
false mode components based on Sections 2.1 and 2.2. The
proposed approach is summarized as follows.

Step 1. Detect the IMFs according to energy conservation
principle. If 𝐸2

𝑥
< ∑
𝑛

𝑖=1
𝐸
2

𝑥𝑖
, which means part of IMFs

are nonorthogonal and false mode components exist, the
decomposition results should be checked further.

Step 2. The cross-correlation coefficient between each IMF
and the original signal is calculated. The IMF 𝑐

𝑖
(𝑡) with the

maximum cross-correlation coefficient is selected as a real
mode component.

Step 3. If the 𝑗th mode component 𝑐
𝑗
(𝑡) is added to 𝑐

𝑖
(𝑡)

in the time domain, the total energy decreases; that is,

𝐸
2

𝑐𝑖+𝑐𝑗
< 𝐸
2

𝑐𝑖
+ 𝐸
2

𝑐𝑗
, where 𝑐

𝑗
(𝑡) is judged as a false mode com-

ponent. Otherwise, 𝑐
𝑗
(𝑡) is judged as a real mode component.

Step 4. False mode components are subtracted from the
original signal. And then conduct EMD again.

Stop Criterion. All false mode components have been elimi-
nated.

3. The Improved EMD Method and Validation

3.1. The Improved EMD Method. Based on the research
findings in Section 2, the work steps of improved EMD
method are depicted in Figure 3.

Firstly, mathematical morphology filtering is conducted
for the purpose of eliminating noises and interferences.
Mathematical morphology filtering is a nonlinear signal
processing technique based on set theory [20].Themain idea
of morphology filtering can be described as follows: it treats
signal as a set and selects a smaller set called structure element
to modify signal geometric shape for removing noise and
extracting useful information [21].

Secondly, the filtered signal is decomposed by EMD.
Furthermore, the false mode components are eliminated by
the method proposed in Section 2.3. After this operation, the
IMFs are all real mode components, which can greatly clean
the signal and highlight fault characteristic more clearly.

Next, an IMF which is more sensitive to fault character-
istic is selected according to [18]. The details of the selection
process proposed in [18] are summarized as follows:

(1) Calculate the correlation coefficient 𝑢
𝑛
between the

𝑛th IMF and the filtered results of a faulty signal 𝑠
𝑓
(𝑡).
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Figure 3: Flow chart of the improved EMDmethod.

(2) Calculate the correlation coefficient 𝛽
𝑛
between the

𝑛th IMF and the filtered results of a normal signal
𝑠
𝑛
(𝑡).

(3) Define and calculate the fault-related coefficient 𝜂
𝑛

by combining the above two kinds of correlation
coefficients 𝑢

𝑛
and 𝛽

𝑛
:

𝜂
𝑛
= 𝑢
𝑛
− 𝛽
𝑛
. (18)

(4) Define and calculate the sensitivity factor 𝜆
𝑛
of IMFs

of the signal 𝑠
𝑓
(𝑡) by normalizing 𝜂

𝑛
according to the

following equation:

𝜆
𝑛
=

𝜂
𝑛
−min (𝜂)

max (𝜂) −min (𝜂)
, 𝜂 = {𝜂

𝑛
} . (19)

(5) Rank all the IMFs of the signal 𝑠
𝑓
(𝑡) in terms of their

sensitivity factors from large to small; the IMF with
the biggest sensitivity factor is selected as sensitive
IMF.

Finally, FFT spectrum of the sensitive IMF selected is
obtained.The fault can be detected based on the characteristic
frequencies in FFT spectrum.

3.2. Method Verification. A simulated signal 𝑧(𝑡) is formu-
lated as follows to verify the advantage of the improved EMD
method:

𝑧 (𝑡) = 𝑧
1
(𝑡) + 𝑧

2
(𝑡) + 𝑧

3
(𝑡) , (20)
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Figure 4: The simulated signal 𝑧(𝑡).

where 𝑧
1
(𝑡) is the sum of two harmonic waves 𝑧

1
(𝑡) =

sin(2𝜋𝑡) + cos(4𝜋𝑡); 𝑧
2
(𝑡) is a pulse interference with ampli-

tude 1 in time 0.88 s and 2.10 s; 𝑧
3
(𝑡) is the Gaussian noise.

The signal-to-noise ratio (SNR) of signal 𝑧(𝑡) is 16 dB, and
the sample frequency is 100Hz. The time evolution of this
simulated signal is shown in Figure 4.

The synthesized signal is processed by a multiscale mor-
phological filter with a flat structure element. The denoised
signal is then decomposed using EMD and the IMFs are
shown in Figure 5, fromwhich themodemixing still exists in
the IMFs. The cause of mode mixing mainly comes from the
pulse signal of 𝑧

2
(𝑡), which greatly changes the distribution of

extreme points.
On the basis of IMF superposition principle, we find

that IMF1 and IMF6 in Figure 5 are false mode components.
Subtract them from the filtered signal and execute EMD
again; the results are shown in Figure 6. It reflects that the
two harmonic components contained in the original signal
are decomposed into two IMFs perfectly, where the third IMF
denotes the 2Hz cosine signal and the fourth IMF indicates
the 1Hz sine signal.

Different from the practical application in railway wheel
flat detection, a vibration signal with a healthy wheel exists;
the example in Section 3.2 does not have a reference signal;
thus the penultimate step in the flow chart of improved EMD
method presented in Figure 3 is ignored. IMF3 and IMF4 in
Figure 6 are selected as the characteristic IMFs according to
the prior knowledge and theirHilbert spectrums are shown in
Figure 7. FromFigure 7, the characteristic frequencies of 2Hz
and 1Hz are clearly detected. Therefore, the improved EMD
method is able to solve mode mixing problem and achieves
an improved decomposition.

EEMD is employed to analyze the simulated signal
𝑧(𝑡) for comparing. Firstly, the recommended parameters
of EEMD [16] are used: the ensemble number is 100; the
standard deviation of the added noise is 0.2 times the
standard deviation of the raw signal. Quite contrary towhat is
expected, IMFs do not imitate the two harmonic components
of synthesized signal. The mode mixing is occurring. Due to
space limitation, this result is not shown.
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Figure 5: EMD decomposition results of the filtered signal.

Zhang et al. [22] pointed out that EEMD would present
a better result when the SNR between the raw signal and the
noise added is within the range of 50–60 dB. Therefore, the
simulation signal in Figure 4 is decomposed using EEMD
with the ensemble number 100 and the standard deviation
of the added noise changes into 0.0017 times the standard
deviation of the raw signal 𝑧(𝑡) (SNR = 54.75 dB). Figure 8
shows the first six IMFs extracted using this procedure. It can
be seen that the mode mixing phenomenon still exists. The
characteristic frequencies of 2Hz and 1Hz cannot be detected
accurately. Correspondingly, the two harmonic frequencies
are partly lost from the Hilbert spectrum shown in Figure 9.

From Figures 6–9 we can conclude that the improved
EMD method provides better performance than EEMD for
analyzing the simulated signal 𝑧(𝑡) presented in (20). What
is more, the effectiveness of EEMD greatly relies on the
parameter selection and the SNR criterion proposed by
Zhang et al. [22] may not be proper for analyzing all signals
[23, 24]. But the improved EMD, with no parameters needed
to be defined beforehand, is totally adaptive.

4. Simulated Model Analysis

4.1. Vehicle-Track Coupling Dynamics Model. A model has
been developed based on multibody dynamics theory, which

includes the lateral, vertical, and longitudinal coupling
dynamics of vehicle and track.Themodel includes 1 car body,
2 bogie frames, 8 axle boxes, and 4 wheel-sets. Both the car
body and bogie frame have 6 degrees of freedom, whereas the
axle box only has 1 in the vertical direction. Onewheel-set has
6 degrees of freedom, inwhich the rolling and vertical degrees
of freedom are dependent. The system has 15 rigid bodies, 42
independent degrees of freedom, and 8 dependent degrees of
freedom.The nonlinear relationship of the wheel-rail contact
is considered. Because only the vertical vibration of axle box
is used for fault diagnosis of wheel flat, here the vehicle system
dynamic equation is written as follows:

𝑀�̈� + 𝐶�̇� + 𝐾𝑞 = 𝑓 (�̈�, 𝑞, 𝑡) + 𝐺𝑒, (21)

where 𝑀, 𝐶, and 𝐾 are the mass, damping, and stiffness
matrices of the vehicle model, respectively;𝑓 is the nonlinear
force element; 𝐺 is the input distribution matrix of track
excitation; 𝑒 is track irregularity input; 𝑞, �̇�, and �̈� are vertical
displacement, velocity, and acceleration, respectively; and 𝑡 is
time. The details for this model can be seen also in [25].

Thewheel flatmodel in [26, 27] is equivalent to the knock-
on effects of the low-orbit joint; namely, the wheel-rail impact
caused by awheel flat is calculated by treating the wheel flat as
a periodic track irregularity, which achieved suitable results.
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Figure 6: Improved EMD analysis results of the simulated signal 𝑧(𝑡).
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The same method is adopted in this study to calculate the
impact response.

4.2. Detection of Wheel Flat. Axle box vertical vibration
response of the vehicle with a flat wheel is calculated and
shown in Figure 10. The conditions are as follows: the sample
frequency is 1000Hz; the sampling number is 2000; the
wheel flat length is 10mm; vehicle running speed is 100 km/h;
and the track irregularity is the American fifth-grade track
irregularity. The wheel diameter is 0.88m; thus the fault
frequency of wheel flat is 10Hz.

The improved EMD is employed to process the vibration
signal shown in Figure 10. Figure 11 illustrates the character-
istic IMF selected and its FFT spectrum. Figure 11(b) suggests
that the fault frequency of 10Hz is clearly detected.Therefore,
the improved EMD method is effective to identify wheel flat
fault.

The EEMDanalysis results are presented in Figure 12.The
standard deviation of the noise added is set to 0.0017 times the
standard deviation of the raw signal (SNR = 53.20 dB). As
shown in Figure 12(b), the wheel flat impulsive characteristic
frequency of 10Hz is detected, but the interference is also
severe comparing with Figure 11(b). One reason of EEMD
getting acceptable analysis result is that the raw signal in
Figure 10 is relatively simpler, as the impulsive features can
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Figure 8: EEMD analysis results of the simulated signal 𝑧(𝑡).
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be seen directly in time domain. When the operation cir-
cumstance becomes more complicated, the detection ability
of EEMDmay not be as good as this.
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Figure 10: The axle box vibration signal.

4.3. Influence of Track Irregularity. Vehicle vibration status
is largely influenced by the geometrical parameter of tracks.
Different track conditions vary the vibration response of axle
box, which disturbs wheel flat detection and diagnosis. This
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Figure 11: Analysis results of the signal presented in Figure 10 by improved EMD: (a) the characteristic IMF and (b) FFT spectrum.

−15

0

15

0.0 0.5 1.0 1.5 2.0
Time t (s)

Ac
ce

le
ra

tio
n
a

(m
·s−

2
)

(a) The characteristic IMF selected

0

1

2

3

0 10 20 30 40
Frequency f (Hz)

Ac
ce

le
ra

tio
n
a

(m
·s−

2
)

(b) Frequency spectrum

Figure 12: Analysis results of the signal presented in Figure 10 by EEMD: (a) the characteristic IMF and (b) FFT spectrum.
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Figure 13: The influence of track irregularity.

simulation adopts another track irregularity, the American
third-grade track irregularity, for analyzing the influence
of track irregularity on wheel flat detection. The other
parameters are similar to those in Section 4.2.

Figure 13 shows the time history of the axle box vertical
acceleration in this case. Because the track condition of the
American third-grade track irregularity is worse than the
American fifth-grade track irregularity that is depicted in
Figure 10, the characteristic of the flat impact in the time
domain is nearly covered.

Figures 14(a) and 14(b) show the time domain and
frequency domain representation of the analysis results by
improved EMD method, respectively. Figure 14(a) indicates
that the proposed method can eliminate mode mixing
phenomenon, extract the impact characteristic, and remove
the noise. Therefore, the fault frequency of 10Hz is clearly
presented in Figure 14(b).

The EEMD analysis results are displayed in Figure 15.The
standard deviation of the added noise changes to 0.0015 times
the standard deviation of the raw signal; at this time the
SNR = 56.33 dB. From Figure 15(a) we can see that the width
of each shock is constantly changed and mode mixing still
exists, which result in wheel flat fault feature losses of FFT
spectrum in Figure 15(b). The wheel flat fault frequency of
10Hz cannot be found clearly.

4.4. Influence of Speed. The increase in vehicle running speed
aggravates the impact amplitude and frequency of wheel flat.
The effect further increases the axle box vibration response.
The axle box acceleration is calculated with vehicle running
speeds of 200 km/h and other parameters similar to those
in Section 4.3 to examine the influence of vehicle running
speed on identification capability of improvedEMD.The time
domain vibration signal of axle box is displayed in Figure 16.
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Figure 14: Analysis results of the signal presented in Figure 13 by improved EMD: (a) the characteristic IMF and (b) FFT spectrum.
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Figure 15: Analysis results of the signal presented in Figure 13 by EEMD: (a) the characteristic IMF and (b) FFT spectrum.
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Figure 16: The influence of speed.

The sample frequency is 2000Hz and the sampling number
is 4000. The wheel flat fault frequency is 20Hz in theory on
account of the increase of speed.

Figure 17 illustrates the characteristic IMF selected by
improved EMD and its FFT spectrum. Based on Figure 17(b),
the impulsive frequency of 20Hz is clearly detected. There-
fore, improved EMD can identify wheel flat fault with
variations in speed accurately.

The EEMD process results are shown in Figure 18. The
standard deviation of the noise added is 0.0019 times the
standard deviation of the raw signal; at this time the SNR =

54.56 dB. FromFigure 18(b) we can see that although the fault
frequency 20Hz is roughly detected, it is heavily contami-
nated by interferences.

5. Test Rig Experiment

To validate the practicability of the proposed improved EMD,
a vehicle bench test is performed on the roller test rig.

5.1. Experimental Setup. The rolling stock field simulator
is shown in Figure 19. This field simulator can conduct
bench tests simulating on-track running conditionswith high
accuracy and also can be used to examine signs of faults that
are difficult to exam by test on tracks by setting faults in
bench tests. A single vehicle is set on rollers, which acts as
rail in the field simulator. The roller motion is provided by
servo hydraulic actuators; these actuators are controlled by a
digital controller which allows the inputs to follow defined
waveforms or measured track irregularity.

As indicated in Figure 19, an acceleration sensor is
installed on axle box. To reduce costs, a rubber block is
attached to the surface of the roller to simulate the impact
of wheel flat. The diameter of the roller is 1.8m.

5.2. Experimental Results. Figure 20 presents the time history
of the axle box vertical acceleration obtained through on-
site measurement.The vehicle running speed is 40 km/h.The
theoretically calculated wheel flat fault frequency is 2Hz.
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Figure 17: Analysis results of the signal presented in Figure 16 by improved EMD: (a) the characteristic IMF and (b) FFT spectrum.
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Figure 18: Analysis results of the signal presented in Figure 16 by EEMD: (a) the characteristic IMF and (b) FFT spectrum.

Figure 19: Experimental setup.
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Figure 20: Vibration waveform of test rig experiment at the speed of 40 km/h.
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Figure 21: Analysis results of the signal presented in Figure 20 by improved EMD: (a) the characteristic IMF and (b) FFT spectrum.
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Figure 22: Analysis results of the signal presented in Figure 20 by EEMD: (a) the characteristic IMF and (b) FFT spectrum.

The analysis results of the signal presented in Figure 20
are shown in Figure 21 by using improved EMD. There is a
favorablematch between the estimated features and the actual
fault features associated with the railway wheel with flat. This
indicates that the proposedmethod is effective to detectwheel
flat fault.

The EEMD analysis results are shown in Figure 22. The
standard deviation of the noise added is 0.0019 times the stan-
dard deviation of the raw signal (SNR = 55.66 dB). The fault
frequency 2Hz could be detected in the Fourier spectrum.
However, this dominating spectral line in Figure 22(b) has
nothing to do with the actual wheel fault. The time domain
curve in Figure 22(a) is most likely EEMD decomposition
residue rather than the periodic impulse caused by wheel flat.
The presence of a 2Hz frequency component in Figure 22(b)
is just a coincidence.

Another experiment is conducted in this test rig at the
speed of 100 km/h.The theoretically calculatedwheel flat fault
frequency is 4.9Hz. Figure 23 presents the time history and
spectrumof the axle box vertical acceleration in this situation.

Figure 24 depicts the analysis results generated by apply-
ing the proposed EMD and its spectrum. From Figure 24(b),
a fault frequency of 4.9Hz is clearly detected. Therefore, the
effectiveness of the proposed algorithm is validated.

Figure 25 shows the results produced by EEMD. The
standard deviation of the noise added is 0.0016 times the
standard deviation of the raw signal; at this time SNR =

55.95 dB. From Figure 25(b), the fault characteristic of wheel
flat cannot be detected.

In summary of Figures 20–25, with the help of the false
mode removing of EMD, the improved EMD algorithm leads
to better performance in terms of fault feature extracting, as
well as interference reduction.
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Figure 23: Vibration waveform of test rig experiment at the speed
of 100 km/h.

6. Conclusions

The composition of axle box vibration signal is very com-
plicated, which includes wheel vibration information, track
status information, axle box bearing vibration information,
and numerous interferences. Therefore, extracting the influ-
ential features from strong interference is a typical key issue
for vehicle wheel fault detection. In the present study, an
IMF superposition theory is derived, and an improved EMD
analysis method is developed to investigate the problem of
wheel flat fault diagnosis in railway vehicles.The effectiveness
of the proposed method is evaluated by simulated vibration
signals and an experimental vibration signal collected from a
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Figure 24: Analysis results of the signal presented in Figure 23 by improved EMD: (a) the characteristic IMF and (b) FFT spectrum.
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Figure 25: Analysis results of the signal presented in Figure 23 by EEMD: (a) the characteristic IMF and (b) FFT spectrum.

test rig. The results show that the improved EMD approach
can be used to detect the fault features of interest in complex
operating conditions that are invisible in EEMD.
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