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The mechanical model of an elasticity coupling 1-DOF system is proposed to implement synchronization; the simplified model is
composed of a rigid body, two induction motors, and a connecting spring. Based on the Lagrange equations, the dynamic equation
of the system is established. Moreover, a typical analysis method, the Poincare method, is applied to study the synchronization
characteristics, and the balanced equations and stability criterion of the system are obtained. Obviously, it can be seen that many
parameters affect the synchronous state of the system, especially the stiffness of the support spring, the stiffness of the connecting
spring, and the installation location of the motors. Meanwhile, choose a suitable stiffness of the connecting spring (k), which would
play a significant role in engineering. Finally, computer simulations are used to verify the correctness of the theoretical analysis.

1. Introduction

The synchronization phenomenon is often encountered in
nature, which is considered as an adjustment of rhythms of
oscillating objects due to their internal weak couplings [1].
For example, fireflies in flocks give off flashes of light with
the same frequency on a summer night; the synchronous
motion of space is established between the moon’s orbital
motion and its rotational motion; in order to achieve self-
synchronization in the asynchronous communication tech-
niques between the transmitter and the receiver, the two
sides must simultaneously send and receive information over
the same frequency and so forth. A general definition of
synchronization is given in [2], and Staden and Hattingh
proposed set-up describes synchronization of interconnected
systems with respect to a set of functionals and captures
peculiarities of both self-synchronization and controlled
synchronization [3]. However, among so many engineering
applications of self-synchronization, the dynamics of coupled
pendulums and rotors, the synchronization of mechanical
rotors, and the synchronization of modeling of nonlinearity
dynamics are the best representatives. For the dynamics
of coupled pendulums and rotors, Dutch scholar Huygens
firstly reported the synchronization phenomenon in 1665,

two pendulum clocks hanging the common base, and the
clocks exhibit synchronized motion in a short while [4].
Subsequently, Koluda et al. described the phenomenon of
synchronization of clocks hanging on a common movable
beam with the energy balance method and discovered how
the energy is transferred between the pendula via the oscil-
lating beam [5–7]. For the synchronization of mechanical
rotors, Blekhman, the scholar of the former Soviet Union,
proposed the Poincare method for the synchronization
characteristics and synchronization theory of the vibrating
machines [1]. Sperling et al. explored the synchronization
issues of the two-plane rigid-rotor autobalancing device with
numerical simulation results [8]. Balthazar et al. analyzed
the self-synchronization problem of nonideal exciters by
means of numerical simulations [9, 10]. Bangchun et al.
developed the average method to study the synchronization
of multiple unbalanced rotors [11]. Zhao et al. proposed the
average method of modified small parameters to explore
the synchronization characteristics of multiple unbalanced
rotors, and the process of solving the dynamic response is
reduced greatly [12–14]. For the synchronization of modeling
of nonlinearity dynamics, the dynamics and synchronization
of coupled electromechanical systems with both cubic and
quintic nonlinearities are analyzed by Ngueuteu et al. [15].
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Themodel of 1-DOF pendulums coupled with a weak spring,
“The Coupled Pendulums of the Kumamoto University,” is
proposed and Speed Gradient Energy method proposed by
Kumon et al. adopted designing the controller to control the
small input [16]. Fradkov and Andrievsky have put forward
the harmonic linearization technique applied to studying of
phase relations between coupled oscillators [17].

However, the synchronization of the model of 1-DOF
pendulums coupled with a weak spring is little investigated.
Therefore, this paper gives a further exploration of the
coupling characteristics with the Poincare method. Finally,
computer simulations are preformed to verify the results of
the theoretical computation.

The structure of the paper is as follows. The analysis
strategy and considered model are described in Section 2. In
Section 3, the balanced equations and the synchronization
stability criterion are deduced. In Section 4, the results of
numerical simulations and the computer simulations are
presented, which validates correctness of the theoretical
computations. Also, the existence of the connecting spring
has a number of potential applications in engineering. Finally,
the conclusions are given in Section 5.

2. Strategy and Model

2.1. Strategy. The dynamic equations of a generating rotation
system will be as follows [18]:
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𝜇 introduced the small parameter. 𝐽
𝑖
is the rotational inertia

of 𝑖th induction motors, 𝑀
𝑒𝑖
is the driving torque of 𝑖th

induction motors, and 𝑅
𝑒𝑖
is the mechanical damping torque

of 𝑖th inductionmotors. 𝜉
𝑥
and𝜔

𝑥
are the damping coefficient

and the natural frequency of the system in 𝑥-directions,
𝜑
𝑖
, 𝜑̇
𝑖
, 𝜑̈
𝑖
are the phase angle, mechanical rotational speed,

and the angular acceleration of the 𝑖th induction motors,
respectively. 𝑥, 𝑥̇, 𝑥̈ are the displacement, the speed, and the
average acceleration of the rigid vibrobody.

According to [1] and (1a) and (1b), the rotor synchronous
behavior of vibration system would be analyzed as the
following:

(1) In the synchronous state, the velocity of the rotors is
assumed as 𝜔. Steady forced vibrations with 𝑇 = 2𝜋/𝜔 are
determined by (i.e., (1b) is considering 𝜇 = 0):

𝑥 = 𝑥 (𝜔𝑡, 𝛼
1
, . . . , 𝛼

𝑘
) . (3)

Assuming the rotors are uniformly rotating with initial
phase 𝛼

1
, . . . , 𝛼

𝑘
, then the phase angle of rotors should satisfy

the synchronous solutions according to the second formula
(3):
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𝑖
) . (4)

(2) above-mentioned basic equation may accord with
such values of constants 𝛼

1
, . . . , 𝛼

𝑘
, which satisfy
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Here, the angle bracket ⟨∗⟩ shows the average value for
one period by the variable 𝑡, and symbol ∗ represents a
function related to time 𝑡:
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(7)

would have negative real parts; then a unique constants
value 𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑘
is determined when the parameter 𝜇 is

sufficiently small.Meanwhile there exists asymptotic periodic
solution of (1a) and (1b). The corresponding solution is
unstable only when a single root has a positive real part. For
the zero or imaginary roots, an additional analysis would
further be explored [1].

2.2. Model. The model of the coupling unit is shown in
Figure 1 in practical industrial application. Twomotors rotate
in same direction connected with the coupling unit, which
consists of a connecting rod, chutes, coupling springs, and
slide blocks. The chute, linked to the ends of the connecting
rod bywelding, should bemutually paralleled.The slide block
and the coupling springs are installed in the chutes. Besides,
the stiffness of the connecting rod is bigger than the coupling
spring and the connecting rod with smaller density.

Figure 2 describes the dynamics model of the vibration
system, which mainly consists of a rigid vibrobody 𝑚

0
[kg],

two motors 𝑚
𝑖
[kg] (for 𝑖 = 1, 2), and the coupling unit. The

two unbalanced rotors are driven by two induction motors.
The vibratory body is connected with an elastic foundation
through some stronger stiffness springs 𝑘

𝑥
, 𝑘
𝑦
, 𝑘
𝜓

[N/m]
in 𝑥-, 𝑦-, 𝜓-directions, which have negative effects on the
movement with damping constant 𝐶

𝑥
, 𝐶
𝑦
, 𝐶
𝜓
[N⋅s/m]. Con-

sidering the unbalanced rotor as a point mass, the distance
between the rotor and its own spin axes (𝑜

𝑖
) is denoted by 𝑟

𝑖

[m].The coupling unit is simplified as a linear spring 𝑘 [N/m],
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Figure 1: The model of the coupling unit.

which is installed in the same location of the two rotors, and
the distance between connection point and the spin axes (𝑜

𝑖
)

of the rotors is assumed as 𝑎 [m]. The mass-center of the
rigid frame is the point (𝑜

󸀠
), as illustrated in Figure 2(b), and

three-reference coordinate system of the vibration system is
designed as follows: the nonrotating moving frame 𝑜

󸀠
𝑥
󸀠
𝑦
󸀠 is

always parallel to the fixed coordinate frame 𝑜𝑥𝑦 in 𝑥-and
𝑦-directions, and the moving frame 𝑜

󸀠
𝑥
󸀠󸀠

𝑦
󸀠󸀠 swings around

the point (𝑜
󸀠
). The three-reference system of the vibrobodies

separately coincides with each other when the system is in the
static equilibrium state.

Since the rigid vibrobody is supported by the elastic
foundations, the vibration system exhibits three degrees of
freedom; the responses 𝑥, 𝑦 and the angular rotation 𝜓 of the
vibrating body are considered as independent coordinates.
The installation angle of 𝑖th motor is expressed by 𝛽

𝑖
[∘], and

the exciters also rotate around its own spin axes, which are
denoted by 𝜑

𝑖
[rad]. The exciters are steadily operating to

overcome the ambient damp constant 𝐶
𝑖
[N⋅s/m] (for 𝑖 =

1, 2); 𝑇
𝑚𝑖

, 𝑇
𝑓𝑖

(𝑖 = 1, 2) are the electromagnetism torque and
the load torque of 𝑖th exciter, respectively. For the calculation
to be greatly simplified, we assume 𝑀 [kg] is the total mass
of the vibration system and 𝐽 [kg⋅m2] is the general inertia,
𝑀 = 𝑚

0
+ ∑
2

𝑖=1
𝑚
𝑖
.

The expressions for the kinetic energy of the system can
be expressed as the following:
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2

𝑖
.

(8)

Besides, considering the distance of the co-rotating
induction motors is 𝑟 [m], and assuming the ration (𝑎/𝑟 ≪

1) is infinitesimally small, so, the elongation of the coupled
spring can be obtained:

Δℓ = ℓ − ℓ
0

= 𝑎 (cos𝜑
1

− cos𝜑
2
) . (9)

And the potential energy of the system can be written in
the following form:

𝑉 =
1

2
𝑘
𝑥
𝑥
2

+
1

2
𝑘
𝑦
𝑦
2

+
1

2
𝑘
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2
𝑘Δℓ
2
. (10)

In addition, the viscous dissipation function of the vibra-
tion system can be computed as

𝐷 =
1

2
𝐶
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2
𝐶
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2
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The dynamics equation of the system can be obtained by
the application of the Lagrange’s equations:

𝑑

𝑑𝑡

𝜕 (𝑇 − 𝑉)

𝜕𝑞̇
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If 𝑞 = [𝑥, 𝑦, 𝜓, 𝜑
1
, 𝜑
2
, 𝜑
3
]
𝑇 is chosen as the generalized

coordinates, the generalized forces are 𝑄
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and 𝑄
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. It can be seen that 𝑚
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in the system, and the inertia coupling from asymmetry of the
system can be neglected. Considering 𝑚

1
= 𝑚
2
, 𝑟
1
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2
. the

kinetic equation of the vibration system is derived as
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Figure 2: The model of the vibration system. (a) Dynamic model of the motors coupled with a weak spring and (b) the reference coordinate
system.

3. Method Description

3.1. Coupling Characteristics. According to the Poincare
method (i.e., based on the fundamental equations (1a) and
(1b)), introducing the small parameter 𝜇 into (13), owing to
the damping of the system being very small and the influence
of the small parameter which can be ignored, then a new form
of (13) is given:

𝑀𝑥̈ + 𝑘
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+ 𝑚
1
𝑟
1
ℓ
1

[𝜓̇
2 sin (𝜑

1
+ 𝛽
1

+ 𝜓)

− 𝜓̈ cos (𝜑
1

+ 𝛽
1

+ 𝜓)] − 𝑘𝑎
2

(cos𝜑
2

− sin𝜑
1
) sin𝜑

1
,

𝜇𝜑
2

= 𝑇
𝑚2

− 𝑇
𝑓2

− 𝑚
2
𝑟
2

[𝑥̈ sin𝜑
2

+ 𝑦̈ cos𝜑
2
]

+ 𝑚
2
𝑟
2
ℓ
2

[𝜓̇
2 sin (𝜑

2
+ 𝛽
2

+ 𝜓)

− 𝜓̈ cos (𝜑
2

+ 𝛽
2

+ 𝜓)] − 𝑘𝑎
2

(cos𝜑
1

− sin𝜑
2
) sin𝜑

2
.

(15)

Base on [14], when the two rotors synchronously rotate
𝜑̇
𝑖
= 𝜔
𝑚
, the electromagnetic torque can be linearized as

𝑇
𝑒𝑖

= 𝑛
𝑝

𝐿
2

𝑚𝑖
𝑈
2

𝑆𝑂

𝐿
𝑠𝑖
𝜔
𝑚

𝑅
𝑟𝑖

(𝜔
𝑠

− 𝑛
𝑝
𝜔
𝑚

) , (16)

where 𝐿
𝑚𝑖

and 𝐿
𝑠𝑖
are the mutual inductance and stator

inductance of the 𝑖th induction motor, respectively; 𝑛
𝑝
is the

pole numbers of induction motor; 𝜔
𝑚

is the synchronous
angular velocity;𝜔

𝑠
is the power supply frequency of the grid;

𝑅
𝑟𝑖
is rotor resistance of the 𝑖th induction motor; 𝑈

𝑆𝑂
is the

amplitude of the stator voltage.
Here, the effect of the small parameter (𝜇) can be

neglected. Introducing the following dimensionless param-
eters: the nature frequency is denoted by 𝜔

𝑥
, 𝜔
𝑦
, 𝜔
𝜑

in
𝑥-, 𝑦-, 𝜓-directions, respectively.The average angular velocity
of the oscillating screen motor is denoted by 𝜔

𝑚
. The

frequency ratios of the vibration system are denoted by
𝜂
𝑥
, 𝜂
𝑦
, 𝜂
𝜓
:

𝑟
𝑚

=
𝑚
1

𝑀
,

𝑟
𝑒

=
𝑚
1

𝐽
,

𝜔
𝑥

= √
𝑘
𝑥

𝑀
,

𝜔
𝑦

= √
𝑘
𝑦

𝑀
,

𝜔
𝜓

= √
𝑘
𝜓

𝐽
,
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𝜂
𝑥

=
𝜔
𝑚

𝜔
𝑥

,

𝜂
𝑦

=
𝜔
𝑚

𝜔
𝑦

,

𝜂
𝜓

=
𝜔
𝑚

𝜔
𝜓

.

(17)

Applying the dimensionless parameters to (18), the steady
responses in 𝑥-, 𝑦-, 𝜓-directions are obtained:

𝑥 =
𝑟
𝑚

𝜂
2

𝑥

𝜂2
𝑥

− 1
(𝑟
1
cos𝜑
1

+ 𝑟
2
cos𝜑
2
) ,

𝑦 = −
𝑟
𝑚

𝜂
2

𝑦

𝜂2
𝑦

− 1
(𝑟
1
sin𝜑
1

+ 𝑟
2
sin𝜑
2
) ,

𝜓 = −
𝑟
𝑒
𝜂
2

𝜓

𝜂2
𝜓

− 1
(𝑟
1
sin (𝜑

1
+ 𝛽
1
) + 𝑟
2
sin (𝜑

2
+ 𝛽
2
)) .

(18)

3.2. Synchronization Criterion. Assuming 𝛼
𝑖
are the initial

phase of the 𝑖th unbalanced rotor, the phase angular (𝜑
𝑖
) of

the 𝑖th unbalanced rotor is be defined as follows:

𝜑
1

= 𝜔𝑡 + 𝛼
1
,

𝜑
2

= 𝜔𝑡 + 𝛼
2
.

(19)

Substituting (19) into (18), a new form is given:

𝑥 =
𝑟
𝑚

𝜂
2

𝑥

𝜂2
𝑥

− 1
[𝑟
1
cos (𝜔𝑡 + 𝛼

1
) + 𝑟
2
cos (𝜔𝑡 + 𝛼

2
)] ,

𝑦 = −
𝑟
𝑚

𝜂
2

𝑦

𝜂2
𝑦

− 1
[𝑟
1
sin (𝜔𝑡 + 𝛼

1
) + 𝑟
2
sin (𝜔𝑡 + 𝛼

2
)] ,

𝜓 = −
𝑟
𝑒
𝜂
2

𝜓

𝜂2
𝜓

− 1
[𝑟
1
sin (𝜔𝑡 + 𝛼

1
+ 𝛽
1
)

+ 𝑟
2
sin (𝜔𝑡 + 𝛼

2
+ 𝛽
2
)] .

(20)

The parameter (𝛼) is considered as the phase difference
between the two rotors; we have

𝛼 = 𝛼
2

− 𝛼
1
. (21)

According to (5), 𝑃
𝑖
is expressed as

𝑃
1

= ⟨𝜇𝜑
1
⟩ =

1

𝑇
∫

𝑇

0

(𝜇𝜑
1
) 𝑑𝑡

= 𝑇
𝑚1

− 𝑇
𝑓1

−
1

2
𝑚
1
𝑟
𝑚

𝑟
1
𝜔
2
𝑟
2

(
𝜂
2

𝑥

𝜂2
𝑥

− 1
+

𝜂
2

𝑦

𝜂2
𝑦

− 1
) sin (𝛼)

−
1

2
𝑚
1
𝑟
1
ℓ
1
𝑟
𝑒
𝜔
2
𝑟
2

𝜂
2

𝜓

𝜂2
𝜓

− 1
sin (𝛼 + 𝛽

2
− 𝛽
1
)

+
1

2
𝑘𝑎
2

[sin (𝛼) + 1] = 0,

𝑃
2

= ⟨𝜇𝜑
2
⟩ =

1

𝑇
∫

𝑇

0

(𝜇𝜑
2
) 𝑑𝑡

= 𝑇
𝑚2

− 𝑇
𝑓2

+
1

2
𝑚
2
𝑟
𝑚

𝑟
2
𝜔
2
𝑟
1

(
𝜂
2

𝑥

𝜂2
𝑥

− 1
+

𝜂
2

𝑦

𝜂2
𝑦

− 1
) sin (𝛼)

−
1

2
𝑚
2
𝑟
2
ℓ
2
𝑟
𝑒
𝜔
2
𝑟
1

𝜂
2

𝜓

𝜂2
𝜓

− 1
sin (−𝛼 + 𝛽

1
− 𝛽
2
)

+
1

2
𝑘𝑎
2

[− sin (𝛼) + 1] = 0.

(22)

During the synchronization, the excessive torque 𝑍
𝑠
(𝜔)

of the rotors is equal to zero:
𝑍
𝑠 (𝜔) = 𝑇

𝑚𝑖
− 𝑇
𝑓𝑖

= 0, (𝑖 = 1, 2) . (23)
Therefore, the balanced equation of synchronization of

the vibrating system is established:

2𝜇
1
sin (𝛼) + 𝜇

2
sin (𝛼 + 𝛽

2
− 𝛽
1
) − 2𝜇

3
sin (𝛼) = 0, (24)

where

𝜇
1

= 𝑚
1
𝑟
1
𝑟
2
𝑟
𝑚

𝜔
2

(
𝜂
2

𝑥

𝜂2
𝑥

− 1
+

𝜂
2

𝑦

𝜂2
𝑦

− 1
) ,

𝜇
2

= 𝑚
1
𝑟
1
𝑟
2
𝑟
𝑒
(ℓ
1

+ ℓ
2
) 𝜔
2

𝜂
2

𝜓

𝜂2
𝜓

− 1
,

𝜇
3

= 𝑘𝑎
2
.

(25)

3.3. Stability Criterion of Synchronous. According to (5)
and (7), the following criterion of synchronous stability is
obtained:

𝜒 =
𝜕 (𝑃
1

− 𝑃
2
)

𝜕𝛼
1

= 𝑚
1
𝑟
𝑚

𝑟
1
𝜔
2
𝑟
2

(
𝜂
2

𝑥

𝜂2
𝑥

− 1
+

𝜂
2

𝑦

𝜂2
𝑦

− 1
) cos (𝛼)

+
1

2
𝑚
1
𝑟
1
𝑟
𝑒
𝜔
2
𝑟
2

𝜂
2

𝜓

𝜂2
𝜓

− 1
(ℓ
1

+ ℓ
2
) cos (𝛼 + 𝛽

2
− 𝛽
1
)

− 𝑘𝑎
2 cos (𝛼) < 0.

(26)
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Table 1: Parameter values.

Parameter values for system equation (13) Parameter values according to
dimensionless equation (17)Unbalanced rotors for 𝑖 = 1, 2 Vibroplatform Elastic spring Other parameters

𝑚
𝑖
= 2 [kg] 𝑀 = 80 [kg] 𝑘 = 0∼1.4 × 105 [N/m] 𝛽

1
= 5𝜋/6, 3𝜋/4 𝑟

𝑚
= 0.025

𝑟
𝑖
= 0.02 [m] 𝐽 = 8 [kg⋅m2] 𝑎 = 0.01 [m] 𝛽

2
= 46𝜋/225, 𝜋/4 𝑟

𝑒
= 0.25

𝜔
𝑚
= 152∼158 [rad/s] 𝑘

𝑥
= 4.0 × 104∼2.0 × 108 [N/m] ℓ

1
= 0.6, 0.4 [m] 𝑛

𝑥
= 0.1∼7

𝐶
𝑖
= 0.01 [N⋅s/m] 𝑘

𝑦
= 4.0 × 104∼2.0 × 108 [N/m] ℓ

2
= 0.5, 0.4 [m] 𝑛

𝑦
= 0.1∼7

𝑘
𝜓
= 4.0 × 103∼2.0 × 107 [N/m] 𝑛

𝜑
= 0.1∼7

𝑓
𝑥

= 1000 [N/(m/s)]
𝑓
𝑦

= 1000 [N/(m/s)]
𝑓
𝑧

= 1000 [N/(m/s)]

So, the stability of synchronization of the system can be
simplified as

2𝜇
1
cos (𝛼) + 𝜇

2
cos (𝛼 + 𝛽

2
− 𝛽
1
) − 2𝜇

3
cos (𝛼) < 0. (27)

Only the system parameters satisfy (24) and (27); the
synchronization of the vibration system can be implemented
in the considered case.

4. Numeric Verification

Above-mentioned sections derived the balanced equations
and the stability criterion of synchronization.The theoretical
analysis and simulation results will be presented in this
section.

4.1. Analysis of Numerical Results. It is easy to find that
the balanced equations are related to the system parameters
𝜂
𝑥
, 𝜂
𝑦
, 𝜂
𝜑
, 𝑟
𝑚

, 𝑟
𝑒
, 𝑘, and so forth, which seriously influence

the stability of self-synchronization of the vibration system.
The stable phase difference can be calculated by applying
numericalmethod. Considering the systemparameters 𝑟

𝑚
, 𝑟
𝑒

are constant, under the condition that the balanced equations
and the stability criterion of synchronization are satisfied,
we further investigated the relationship between variable
stiffness coefficient (𝑘) of the connecting spring, the fre-
quency ratios (𝜂

𝑥
, 𝜂
𝑦
, 𝜂
𝜑
), and the stable phase difference

in the different installation positions. The parameter values
corresponding to general engineering application are given
in Table 1. According to (18), the dimensionless values
parameters, as shown in Table 1, are obtained. Owing to the
stiffness coefficients (𝑘

𝑥
, 𝑘
𝑦
, 𝑘
𝜑
) being separately transformed

into frequency ration (𝜂
𝑥
, 𝜂
𝑦
, 𝜂
𝜓
) in 𝑥-, 𝑦-, and 𝜓-directions.

Some parameters seriously influence the stability of syn-
chronization, including the supporting spring stiffness, the
stiffness of elastic spring 𝑘, installation location, and so forth.

4.2. The Analysis of the Connecting Spring. It is important
to select appropriate stiffness of the connecting spring in
engineering.This section has analyzed that the stiffness of the
connecting spring is influences on the phase difference in the
synchronization state. The system parameters are shown in
Table 1.

The analysis results for 𝑛
𝑥

= 𝑛
𝑦

= 𝑛
𝜑

= 5.817, ℓ
1

=

0.6 [m], ℓ
2

= 0.5 [m], 𝛽
1

= 5𝜋/6, and 𝛽
2

= 46𝜋/225

are shown in Figure 4(a); here, the spring stiffness is 𝑘
𝑥

=

𝑘
𝑦

= 58276.2 [N/m], 𝑘
𝜑

= 5827.6 [N/rad], and the other
parameters are identical with the Table 1. When 𝑘 = 0,
the phase difference (𝛼) of co-rotating motors stabilize at
−1.5 [rad]. It is found that within the limits of the stiffness
the phase difference is close to 0∘ with stiffness increasing,
which results in both vibration amplitude and the screening
efficiency of the system which could be improved. When
𝑘 = 1.001 × 10

5 [N/m], the phase difference is −0.2401
[rad], which is in agreement with the results obtained for the
case of theoretical solution (i.e., the stable phase difference
in Figure 3(a) is equal to −0.2185 [rad]). The other analysis
results for 𝑛

𝑥
= 𝑛
𝑦

= 𝑛
𝜑

= 6.704, ℓ
1

= 0.4 [m],
ℓ
2

= 0.4 [m], 𝛽
1

= 3𝜋/4, and 𝛽
2

= 𝜋/4 are shown in
Figure 4(b). In the considering case, the spring stiffness is
𝑘
𝑥

= 𝑘
𝑦

= 43875.4 [N/m] and 𝑘
𝜑

= 4387.5 [N/rad], and
the other parameter is consistent with Table 1. When 𝑘 = 0,
there is no stable phase difference. An unstable state of the
vibration system can transform into a more stable state when
the stiffness of the connecting spring is increased, and the
above similar conclusions can be obtained. Comparing the
theoretic calculation with Figure 3(b), the value of the stable
phase difference is according to the theoretical computation
(i.e., the stable phase difference in Figure 3(b) is equal to
−0.1699 [rad]; here, the stable phase difference is equal to
−0.1738 [rad]).

4.3. Computer Simulations. Further computer simulations
have been performed to the correctness of above-mentioned
theoretical analysis. We solved the dynamics equation (14)
by applying the Runge-Kutta routine. Here, consider the
parameters of the twomotors to be identical, which are shown
in Table 1.

4.3.1. For 𝑛
𝑥

= 𝑛
𝑦

= 𝑛
𝜑

= 5.817, 𝑘 = 10000 [N/m], ℓ
1

=

0.6 [m], ℓ
2

= 0.5 [m], 𝛽
1

= 5𝜋/6, and 𝛽
2

= 46𝜋/225.
Simulation results for the dimensionless parameters are
shown in Figure 5. Here, the spring stiffness is 𝑘

𝑥
= 𝑘
𝑦

=

58276.2 [N/m], 𝑘
𝜑

= 5827.6 [N/rad], and 𝑘 = 10000

[N/m] and the other parameter is identical with Table 1.
When the two inductionmotors are simultaneously provided
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Figure 3: Stable phase difference with theoretical computation for (a) ℓ
1

= 0.6 [m], ℓ
2

= 0.5 [m], 𝛽
1

= 5𝜋/6, and 𝛽
2

= 46𝜋/225; (b)
ℓ
1

= 0.4 [m], ℓ
2

= 0.4 [m], 𝛽
1

= 3𝜋/4, and 𝛽
2

= 𝜋/4. In this figure, coordinate X represents the value of frequency ration 𝑛
𝑥

= 𝑛
𝑦

= 𝑛
𝜑
;

coordinate Y represents the value of the connecting spring k; coordinate Z represents the value of stable phase difference 𝛼; 𝛼 = 10 [rad]
shows that there is no stable phase.
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Figure 4: Stable phase difference is changed with the stiffness of the connecting spring for (a) 𝑛
𝑥

= 𝑛
𝑦

= 𝑛
𝜑

= 5.817; (b) 𝑛
𝑥

= 𝑛
𝑦

= 𝑛
𝜑

= 6.704;
In this figure, coordinate X represents the stiffness of the connecting spring; coordinate Y represents the phase difference (𝛼) of co-rotating
motors; 𝛼 = 10 [rad] shows that there is no stable phase.

with the electromagnetic force, the angular acceleration of
the two rotors is identical, as shown in Figure 5(d). At
2 s, the synchronization process of the vibration system is
implemented, and the synchronous angular velocity is 155
[rad/s], as illustrated in Figure 5(d). The phase difference
𝛼 is near −0.005 [rad] (in Figure 5(f)), which is coincided
with the approximate value of theoretical analysis (the value
of stable phase is 0.116 [rad] in Figure 3(a)). In addition,
the vibrating body is excited, and the coupling torques
(in Figure 5(e)), keeping the vibration system working in
steady synchronization state, are approximated 1.79 [N/m],

and the responses of the vibrating body are displayed in
𝑥-, 𝑦-, 𝜓-directions, respectively (in Figures 5(a), 5(b), and
5(c)).

4.3.2. For 𝑛
𝑥

= 𝑛
𝑦

= 𝑛
𝜑

= 6.409, 𝑘 = 126000 [N/m], ℓ
1

=

ℓ
2

= 0.4 [m], 𝛽
1

= 3𝜋/4, and 𝛽
2

= 𝜋/4. To further verify the
analysis results, it is necessary for two exciters coupled with
a weak spring to give other results of computer simulation.
The simulation results are shown in Figure 6; here, the spring
stiffness is 𝑘

𝑥
= 𝑘
𝑦

= 48007.5 [N/m], 𝑘
𝜑

= 4800.8 [N/rad],
and 𝑘 = 126000 [N/m], and the other parameters of the
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Figure 5: Results for the computer simulation: (a), (b), and (c) displacement responses of the vibrating body in 𝑥-, 𝑦-, 𝜓-directions,
respectively; (d) rotational velocities of the two rotors; (e) electromagnetic torques of the two rotors; (f) phase difference of unbalanced
rotors.
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Figure 6: Results for the computer simulation: (a), (b), and (c) displacement responses of the vibrating body in 𝑥-, 𝑦-, 𝜓-directions,
respectively; (d) rotational velocities of the two rotors; (e) electromagnetic torques of the two rotors; (f) phase difference of unbalanced
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10 Shock and Vibration

system are coincided with the Table 1. During the starting
process of the vibration system, owing to the rotational inertia
of two rotors being identical, so the angular acceleration of
two induction motors is equal (in Figure 6(d)). After about
1 s, the synchronous state of system is implemented, and
the synchronous velocity of two unbalanced rotors is 160.8
[rad/s] (in Figure 6(d)). The phase difference of two rotors
is shown in Figure 6(f), comparing numerical results with
Figure 3(b); it can be seen that the computer simulation
results further accord with the results of theoretical analysis.
(The phase difference of Figure 6(f) stabilized at 0.003 [rad];
the stable phase difference of Figure 3(b) is equal to −0.1699
[rad].) Additionally, the electromagnetic torque is about
−3.86 [N⋅m]. The displacements of the vibrating body in
𝑥-, 𝑦-, and 𝜓-directions are presented in Figures 6(a), 6(b),
and 6(c), respectively.

5. Conclusions

Based on the above theoretical analysis and numerical calcu-
lation, the following conclusions are obtained.

In this paper, the model of two rotors coupled with a
weak spring is proposed to study the synchronization char-
acteristics by the average method of small parameters. When
the values of the system parameters satisfy the equilibrium
equations and the stability criteria, the vibration system
will implement synchronization.The above-mentioned study
indicated there are many factors having influence on the
stability of the system of self-synchronization, which mainly
include the spring stiffness and the stiffness of connecting
spring and installation location. Additional, it can be see
that the phase difference is close to 0∘ within the limits of
the stiffness by appropriately selecting the stiffness of the
connecting spring, which results in both vibration amplitude
and the screening efficiency of the system which could be
improved. Finally, the computer simulations are used to
verify the correctness of the theoretical analysis.
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