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Radial vibration of the circular plate is presented using wave propagation approach and classical method containing Bessel solution
and Hankel solution for calculating the natural frequency theoretically. In cylindrical coordinate system, in order to obtain natural
frequency, propagation and reflection matrices are deduced at the boundaries of free-free, fixed-fixed, and fixed-free using wave
propagation approach. Furthermore, radial phononic crystal is constructed by connecting twomaterials periodically for the analysis
of band phenomenon. Also, Finite Element Simulation (FEM) is adopted to verify the theoretical results. Finally, the radial and
piezoelectric effects on the band are also discussed.

1. Introduction

Wave propagation approach is a usefulmethod on the aspects
of calculating natural frequency for the analysis of elastic
structures, such as rod, Euler beam, curved beam, and
plate. It benefits us with a better understanding to analyze
wave when propagating inside structures. In fact, as early as
1984, Mace analyzed the behaviors of wave by using wave
propagation approach through dividing them into prop-
agation attenuation matrices. And the reflection matrices
under three boundary conditions were deduced, which built
a theoretical foundation for wave method [1]. Meanwhile, the
characteristics of propagation and reflection of Timoshenko
beam were also discussed with the discontinuous behavior.
And the frequency curves were obtained [2]. Harland et al.
studied the motion of waves in tunable fluid-filled beams [3].
Based on Love theory, Kang et al. deduced the propagation
matrices, reflection matrices, and coordinated matrices in
curved beams [4]. Different from Kang et al., Lee made a
detailed research on the behavior of waves of curved beam
based on Flugge’s theory [5, 6]. Based on the high-order plate
theory, Wang and Rose analyzed the properties of transient
wave in an inhomogeneous beam. And the results were also
verified by the experiment [7]. Tan and Kang considered
the wave reflection and transmission in an axially strained,
rotating Timoshenko shaft. Meanwhile, the influence of
continuous condition and cross-section on natural frequency

was also discussed [8]. Li and Gan analyzed the free vibration
of cylindrical shell by usingwave propagation approach based
on Flugge’s thin shell theory [9, 10]. Also, Zhang calculated
the frequencies of cross-ply laminated composite cylindrical
shells and submerged cylindrical shells using wave approach
based on Love’s theory [11, 12]. Using wave approach, the
above scholars have done lots of analysis, which exhibit a
unique advantage for the analysis of structural vibration.

In recent years, people have paid great attention to
structure which consisted of two materials arraying peri-
odically. At present, the research has been extended into
radial phononic crystal structures. Shakeri et al. analyzed
the behaviors of radial wave in functional graded radial
periodical structures [13]. Torrent and Carbonell studied
the propagation characteristic of acoustic in detail when
propagating in radial periodical structure and found that it
also had a low frequency band [14, 15]. After constructing
and analyzing the two-dimensional radial phononic crystal,
Xu et al. found that these structures had low frequency band
that the starting frequency was zero [16]. Ma et al. studied
the band characteristics of Lamb wave in two-layer radial
phononic crystal plate, and it was found that crystal gliding
in radial direction could open the lowest band gaps [17].
The above researches indicate that radial phononic crystal
plate has the low frequency band which brings an attractive
prospect of engineering application. For example, the natural
frequency can be designed into the range of band gaps to
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Figure 1: Model of single circular plate.

isolate the vibration. Also, these structures can be regarded as
a filter. Additionally, Shu et al. researched torsional vibration
problem of generalized phononic crystal, finding that low
frequency band was determined by radius. However, the high
frequency bandwas caused by the periodicity of circular plate
[18]. And Shu’s research shows that generalized phononic
crystal can generate a huge band which almost covers the
whole frequency range, providing a practical application for
the rotating parts, such as gear. In the previous research,
Shu et al. have studied the band gaps of flexural wave in
the radial phononic crystal. Meanwhile, numerical results
are also verified by FEM [19]. Herein, this paper is mainly
focused on radial vibration of composite structures. In fact,
other works on radial vibration of elastic solids under various
loadings can also be found [20–22].

The paper is organized into five sections. In Section 1,
a brief introduction is given. In Section 2, classic Bessel
solution and Hankel solution of radial vibration are given.
Meanwhile, propagation and reflection matrices at three
boundary conditions are derived. The results of natural
frequency obtained bywave approach are also comparedwith
the classical method. In Section 3, the band phenomenon is
analyzed and the effect of parameters is discussed. Section 4
is the conclusion.

2. Theoretical Analysis for Natural Frequency

2.1. Solution of Radial Vibration Equation. Single circular
plate is shown in Figure 1. Young modulus, density, and Pois-
son’s coefficient are 𝐸1, 𝜌1, ]1. The thickness of piezoelectric
ceramics is ℎ1. The inner and external radius are 𝑟0 and 𝑟𝑎,

respectively.With respect to the axisymmetric circular plates,
radial equation of piezoelectric materials can be given by [23]

𝜌𝜕2𝑢𝑟𝜕𝑡2 = 𝜕𝜎𝑟𝜕𝑟 + 𝜎𝑟 − 𝜎𝜃𝑟 . (1)

The expression of strain and radial displacement can be
written as

𝜀𝑟 = 𝜕𝑢𝑟𝜕𝑟 , (2)

𝜀𝜃 = 𝑢𝑟𝑟 . (3)

Since piezoelectric material direction of polarization is
along z-axle, piezoelectric equation can be expressed as

𝜀𝑟 = 𝑠𝐸11𝜎𝑟 + 𝑠𝐸12𝜎𝜃 + 𝑑31𝐸𝑍,
𝜀𝜃 = 𝑠𝐸12𝜎𝑟 + 𝑠𝐸11𝜎𝜃 + 𝑑31𝐸𝑍,

𝐷𝑧 = 𝑑31𝜎𝑟 + 𝑑31𝜎𝜃 + 𝜉𝑇33𝐸𝑍,
(4)

where 𝑢𝑟 is radial displacement, 𝜎𝑟 and 𝜎𝜃 are radial stress
and tangential stress, 𝜀𝑟 and 𝜀𝜃 are radial strain and tangential
strain, and 𝑟 is radius.

Substituting (2)–(4) into (1) gives

𝜕2𝑢𝑟𝜕𝑟2 + 1𝑟 𝜕𝑢𝑟𝜕𝑟 − 𝑢𝑟𝑟2 = 1𝑐2 𝜕2𝑢𝑟𝜕𝑡2 , (5)

where 𝑐2 = 1/𝑠𝐸11𝜌(1−]2) is the square of radial wave velocity.
After simplifying (5), it can be obtained that

𝜕2𝑢𝑟𝜕 (𝑘𝑟)2 + 1𝑘𝑟 𝜕𝑢𝑟𝜕 (𝑘𝑟) + [1 − 1
(𝑘𝑟)2] 𝑢 = 0. (6)

Thus, general solution of radial displacement can be
written as

𝑢𝑟 = 𝐴+1𝐽1 (𝑘𝑟) + 𝐴−1𝑌1 (𝑘𝑟) , (7)

where 𝑘 = 𝑤/𝑐 is the wave number. 𝐽1(𝑘𝑟) is the Bessel
function of first kind; 𝑌1(𝑘𝑟) is the Bessel function of second
kind. And the constants 𝐴+1 and 𝐴−1 can be determined by
boundary conditions.

Therefore, radial stress can be obtained as

𝜎𝑟 = 𝐸1 − ]2
(𝜀𝑟 + ]𝜀𝜃)

= 𝐸𝑘1 − ]2
{𝐴+1 [𝐽0 (𝑘𝑟) − (1 − ]) 𝐽1 (𝑘𝑟)𝑘𝑟 ]

+ 𝐴−1 [𝑌0 (𝑘𝑟) − (1 − ]) 𝑌1 (𝑘𝑟)𝑘𝑟 ]} .
(8)

2.2. Classical Method. When both ends of circular plate are
fixed, it has

𝑢𝑟 (𝑟0) = 0,
𝑢𝑟 (𝑟𝑎) = 0. (9)
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Substituting (7) into (9) gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐽1 (𝑘𝑟0) 𝑌1 (𝑘𝑟0)
𝐽1 (𝑘𝑟𝑎) 𝑌1 (𝑘𝑟𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0. (10)

When both ends of circular plate are free, it has

𝜎𝑟 (𝑟0) = 0,
𝜎𝑟 (𝑟𝑎) = 0. (11)

Substituting (8) into (11) gives

𝐸𝑘1 − ]2

⋅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐽0 (𝑘𝑟0) − (1 − ]) 𝐽1 (𝑘𝑟0)𝑘𝑟0 𝑌0 (𝑘𝑟0) − (1 − ]) 𝑌1 (𝑘𝑟0)𝑘𝑟0
𝐽0 (𝑘𝑟𝑎) − (1 − ]) 𝐽1 (𝑘𝑟𝑎)𝑘𝑟𝑎 𝐽0 (𝑘𝑟𝑎) − (1 − ]) 𝐽1 (𝑘𝑟𝑎)𝑘𝑟𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

(12)

Similarly, when inner surface is fixed and outer surface is
free, it has

𝑢𝑟 (𝑟0) = 0,
𝜎𝑟 (𝑟𝑎) = 0. (13)

Substituting (7) and (8) into (13) gives

𝐸𝑘1 − ]2

⋅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐽0 (𝑘𝑟0) 𝑌0 (𝑘𝑟0)
𝐽0 (𝑘𝑟𝑎) − (1 − ]) 𝐽1 (𝑘𝑟𝑎)𝑘𝑟𝑎 𝐽0 (𝑘𝑟𝑎) − (1 − ]) 𝐽1 (𝑘𝑟𝑎)𝑘𝑟𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

(14)

After solving roots of (10), (12), and (14), the natural
frequencies of circular plate structure can be obtained with
the aforementioned boundary conditions.

2.3. Wave Propagation Method. One of the solutions of
circular plate has been solved as shown in (7). And the other
solution can be written as

𝑢𝑟 = 𝐴+1𝐻(2)0 (𝑘𝑟) + 𝐴−1𝐻(1)0 (𝑘𝑟) , (15)

where 𝐻(1)0 (𝑘𝑟) and 𝐻(2)0 (𝑘𝑟) are the Hankel function of first
and second kinds, which can be defined as

𝐻(1)0 (𝑘𝑟) = 𝐽0 (𝑘𝑟) + 𝑖𝑌0 (𝑘𝑟) ,
𝐻(2)0 (𝑘𝑟) = 𝐽0 (𝑘𝑟) − 𝑖𝑌0 (𝑘𝑟) . (16)

Considering (15), forward-traveling and negative-
traveling waves can be written as

𝑔+1 = 𝐴+1𝐻(2)0 (𝑘𝑟) ,
𝑔−1 = 𝐴−1𝐻(1)0 (𝑘𝑟) . (17)

Then, (15) reduces to

𝑢𝑟 = 𝑔+1 + 𝑔−1 . (18)

When both ends of circular plate are fixed, it gives

𝑢𝑟 (𝑟0) = 𝑔+1 (𝑟0) + 𝑔−1 (𝑟0) = 0,
𝑢𝑟 (𝑟𝑎) = 𝑔+1 (𝑟𝑎) + 𝑔−1 (𝑟𝑎) = 0. (19)

Thus, the reflection matrices of both boundaries are

𝑅𝐴 = [−1] , (20a)

𝑅𝐶 = [−1] . (20b)

Substituting (2), (15), and (16) into (8), radial stress can be
expressed as

𝜎𝑟 = 𝐸𝑘1 − ]2
{𝐴+1 [𝑘𝐽0 (𝑘𝑟) − 𝐽1 (𝑘𝑟)𝑟 − 𝑖𝑘𝑌0 (𝑘𝑟)

+ 𝑖𝑟𝑌1 (𝑘𝑟) + ]𝑟 𝐽1 (𝑘𝑟) − ]𝑟 𝑖𝑌1 (𝑘𝑟)] + 𝐴−1 [𝑘𝐽0 (𝑘𝑟)
− 𝐽1 (𝑘𝑟)𝑟 + 𝑖𝑘𝑌0 (𝑘𝑟) − 𝑖𝑟𝑌1 (𝑘𝑟) + ]𝑟 𝐽1 (𝑘𝑟)
+ ]𝑟 𝑖𝑌1 (𝑘𝑟)]} .

(21)

When both ends of circular plate are free, it has

𝜎𝑟 (𝑟0) = 0,
𝜎𝑟 (𝑟𝑎) = 0. (22)

Thus, reflection matrices of both boundaries are

𝑅𝐴 = − {[𝑘𝐽0 (𝑘𝑟0) − 𝐽1 (𝑘𝑟0) /𝑟0 + 𝑖𝑘𝑌0 (𝑘𝑟0) − (𝑖/𝑟0) 𝑌1 (𝑘𝑟0) + (]/𝑟0) 𝐽1 (𝑘𝑟0) + (]/𝑟0) 𝑖𝑌1 (𝑘𝑟0)]𝐻(1)0 (𝑘𝑟0) }
−1

× {[𝑘𝐽0 (𝑘𝑟0) − 𝐽1 (𝑘𝑟0) /𝑟0 − 𝑖𝑘𝑌0 (𝑘𝑟0) + (𝑖/𝑟0) 𝑌1 (𝑘𝑟0) + (]/𝑟0) 𝐽1 (𝑘𝑟0) − (]/𝑟0) 𝑖𝑌1 (𝑘𝑟0)]𝐻(2)0 (𝑘𝑟0) } ,
(23)
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𝑅𝐶 = − {[𝑘𝐽0 (𝑘𝑟𝑎) − 𝐽1 (𝑘𝑟𝑎) /𝑟𝑎 − 𝑖𝑘𝑌0 (𝑘𝑟𝑎) + (𝑖/𝑟𝑎) 𝑌1 (𝑘𝑟0) + (]/𝑟𝑎) 𝐽1 (𝑘𝑟𝑎) − (]/𝑟𝑎) 𝑖𝑌1 (𝑘𝑟𝑎)]𝐻(2)0 (𝑘𝑟𝑎) }
−1

⋅ {[𝑘𝐽0 (𝑘𝑟𝑎) − 𝐽1 (𝑘𝑟𝑎) /𝑟𝑎 + 𝑖𝑘𝑌0 (𝑘𝑟𝑎) − (𝑖/𝑟𝑎) 𝑌1 (𝑘𝑟𝑎) + (]/𝑟𝑎) 𝐽1 (𝑘𝑟𝑎) + (]/𝑟𝑎) 𝑖𝑌1 (𝑘𝑟𝑎)]𝐻(1)0 (𝑘𝑟𝑎) } .
(24)

Forward-traveling and negative-traveling waves can be
shown clearly in Figure 1. And the expression can be written
as follows:

𝑏+1 = 𝑓+1 (𝑟𝑎 − 𝑟0) 𝑎+1 ,
𝑎−1 = 𝑓−1 (𝑟𝑎 − 𝑟0) 𝑏−1 .

(25)

Considering (17), forward-traveling and negative-
traveling waves can be obtained as

𝑓+1 (𝑟𝑎 − 𝑟0) = 𝐻(2)0 (𝑘𝑟𝑎)𝐻(2)0 (𝑘𝑟0) ,

𝑓−1 (𝑟𝑎 − 𝑟0) = 𝐻(1)0 (𝑘𝑟0)𝐻(1)0 (𝑘𝑟𝑎) .
(26)

Similarly, the reflection matrices are (20a) and (24) for
case of inner surface fixed and outer surface free.

2.4. Analysis and Discussion. After combining propagation
and reflection matrices derived above, the natural charac-
teristics of single circular plate can be analyzed effectively.
Hence, it gives

𝑏+1 = 𝑓+1 (𝑟𝑎 − 𝑟0) 𝑎+1 , 𝑎+1 = 𝑅𝐴𝑎−1 ,
𝑎−1 = 𝑓−1 (𝑟𝑎 − 𝑟0) 𝑏−1 , 𝑏−1 = 𝑅𝐶𝑏+1 .

(27)

And it yields

𝐹 (𝑓) = [𝑓+1 (𝑟𝑎 − 𝑟0) 𝑅𝐴𝑓−1 (𝑟𝑎 − 𝑟0) 𝑅𝐶 − 1] 𝑏+1 = 0. (28)

RESIN is selected as the material of circular plate. Mate-
rial and structural parameters are tabulated in Table 1.

Substitute parameters listed in Table 1 into (10), (12), (14),
and (28), and the natural frequency can be computed.
Herein, red and black curves obtained by wave approach
are real and imaginary wave solution, respectively. Also, it is
important to note that the intersection points of the curves are
natural frequency. After solving the inherent characteristic of
circular plate structure, the characteristic curves calculated by
classicalmethod andwave approach are presented in Figure 2.
It can be seen that these natural frequencies intersect at the
same point in x-axis, which verifies the correctness of the
numerical calculation.

3. Radial Vibration Analysis of
Phononic Crystal

3.1. Model and Transfer Matrix. Figure 3 is the schematic
diagram of radial phononic crystal circular plate. Herein, the
white region represents RESIN materials and the gray region
represents piezoelectric ceramic PZT4. The inner and outer
radius are 𝑟1 and 𝑟2, respectively. The radial span ratios are
denoted with 𝑎1 and 𝑎2. And ℎ represents the thickness.

Considering an eight-layer circular plate, it corresponds
to the model 𝐴𝐵𝐴𝐵𝐴𝐵𝐴𝐵. The interfaces between RESIN
and PZT4 material are 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑚, 𝑝, 𝑞 (see Figure 3).
With regard to RESIN, Young’smodulus, density, and Poisson
coefficient are 𝐸1, 𝜌1, ]1. For the PZT4, Young’s modulus,
density, and Poisson coefficient are 𝐸2, 𝜌2, ]2. When radial
wave propagates in RESIN layers 1, 3, 5, and 7, the velocity
is 𝑐1 = [𝐸1/𝜌1(1 − ]1

2)]1/2 and the wavenumber is 𝑘1 =𝑤/𝑐1 = 2𝜋𝑓/𝑐1.The velocity is 𝑐2 = [𝐸2/𝜌2(1−]2
2)]1/2 and the

wavenumber is 𝑘2 = 𝑤/𝑐2 = 2𝜋𝑓/𝑐2 when wave propagates in
PZT4 layers 2, 4, 6, and 8.

With regard to radial vibration, there are two parameters
which satisfy the continuous conditions at the interface of
different materials. Namely, they are the radial displacement
and radial stress. So transfer matrices of radial vibration can
be derived as follows.

At the interface b (𝑟𝑏 = 𝑟1 + 𝑎1), it gives
𝑢1 = 𝑢2,
𝜎1 = 𝜎2. (29)

Thus, it can be arranged in a matrices form

𝐻1 [𝐴+11𝐴−11] = 𝐾1 [𝐵+12𝐵−12] . (30)

At the interface c (𝑟𝑐 = 𝑟1 + 𝑎1 + 𝑎2), it gives
𝑢2 = 𝑢3,
𝜎2 = 𝜎3. (31)

Similarly, one has

𝐻2 [𝐴+21𝐴−21] = 𝐾2 [𝐵+12𝐵−12] . (32)

Combining (30) and (32), one has

[𝐴+21𝐴−21] = 𝑇31 [𝐴+11𝐴−11] , (33)
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Figure 2: Natural frequency calculated by classic method and wave approach.

Table 1: Material and structural parameters.

Material parameters 𝜌 (kg/m3) 𝐸 (Pa) ]
RESIN 1180 0.435 × 1010 0.3679
Structural parameters 𝑟0 (m) 𝑟𝑎 (m) ℎ (m)
RESIN 0.08 0.16 0.005

where 𝑇31 = 𝐻−12 𝐾2𝐾−11 𝐻1 is the transfer matrices of radial
vibration between the 3rd and the 1st ring.

As shown in Figure 3, replace 𝑟𝑏 and 𝑟𝑐 (in (30) and (32))
with 𝑟𝑑 and 𝑟𝑒. Similarly with 𝑇31, we can obtain 𝑇53 which is
the transfer matrix between the fifth ring and the third ring.

Similarly, replace 𝑟𝑑 and 𝑟𝑒 with 𝑟𝑓 and 𝑟𝑚, and the matrix𝑇75 can be obtained.
At last, submitting 𝑟𝑝 into (30), we can get 𝑇81. Therefore,

with regard to the radial phononic crystal, one has

𝑇81 = 𝐾−187𝐻87𝑇75𝑇53𝑇31. (34)

3.2. Numerical Result and Discussion. The radial phononic
crystal circular plates are composed of twomaterials, namely,
RESIN and piezoelectric ceramic PZT4. Material parameters
and structural parameters are consistent with Table 2.

Table 2: Material parameters and structural parameters.

Material parameters 𝜌 (kg/m3) 𝐸 (Pa) ]
I (RESIN) 1180 0.435 × 1010 0.3679
II (PZT4) 7500 8.13 × 1010 0.33
Structural parameters 𝑎1 = 𝑎2 (m) 𝑟2 = 2𝑟1 (m) ℎ (m)
RESIN and PZT4 0.01 0.16 0.003

Additionally, piezoelectric parameters are set as 𝑠𝐸11 =12.3 × 10−12m2/N, 𝜀𝑇33/𝜀0 = 1300, 𝜀0 = 8.84 × 10−12 c/m, and𝑑31 = −123 × 10−12 c/N.
Taking advantage of transfer matrices and boundary

conditions, the transmission characteristics are calculated
using MATLAB numerically. Figure 4 is the transmission
curve of radial vibration with four periodic structures which
is composited by single material RESIN and RESIN/PZT4.

Figure 4 is the comparison of numerical and FEM results.
It indicates that there is no attenuation when radial wave
propagates in a single material, while, for the phononic crys-
tal, the transmission curve shows a big vibration attenuation
band after introducing the periodicity. However, when radial
wave propagates in the single material, there is no band gap
which attenuates weakly and only owns −4 dB. Furthermore,
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Figure 3: Schematic diagram of radial phononic crystal circular plate.
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Figure 4: Radial vibration curves of numerical and FEM results.

ANSYS 14.5 is used to verify the radial propagation charac-
teristics. Using harmonic analysis and keeping the boundary
conditions of outer surface free, radial displacement is excited
on the inner surface which is shown in Figure 4(b). Compar-
ing numerical results with FEM results, it can be found that
the bands are in good agreement with the aspects of position,
width, and amplitude attenuation and other aspects, which
indicates the correctness of theoretical calculations.

3.3. Effects of Structural Parameters. In this section, the influ-
ence of piezoelectric effect on radial wave has been discussed
in detail. Furthermore, the influences of piezoelectric param-
eter 𝑑31 and polar direction on the band have also been stud-
ied in case of open and short circuit for piezoelectricmaterial.

3.3.1. Open and Short Circuit. With regard to piezoelectric
material, the D-type equation of radial vibration can be
expressed as

𝜀𝑟 = 𝑠𝐸11𝜎𝑟 + 𝑠𝐸12𝜎𝜃 + 𝑑31𝐸𝑍,

𝜀𝜃 = 𝑠𝐸12𝜎𝑟 + 𝑠𝐸11𝜎𝜃 + 𝑑31𝐸𝑍,
𝐷𝑧 = 𝑑31𝜎𝑟 + 𝑑31𝜎𝜃 + 𝜉𝑇33𝐸𝑍.

(35)

It corresponds to short circuit situation when field inten-
sity is 𝐸𝑍 = 0. Therefore, (35) can be simplified as

𝜎𝑟 = 𝑠𝐸11(𝑠𝐸11)2 − (𝑠𝐸12)2 𝜀𝑟 −
𝑠𝐸12(𝑠𝐸11)2 − (𝑠𝐸12)2 𝜀𝜃,

𝜎𝜃 = 𝑠𝐸11(𝑠𝐸11)2 − (𝑠𝐸12)2 𝜀𝜃 − 𝑠𝐸12(𝑠𝐸11)2 − (𝑠𝐸12)2 𝜀𝑟,
𝐷𝑧 = 𝑑31 (𝜎𝑟 + 𝜎𝜃) .

(36)

Then, it has

]𝐸 = −𝑠𝐸12𝑠𝐸11 ,
𝑌𝐸0 = 1𝑠𝐸11 ,

(37)
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Figure 5: Comparison diagram with short and open circuits.

where ]𝐸 denotes Poisson’s coefficient in the condition of
short circuit. 𝑌𝐸0 denotes Young modulus.

Piezoelectric material is in the open circuit when the
charge is 𝐷𝑧 = 0. Thus, (35) can be simplified as

𝜎𝑟 = 𝑌𝐷
1 − (]𝐷)2 (𝜀𝑟 + ]𝐷𝜀𝜃) ,

𝜎𝜃 = 𝑌𝐷
1 − (]𝐷)2 (𝜀𝜃 + ]𝐷𝜀𝑟) .

(38)

Then, it gives

]𝐷 = −𝜉𝑇33𝑠𝐸12 − 𝑑231𝜉𝑇33𝑠𝐸11 − 𝑑231 ,
𝑌𝐷0 = 1𝑠𝐸11 − 𝑑231/𝜉𝑇33 ,

(39)

where ]𝐷 denotes Poisson’s coefficient in the condition of
open circuit. 𝑌𝐷0 denotes Young modulus.

By using transfer matrices derived in Section 2.1, vibra-
tion characteristics curves have been calculated for the case
of short and open circuit. As depicted in Figure 5, the selected
frequency band is 0–10 kHz. It indicates that the band changes
obviously in the high frequency because of the piezoelectric
effect. However, the short circuit curve moves toward low
frequency slightly. From the above theoretical analysis by
comparing (37) and (39), it can be observed that the elasticity
modulus and Poisson’s coefficient of piezoelectric materials
are different when they are in short or open circuit. For the
case of open circuit, elasticity modulus is larger. Meanwhile,
Poisson’s coefficient also changes. It is important to note that
these two parameters can influence the value of 𝜎𝑟 and 𝜎𝜃
directly, whichmeans that radial wavenumber changes.Thus,
it is the natural mechanism of band moving.

3.3.2. Piezoelectric Parameters and Inner Radius. As to the
open circuit case, the effects of electrical parameter 𝑑31 and
inner radius 𝑟0 on radial wave band are depicted in Figure 6.
Herein, Figure 6(a) describes the effect of piezoelectric
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Figure 6: Effect of piezoelectric modulus 𝑑31 and inner radius 𝑟0.

parameter 𝑑31. However, Figure 6(b) displays the effect of
inner radius 𝑟0.

From (39), it can be easily observed that 𝑑31 determines
the values of 𝑌𝐷0 and ]𝐷 which can influence the band
position and attenuation. Figure 6(a) indicates that radial
band has been expanded with the increase of 𝑑31 (here, the
negative sign only represents direction). However, the change
is not obvious. Figure 6(b) displays that inner radius 𝑟0 can
influence the low frequency greatly. It is also clear from the
figure that the band attenuates obviously at low frequency.
However, the effect on high frequency is much smaller.

4. Conclusion

This paper presents the classical method and wave propaga-
tion approach to obtain the natural frequency. Based on radial
vibration equation, propagation and reflection matrices are
derived. It can be found that natural frequency of the single
circular plate can be calculated conveniently by using wave
propagation approach. Then, the results obtained by using
wave approach are compared with the classical method at the
boundary conditions of free-free, fixed-fixed, and fixed-free.
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It can be seen that the results calculated by these twomethods
coincide with each other.

Additionally, the band phenomenon of radial phonon
crystal circular plate is also analyzed for a deeper understand-
ing of radial vibration. FEM is used to verify the theoretical
results. It can be found that the inner radius of circular plate
has great influence on the low frequency. Piezoelectric coeffi-
cient, open circuit, and short circuitmake the elasticmodulus
and Poisson’s ratio change. Then the radial wavenumber also
changes, which is the natural mechanism of band removing
for the case of open and short circuits.
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