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For the applicability of dynamic similitude models of thin walled structures, such as engine blades, turbine discs, and cylindrical
shells, the dynamic similitude design of typical thin walled structures is investigated. The governing equation of typical thin
walled structures is firstly unified, which guides to establishing dynamic scaling laws of typical thin walled structures. Based on
the governing equation, geometrically complete scaling law of the typical thin walled structure is derived. In order to determine
accurate distorted scaling laws of typical thinwalled structures, three principles are proposed and theoretically proved by combining
the sensitivity analysis and governing equation. Taking the thin walled annular plate as an example, geometrically complete and
distorted scaling laws can be obtained based on the principles of determining dynamic scaling laws. Furthermore, the previous five
orders’ accurate distorted scaling laws of thinwalled annular plates are presented andnumerically validated. Finally, the effectiveness
of the similitude design method is validated by experimental annular plates.

1. Introduction

Thin walled structures are widely used in mechanical
and aerospace engineering application due to the excellent
dynamic characteristics and high specific stiffness, and it is
important to analyze their vibration characteristics [1, 2].
However, employing the prototype directly in experiments is
time consuming and difficult to test. Fortunately, similitude
design is a powerful method to predict the dynamic charac-
teristics of the prototype. Due to the limitations of structural
parameters of a prototype, for example, the thickness of thin
walled structures being difficult to machine in a scaled down
model, a distorted model is required to address the problem.

In aspect of the vibration analysis of thin walled struc-
tures, Narita [3] analyzed natural characteristics of simply
supported plates by using asymptotic expansions and the
modified Ritz method. Wang et al. [4] investigated the free
vibration characteristics under different boundary conditions
based on the differential quadrature method. Irie et al. [5]
analyzed the dynamic problems of conic shells with variable
thickness, cone-column composite shells, and ring plate-
column composite shells and put forward the transfer matrix

method to analyze shells’ vibration characteristics under
arbitrary boundary conditions. Papkov and Banerjee [6]
presented a new method for the free vibration and buckling
analysis of rectangular orthotropic plates, which allowed
obtaining practically exact results for the free vibration and
buckling of orthotropic plates.

The scaling laws of thin walled structures have been
investigated by many researchers. Krayterman and Sabnis [7]
investigated the scaling laws of a plate by using dimensional
analysis method and numerically discussed the accuracy in
determining scaling laws. Qian and Swanson [8] obtained the
scaling laws of laminated plates with the impulse response,
and the scaling laws could accurately describe the undamaged
response. Rezaeepazhand and Simitses [9–11] studied the
dynamic behaviors of similitude models in predicting the
buckling and free vibration of a laminated shell. Wu et al.
[12, 13] presented scaling laws for the prediction of vibration
characteristics using a scaled model by the similitude theory
and dimensional analysis. Ungbhakorn and Singhatanadgid
[14–16] proposed a new approach of deducing scaling laws
for stability and presented scaling laws of symmetrically lam-
inated plates and cylindrical shells by considering the loads
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effects. Oshiro and Alves [17, 18] employed a constitutive law
to establish the model and the model reflected exactly as the
prototype by changing the impact velocity. Oshiro and Alves
[19] investigated the geometrically distorted scaling law in
order to predict the behaviors of the prototype, and three
problems of the prototype were analyzed. Yazdi [20] obtained
the scaling laws that can predict the nonlinear vibration
frequency of the prototype, and vibration amplitudes were
investigated. De Rosa et al. [21, 22] derived scaling laws for
the dynamic response of rectangular flexural plates by the
modal approach; the forced response and energy response
were given out. In their studies, the structural similitude was
investigated by the energy distribution method that allows
the representation of all the fundamental parameters. Luo
et al. [23, 24] investigated the similitude design of an elastic
cantilever thin plate by sensitivity analysis, and the distorted
scaling laws and size applicable intervals were determined.
Further, the prediction of the vibration characteristics of an
isotropic sandwich plate was investigated.

In the above studies, the dynamic characteristics and
similitude design methods of thin walled plates and cylin-
drical shells have been investigated by many researchers.
However, studies of determining the accurate distorted scal-
ing laws of typical thin walled structures have not been
discussed. In this study, the determining method of the
accurate distorted scaling laws of thin walled structures is
proposed and theoretically proved.

In Section 2 of this paper, the governing equation of
typical thin walled structures is firstly unified. Geometrically
complete scaling laws are deduced, and three principles of
determining accurate distorted scaling law are proposed and
proved in Section 3. Furthermore, taking the thin walled
annular plate as an example, the distorted scaling laws are
obtained in Section 4. Finally, the similitude design method
is validated via experimental annular plates.

2. Governing Equation

The curved coordinate system 𝑂
󸀠
𝛼𝛽𝛾 is established in the

Cartesian coordinated system𝑂𝑥𝑦𝑧 and depicted in Figure 1.
𝛼 and 𝛽 are along with the curvature direction; 𝛾 is per-
pendicular to the directions 𝛼 and 𝛽. There are five internal
force components 𝑁

𝛼
, 𝑁

𝛽
, 𝑁

𝛼𝛽
, 𝑄

𝛼
, and 𝑄

𝛽
and three inner

torque components 𝑀
𝛼
, 𝑀

𝛽
, and 𝑀

𝛼𝛽
along with the arc

edges of the surface𝑂𝛼𝛽. 𝑢, V, and𝑤 represent the tangential
displacements of directions 𝛼, 𝛽, and 𝛾, respectively.

Thematerial parameter𝐸 is Young’smodulus, 𝜌 is density,
and 𝜇 is Poisson’s ratio.

The arc length d𝑟 of curved surfaces can be denoted as
[25]

d𝑟 = (d𝑠)2 = 𝐴2

(d𝛼)2 + 𝐵2
(d𝛽)2 , (1)

where 𝐴 and 𝐵 are Lamé parameters, 𝐴 =

√(𝜕𝑥/𝜕𝛼)2 + (𝜕𝑦/𝜕𝛼)2 + (𝜕𝑧/𝜕𝛼)2 and 𝐵 =

√(𝜕𝑥/𝜕𝛽)2 + (𝜕𝑦/𝜕𝛽)2 + (𝜕𝑧/𝜕𝛽)2.
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Figure 1: The coordinate system.

The internal forces of the infinitesimal surface can be
expressed as

𝑁
𝛼
= 𝐾 (𝜀

0

𝛼
+ 𝜇𝜀

0

𝛽
) ,

𝑁
𝛽
= 𝐾 (𝜀

0

𝛽
+ 𝜇𝜀

0

𝛼
) ,

𝑁
𝛼𝛽
= 𝑁

𝛽𝛼
= 𝐾

(1 − 𝜇)

2
𝜀
0

𝛼𝛽
,

𝑀
𝛼
= 𝐷(𝜒

𝛼
+ 𝜇𝜒

𝛽
) ,

𝑀
𝛽
= 𝐷(𝜒

𝛽
+ 𝜇𝜒

𝛼
) ,

𝑀
𝛼𝛽
= 𝑀

𝛽𝛼
= 𝐷

(1 − 𝜇)

2
𝜒
𝛼𝛽
,

(2)

where 𝐾 is the membrane stiffness, 𝐾 = 𝐸ℎ/(1 − 𝜇
2
); 𝑁

𝛼

and 𝑁
𝛽
are membrane stresses; 𝑁

𝛼𝛽
is the shear stress; 𝐷 is

bending stiffness, 𝐷 = 𝐸ℎ
3
/12(1 − 𝜇

2
); 𝑀

𝑥
and 𝑀

𝜃
are the

bendingmoments;𝑀
𝑥𝜃
is the torque; 𝜀0

𝛼
, 𝜀0

𝛽
, and 𝜀0

𝛼𝛽
are strain

components, and 𝜒
𝛼
, 𝜒

𝛽
, and 𝜒

𝛼𝛽
are curvature components,

which are as follows:

𝜀
0

𝛼
=
1

𝐴

𝜕𝑢

𝜕𝛼
+

V
𝐴𝐵

𝜕𝐴

𝜕𝛽
+
𝑤

𝑅
𝛼

,

𝜀
0

𝛽
=
1

𝐵

𝜕V
𝜕𝛽

+
𝑢

𝐴𝐵

𝜕𝐵

𝜕𝛼
+
𝑤

𝑅
𝛽

,

𝜀
0

𝛼𝛽
=
𝐴

𝐵

𝜕

𝜕𝛽
(
𝑢

𝐴
) +

𝐵

𝐴

𝜕

𝜕𝛼
(
V
𝐵
) ,

𝜒
𝛼
=
1

𝐴

𝜕

𝜕𝛼
(
𝑢

𝑅
𝛼

−
1

𝐴

𝜕𝑤

𝜕𝛼
)

+
1

𝐴𝐵
(

V
𝑅
𝛽

−
1

𝐵

𝜕𝑤

𝜕𝛽
)
𝜕𝐴

𝜕𝛽
,

𝜒
𝛽
=
1

𝐵

𝜕

𝜕𝛽
(

V
𝑅
𝛽

−
1

𝐵

𝜕𝑤

𝜕𝛽
) +

1

𝐴𝐵
(
𝑢

𝑅
𝛼

−
1

𝐴

𝜕𝑤

𝜕𝛼
)
𝜕𝐵

𝜕𝛼
,
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𝜒
𝛼𝛽
=
𝐴

𝐵

𝜕

𝜕𝛽
(

𝑢

𝐴𝑅
𝛼

−
1

𝐴2

𝜕𝑤

𝜕𝛼
)

+
𝐵

𝐴

𝜕

𝜕𝛼
(

V
𝐵𝑅

𝛽

−
1

𝐵2

𝜕𝑤

𝜕𝛽
) ,

(3)

where 𝑅
𝛼
and 𝑅

𝛽
are main curvature radiuses.

In order to obtain the governing equation, let all the
stresses multiply the corresponding arc length and let the
inertia force components multiply the infinitesimal area in
the directions 𝛼, 𝛽, and 𝛾, respectively, which yields

𝜕 (𝐵𝑁
𝛼
)

𝜕𝛼
+

𝜕 (𝐴𝑁
𝛽𝛼
)

𝜕𝛽
−
𝜕𝐵

𝜕𝛼
𝑁

𝛽
+
𝜕𝐴

𝜕𝛽
𝑁

𝛼𝛽
+ 𝐴𝐵

𝑄
𝛼

𝑅
𝛼

− 𝐴𝐵𝜌ℎ
𝜕
2
𝑢

𝜕𝑡2
= 0,

𝜕 (𝐴𝑁
𝛽
)

𝜕𝛽
+

𝜕 (𝐵𝑁
𝛼𝛽
)

𝜕𝛼
−
𝜕𝐴

𝜕𝛽
𝑁

𝛼
+
𝜕𝐵

𝜕𝛼
𝑁

𝛽𝛼
+ 𝐴𝐵

𝑄
𝛽

𝑅
𝛽

− 𝐴𝐵𝜌ℎ
𝜕
2V
𝜕𝑡2

= 0,

𝜕 (𝐵𝑄
𝛼
)

𝜕𝛼
+

𝜕 (𝐴𝑄
𝛽
)

𝜕𝛽
− 𝐴𝐵

𝑁
𝛼

𝑅
𝛼

− 𝐴𝐵
𝑁

𝛽

𝑅
𝛽

− 𝐴𝐵𝜌ℎ
𝜕
2
𝑤

𝜕𝑡2
= 0,

(4)

where the relationships of the shear force 𝑄
𝛼
and 𝑄

𝛽
can be

expressed as

1

𝐴𝐵
(

𝜕 (𝐴𝑀
𝛽
)

𝜕𝛽
+

𝜕 (𝐵𝑀
𝛼𝛽
)

𝜕𝛼
−
𝜕𝐴

𝜕𝛽
𝑀

𝛼
+
𝜕𝐵

𝜕𝛼
𝑀

𝛽𝛼
)

= 𝑄
𝛽
,

1

𝐴𝐵
(
𝜕 (𝐵𝑀

𝛼
)

𝜕𝛼
+

𝜕 (𝐴𝑀
𝛽𝛼
)

𝜕𝛽
−
𝜕𝐵

𝜕𝛼
𝑀

𝛽
+
𝜕𝐴

𝜕𝛽
𝑀

𝛼𝛽
)

= 𝑄
𝛼
,

𝑁
𝛼𝛽
− 𝑁

𝛽𝛼
+
𝑀

𝛼𝛽

𝑅
𝛼

−
𝑀

𝛽𝛼

𝑅
𝛽

= 0.

(5)

By using (4) and (5), the governing equation can be
written as

𝜕 (𝐵𝑁
𝛼
)

𝜕𝛼
+

𝜕 (𝐴𝑁
𝛽𝛼
)

𝜕𝛽
−
𝜕𝐵

𝜕𝛼
𝑁

𝛽
+
𝜕𝐴

𝜕𝛽
𝑁

𝛼𝛽

+
1

𝑅
𝛼

[
𝜕 (𝐵𝑀

𝛼
)

𝜕𝛼
+

𝜕 (𝐴𝑀
𝛽𝛼
)

𝜕𝛽
−
𝜕𝐵

𝜕𝛼
𝑀

𝛽
+
𝜕𝐴

𝜕𝛽

⋅ 𝑀
𝛼𝛽
] − 𝐴𝐵𝜌ℎ

𝜕
2
𝑢

𝜕𝑡2
= 0,

(6a)

𝜕 (𝐴𝑁
𝛽
)

𝜕𝛽
+

𝜕 (𝐵𝑁
𝛼𝛽
)

𝜕𝛼
−
𝜕𝐴

𝜕𝛽
𝑁

𝛼
+
𝜕𝐵

𝜕𝛼
𝑁

𝛽𝛼

+
1

𝑅
𝛽

[

𝜕 (𝐴𝑀
𝛽
)

𝜕𝛽
+

𝜕 (𝐵𝑀
𝛼𝛽
)

𝜕𝛼
−
𝜕𝐴

𝜕𝛽
𝑀

𝛼
+
𝜕𝐵

𝜕𝛼

⋅ 𝑀
𝛽𝛼
] − 𝐴𝐵𝜌ℎ

𝜕
2V
𝜕𝑡2

= 0,

(6b)

𝜕

𝜕𝛼
{
1

𝐴
[
𝜕 (𝐵𝑀

𝛼
)

𝜕𝛼
+

𝜕 (𝐴𝑀
𝛽𝛼
)

𝜕𝛽
−
𝜕𝐵

𝜕𝛼
𝑀

𝛽

+
𝜕𝐴

𝜕𝛽
𝑀

𝛼𝛽
]} +

𝜕

𝜕𝛽
{
1

𝐵
[

𝜕 (𝐴𝑀
𝛽
)

𝜕𝛽
+

𝜕 (𝐵𝑀
𝛼𝛽
)

𝜕𝛼

−
𝜕𝐴

𝜕𝛽
𝑀

𝛼
+
𝜕𝐵

𝜕𝛼
𝑀

𝛽𝛼
]} − 𝐴𝐵(

𝑁
𝛼

𝑅
𝛼

+
𝑁

𝛽

𝑅
𝛽

)

− 𝐴𝐵𝜌ℎ
𝜕
2
𝑤

𝜕𝑡2
= 0.

(6c)

For the typical thin walled structures, Lamé parameter
can be written as 𝐴 = 1 and 𝐵 = 𝑅

0
. For thin walled

cylindrical shells, 𝑅
0
= 𝑅; for the thin walled plates, 𝑅

0
=

+∞. Substituting (2) and (3) into (6a), (6b), and (6c), the
governing equation of thin walled structures can be denoted
as

−
𝐵𝐷

𝐴2𝑅
𝛼

𝜕
3
𝑤

𝜕𝛼3
−

𝐷

𝐵𝑅
𝛼

𝜕
3
𝑤

𝜕𝛼𝜕𝛽2
+
𝐵

𝐴
(𝐾 +

𝐷

𝑅2

𝛼

)
𝜕
2
𝑢

𝜕𝛼2

+
𝐴 (1 − 𝜇)

2𝐵
(𝐾 +

𝐷

𝑅2

𝛼

)
𝜕
2
𝑢

𝜕𝛽2

+ (1 + 𝜇)(
𝐾

2
+

𝐷

2𝑅
𝛼
𝑅
𝛽

)
𝜕
2V

𝜕𝛼𝜕𝛽

+ 𝐵𝐾(
1

𝑅
𝛼

+
𝜇

𝑅
𝛽

)
𝜕𝑤

𝜕𝛼
− 𝐴𝐵𝜌ℎ

𝜕
2
𝑢

𝜕𝑡2
= 0,

(7a)

−
𝐷

𝐴𝑅
𝛽

𝜕
3
𝑤

𝜕𝛼2𝜕𝛽
−
𝐴𝐷

𝐵2𝑅
𝛽

𝜕
3
𝑤

𝜕𝛽3

+
(1 + 𝜇)

2
(𝐾 +

𝐷

𝑅
𝛼
𝑅
𝛽

)
𝜕
2
𝑢

𝜕𝛼𝜕𝛽

+
𝐵 (1 − 𝜇)

2𝐴
(𝐾 +

𝐷

2𝑅
2

𝛽

)
𝜕
2V
𝜕𝛼2

+
𝐴

𝐵
(𝐾 +

𝐷

𝑅
2

𝛽

)
𝜕
2V
𝜕𝛽2

+ 𝐴𝐾(
𝜇

𝑅
𝛼

+
1

𝑅
𝛽

)
𝜕𝑤

𝜕𝛽

− 𝐴𝐵𝜌ℎ
𝜕
2V
𝜕𝑡2

= 0,

(7b)
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−
𝐵𝐷

𝐴3

𝜕
4
𝑤

𝜕𝛼4
−
2𝜇𝐷

𝐴𝐵

𝜕
4
𝑤

𝜕𝛼2𝜕𝛽2
−
2𝐷 (1 − 𝜇)

𝐴𝐵

𝜕
4
𝑤

𝜕𝛼2𝜕𝛽2

−
𝐴𝐷

𝐵3

𝜕
4
𝑤

𝜕𝛽4
+

𝐵𝐷

𝐴2𝑅
𝛼

𝜕
3
𝑢

𝜕𝛼3
+

𝐷

𝐵𝑅
𝛼

𝜕
3
𝑢

𝜕𝛼𝜕𝛽2

+
𝐷

𝐴𝑅
𝛽

𝜕
3V

𝜕𝛼2𝜕𝛽
+
𝐴𝐷

𝐵2𝑅
𝛽

𝜕
3V
𝜕𝛽3

− (
𝐵𝐾

𝑅
𝛼

+
𝜇𝐵𝐾

𝑅
𝛽

)
𝜕𝑢

𝜕𝛼

+ (
𝜇𝐴𝐾

𝑅
𝛼

+
𝐴𝐾

𝑅
𝛽

)
𝜕V
𝜕𝛽

+ (
𝐴𝐵𝐾

𝑅2

𝛼

+
2𝜇𝐴𝐵𝐾

𝑅
𝛼
𝑅
𝛽

+
𝐴𝐵𝐾

𝑅
2

𝛽

)𝑤

− 𝐴𝐵𝜌ℎ
𝜕
2
𝑤

𝜕𝑡2
= 0.

(7c)

From (7a), (7b), and (7c), we can know that the highest
order’s derivation of the displacements 𝑢, V, and 𝑤 with 𝛼
and 𝛽 is 4. Therefore, the governing equation of typical thin
walled structures can be summarized as

∑

𝑗=𝑢,V,𝑤

𝑚=4

∑

𝑘=1

𝑛=𝑘

∑

𝑖=0

𝐿
𝑗−𝑘𝑖

𝜕
𝑘
𝑗

𝜕𝛼𝑘−𝑖𝜕𝛽𝑖
+ ∑

𝑗=𝑢,V,𝑤
𝐿
𝑗

𝜕
2
𝑗

𝜕𝑡2
= 0, (8)

where 𝑗 represents the displacements 𝑢, V, and 𝑤; 𝐿
𝑗−𝑘𝑖

and
𝐿
𝑗
are corresponding coefficients; 𝑡 is time.

3. Derivation of Scaling Laws

3.1. Geometrically Complete Scaling Law. The governing
equation of the prototype and model can be written as

∑

𝑗=𝑢,V,𝑤

𝑚=4

∑

𝑘=1

𝑛=𝑘

∑

𝑖=0

𝐿
𝑗p−𝑘𝑖

𝜕
𝑘
𝑗p

𝜕𝛼𝑘−𝑖p 𝜕𝛽𝑖

p
= ∑

𝑗=𝑢,V,𝑤
𝐿
𝑗p
𝜕
2
𝑗p

𝜕𝑡2
, (9a)

∑

𝑗=𝑢,V,𝑤

𝑚=4

∑

𝑘=1

𝑛=𝑘

∑

𝑖=0

𝐿
𝑗m−𝑘𝑖

𝜕
𝑘
𝑗m

𝜕𝛼𝑘−𝑖m 𝜕𝛽𝑖

m
= ∑

𝑗=𝑢,V,𝑤
𝐿
𝑗m
𝜕
2
𝑗m
𝜕𝑡2

, (9b)

where subscript p denotes the prototype and subscript m
denotes the model.

The deflection equation can be denoted as

𝑗 (𝛼, 𝛽, 𝑡) = 𝐽 (𝛼, 𝛽) 𝑒
𝑖𝜔𝑡
, (10)

where𝜔 is the natural frequency; 𝐽 representsmode functions
𝑈, 𝑉, and𝑊.

Substituting scaling factors 𝜆
𝑒
= (𝑒m/𝑒p) (𝑒 = 𝑗, 𝐿𝑗−𝑘𝑖

, 𝛼,

𝛽, 𝐿
𝑗
, 𝐽, etc.) into (9a) yields

∑

𝑗=𝑢,V,𝑤

4

∑

𝑘=1

𝑘

∑

𝑖=0

𝜆
𝐿𝑗−𝑘𝑖

𝜆
𝐽

𝜆𝑘−𝑖
𝛼
𝜆
𝑖

𝛽

𝐿
𝑗m−𝑘𝑖

𝜕
𝑘
𝐽m

𝜕𝛼𝑘−𝑖m 𝜕𝛽𝑖

m

= ∑

𝑗=𝑢,V,𝑤
𝜆
𝐿𝑗
𝜆
𝐽
𝜆
2

𝜔
𝐿
𝑗m
𝜕
2
𝐽m
𝜕𝑡2

.

(11)

According to the similitude theory, the corresponding
coefficient of a prototype’s governing equation is proportional
to the coefficient of a model, which means

𝜆
𝐿𝑗−𝑘𝑖

𝜆
𝐽

𝜆𝑘−𝑖
𝛼
𝜆
𝑖

𝛽

= 𝜆
𝐿𝑗
𝜆
𝐽
𝜆
2

𝜔
. (12)

Under the condition of geometrically complete simili-
tude, this yields

𝜆
𝛼
= 𝜆

𝑅𝛽
𝜆
𝛽
= 𝜆

ℎ
= 𝜆,

𝜆
𝜇
= 1,

𝜆
𝐿𝑗,𝑘𝑖

𝜆
𝐿𝑗

=
𝜆
𝐷

𝜆
𝜌
𝜆
ℎ

=
𝜆
𝐾

𝜆
𝜌
𝜆
ℎ

𝜆
2
=
𝜆
𝐸

𝜆
𝜌

𝜆
2
,

𝜆
𝑘−𝑖

𝛼
𝜆
𝑖

𝛽
= 𝜆

4
.

(13)

Substituting (13) into (12) yields

𝜆
𝜔
= √

𝜆
𝐿𝑗−𝑘𝑖

𝜆
𝐿𝑗

1

𝜆𝑘−𝑖
𝛼
𝜆
𝑖

𝛽

= √
𝜆
𝐸

𝜆
𝜌

𝜆2
1

𝜆4
=
1

𝜆
√
𝜆
𝐸

𝜆
𝜌

. (14)

Therefore, geometrically complete scaling law can be
denoted as

𝜆
𝜔
=
1

𝜆
√
𝜆
𝐸

𝜆
𝜌

. (15)

3.2. Distorted Scaling Law. Normally, there will be many lim-
itations in employing the geometrically complete similitude
model in experiments, so it is necessary that designing geo-
metrically distorted models predicts dynamic characteristics
of the prototype. Geometrically distorted models are defined
such that scaling factors of geometrical parameters of models
are keeping different [26].

In addition, (12) can be written as

𝜆
𝜔
= √

𝜆
𝐿𝑗−𝑘𝑖

𝜆
𝐿𝑗
𝜆𝑘−𝑖
𝛼
𝜆
𝑖

𝛽

. (16)

Therefore, there are many possible candidate distorted
scaling laws as 𝑖 = 0, 1, . . . , 4. According to (7a)–(7c), scaling
factors 𝜆

𝐿𝑗−𝑘𝑖
= 𝜆

𝑚

𝐸
𝜆
𝑜
󸀠

𝛼
𝜆
𝑠
󸀠

𝛽
𝜆
𝑔

ℎ
and 𝜆

𝐿𝑗
= 𝜆

−𝑛

𝜌
𝜆
𝑔
󸀠

ℎ
are obtained,

and the distorted scaling law can be denoted as

𝜆
𝜔
= √𝜆

𝑚

𝐸
𝜆𝑛
𝜌
𝜆𝑜
𝛼
𝜆
𝑠

𝛽
𝜆
𝑞

ℎ
. (17)

In general, the indexes 𝑚 and 𝑛 are explicit and can be
directly determined according to the governing equation.
However, indexes 𝑜, 𝑠, and 𝑞may be implicit in the governing
equation [23, 24]. For example, for the distorted scaling law
of the thin walled annular plates, the scaling factors of outer
and inner radiuses are hiding in the radius scaling factor 𝜆

𝑟

in (31). In the investigation, a new method is proposed to
determine the accurate distorted scaling law by combining
the governing equation and the sensitivity analysis.
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3.3. The Principles for Dynamic Scaling Laws. The sensitivity
is the change rate of structural characteristic parameters
with respect to structural parameters [27, 28]. Three basic
principles are proposed and theoretically proved in order to
determine the accurate distorted scaling law based on the
sensitivity analysis.

Principle 1. In distorted scaling laws, if the scaling factor 𝜆
𝑗

is explicit and presented in the governing equation, the index
of scaling factor 𝜆

𝑗
can be directly determined.

Proof. From (7a), (7b), and (7c), scaling factors of param-
eters 𝐸 and 𝜌 are explicit and reflected in the governing
equation, so scaling factors’ indexes of the parameters 𝐸 and
𝜌 are directly determined. For example, in the numerical
validation, parameters 𝐸 and 𝜌 are directly presented in
(29). Therefore, the scaling factors 𝜆

𝐸
and 𝜆

𝜌
can be directly

determined. However, in the governing equation (29), the
scaling factors 𝜆

𝑎
and 𝜆

𝑏
are coupled in the scaling factor

𝜆
𝑟
and the scaling factors 𝜆

𝑎
and 𝜆

𝑏
could not be directly

determined and need to employ the following principles.

Principle 2. When sensitivity’s absolute values satisfy |Φ
1
| >

|Φ
2
| > ⋅ ⋅ ⋅ > |Φ

𝑛
|, the index relation of the scaling factor 𝜆𝑘𝑛

𝑛

is |𝑘
1
| > |𝑘

2
| > ⋅ ⋅ ⋅ > |𝑘

𝑛
|.

Φ
𝑛
is the sensitivity of the natural frequency with respect

to the structural parameter 𝑛; 𝑘
𝑛
is the index of the scaling

factor 𝜆𝑘𝑛
𝑛
.

Proof. The sensitivity is applied to the condition of small
variations of structural parameters, but the distorted models
did not satisfy the condition. So the transitional model is
introduced; let

𝜆
𝑗
=
𝑗t
𝑗p

𝑗m
𝑗t
= 𝜆

𝑗,p-t𝜆𝑗,t-m, (18)

where subscript t denotes the transitional model; a transi-
tional model can be defined as one structural parameter of
the prototype changes in a small range, and other parameters
remain unchanged; 𝜆

𝑗,p-t is the scaling factor between the
prototype and transitional model; 𝜆

𝑗,t-m is the scaling factor
between the transitional model and distorted model.

Equation (17) can be written as

𝜆
𝜔
= √𝜆

𝐴
󸀠

𝐸
𝜆𝐵
󸀠

𝜌
𝜆
𝑜

𝛼,p-t𝜆
𝑠

𝛽,p-t𝜆
𝑞

ℎ,p-t𝜆
𝑜

𝛼,t-m𝜆
𝑠

𝛽,t-m𝜆
𝑞

ℎ,t-m. (19)

According to the geometrically complete scaling law,
the transitional model and distorted model should satisfy
𝜆
𝛼,t-m = 𝜆

𝛽,t-m = 𝜆
ℎ,t-m = 𝜆. Therefore, (19) can be expressed

as

𝜆
𝜔
= √𝜆

𝐴
󸀠

𝐸
𝜆𝐵
󸀠

𝜌
𝜆
𝑜

𝛼,p-t𝜆
𝑠

𝛽,p-t𝜆
𝑞

ℎ,p-t𝜆
𝑜

𝛼,t-m𝜆
𝑠

𝛽,t-m𝜆
𝑞

ℎ,t-m

= √𝜆
𝐴
󸀠

𝐸
𝜆𝐵
󸀠

𝜌
𝜆
𝑜

𝛼,p-t𝜆
𝑠

𝛽,p-t𝜆
𝑞

ℎ,p-t𝜆
𝑜+𝑠+𝑞.

(20)

If 𝜆
𝑗t → 𝜆

𝑗p = 1, the sensitivity of a prototype can be
denoted as

Φ
𝑗p =

𝑑𝜔
𝑗

𝑑𝜆
𝑗

=
𝜔p − 𝜔𝑗t

𝜆p − 𝜆𝑗t
=
𝜔p − 𝜔𝑗t

1 − 𝜆
𝑗t
, (21)

whereΦ
𝑗p is the sensitivity of a prototype;𝜔𝑗t denotes natural

frequency of the transitional model.
If |Φ

𝛼p = (𝜔p − 𝜔𝛼t)/(1 − 𝜆𝛼t)| > |Φ𝛽p = (𝜔p − 𝜔𝛽t)/(1 −
𝜆
𝛽t)| is satisfied, under the condition of 𝜆

𝛼t = 𝜆
𝛽t, |𝜆𝛼𝜔

=

𝜔
𝛼t/𝜔p| > |𝜆𝛽𝜔

= 𝜔
𝛽t/𝜔p| can be obtained from (21).

Therefore, |𝜆
𝛼𝜔
| > |𝜆

𝛽𝜔
| can be obtained under the

condition of 𝜆
𝛼t = 𝜆𝛽t.

By combining (19), the relation 𝑜 > 𝑠 of scaling factors
𝜆
𝑜

𝛼,p-t and 𝜆
𝑠

𝛽,p-t can be deduced if |Φ
𝛼p| > |Φ𝛽p| is satisfied.

According to the recursive relation, if |Φ
1
| > |Φ

2
| >

⋅ ⋅ ⋅ > |Φ
𝑛
| is satisfied when there are many parameters, the

index relation of scaling factors 𝜆𝑘𝑛
𝑛

should be satisfied as
|𝑘

1
| > |𝑘

2
| > ⋅ ⋅ ⋅ > |𝑘

𝑛
|, so Principle 2 is proved.

Principle 3. If the sensitivity Φ
𝑗p > 0, 𝜆

𝑗
is positively pro-

portional to 𝜆
𝜔
in the distorted scaling law; conversely, 𝜆

𝑗
is

inversely proportional to 𝜆
𝜔
if the sensitivityΦ

𝑗p < 0.

Proof. If the sensitivityΦ
𝑗p > 0, two cases are as follows.

(1) If the scaling factor 𝜆
𝑗
is satisfied, 𝜆

𝑗,p-t = 𝑗t/𝑗p <

𝜆
𝑗p = 1, then the natural frequency is satisfied as 𝜔

𝑗,p-t < 𝜔p
according to (21). Further, 𝜆

𝜔
= 𝜔

𝑗,p-t/𝜔p < 1 is obtained.
Therefore, the scaling factor 𝜆

𝜔
will reduce if the scaling

factor 𝜆
𝑗
decreases. That is, 𝜆

𝑗
is positively proportional to

𝜆
𝜔
in the distorted scaling law.
(2) If 𝜆

𝑗,p-t = 𝑗t/𝑗p > 𝜆𝑗p = 1, then 𝜔𝑗,p-t > 𝜔p. As a result
of case (1), 𝜆

𝑗
is positively proportional to 𝜆

𝜔
in the distorted

scaling law.
When the sensitivity Φ

𝑗p < 0, there are similar cases and
Principle 3 is proved in the same way.

In addition, the above three principles could obtain the
approximate distorted scaling laws. In order to determine
the accurate distorted scaling laws, an additional principle is
required.

Additional Principle. In the distorted scaling law, the index
ratio 𝑘

1
: 𝑘

2
: ⋅ ⋅ ⋅ : 𝑘

𝑛
of the scaling factor 𝜆𝑘𝑛

𝑛
is approximate

to the ratio of the sensitivity values

𝑘
1
: 𝑘

2
: ⋅ ⋅ ⋅ : 𝑘

𝑛
≈ Φ

1
: Φ

2
: ⋅ ⋅ ⋅ : Φ

𝑛
. (22)

Proof. When the structural parameters𝛼 and𝛽 changewithin
the limit range (𝜆

𝛼t, 𝜆𝛽t ∈ [1−𝜀, 1+𝜀]; 𝜀 is indefinitely small),
the distorted scaling laws (20) can be written as

𝜆
𝛼𝜔,p-t =

𝜔
𝛼,p-t

𝜔p
= 𝜆

𝑜/2

𝛼,p-t,

𝜆
𝛽𝜔,p-t =

𝜔
𝛽,p-t

𝜔p
= 𝜆

𝑠/2

𝛽,p-t.

(23)

The sensitivity of natural frequency with respect to pa-
rameters 𝛼 and 𝛽 can be expressed as

Φ
𝛼
=

d𝜔
d𝜆

𝛼

=
Δ𝜔

Δ𝜆
𝛼

=
𝜔p − 𝜔𝛼,p-t

1 − 𝜆
𝛼,p-t

,

Φ
𝛽
=

d𝜔
d𝜆

𝛽

=
Δ𝜔

Δ𝜆
𝛽

=
𝜔p − 𝜔𝛽,p-t

1 − 𝜆
𝛽,p-t

.

(24)
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Therefore, this yields

Φ
𝛼

Φ
𝛽

=
𝜔p − 𝜔𝛼t

1 − 𝜆
𝛼t

1 − 𝜆
𝛽,p-t

𝜔p − 𝜔𝛽,p-t

=

𝜔
𝛼,p-t (𝜔p/𝜔𝛼,p-t − 1)

1 − 𝜆
𝛼,p-t

1 − 𝜆
𝛽,p-t

(𝜔p/𝜔𝛽,p-t − 1)𝜔𝛽,p-t
.

(25)

Substituting (23) into (25) yields

Φ
𝛼

Φ
𝛽

=
𝜔
𝛼,p-t

𝜔
𝛽,p-t

𝜆
𝑜/2

𝛼,p-t − 1

1 − 𝜆
𝛼,p-t

1 − 𝜆
𝛽,p-t

𝜆
𝑠/2

𝛽,p-t − 1
. (26)

When scaling factors change within the limit range, that
is, 𝜆

𝛼t → 1, 𝜆
𝛽t → 1, there are

lim
𝜆𝛼,p-t →1, 𝜆𝛽,p-t →1

𝜔
𝛼,p-t

𝜔
𝛽,p-t

= 1,

lim
𝜆𝛼,p-t →1

𝜆
𝑜/2

𝛼,p-t − 1

1 − 𝜆
𝛼,p-t

= −
𝑜

2
,

lim
𝜆𝛽,p-t →1

1 − 𝜆
𝛽,p-t

𝜆
𝛽,p-t

𝑠/2
− 1

= −
2

𝑠
.

(27)

So (26) can be denoted as

Φ
𝛼

Φ
𝛽

=
𝜔
𝛼t
𝜔
𝛽t
(−

𝑜

2
) (−

2

𝑠
) =

𝑜

𝑠
. (28)

When scaling factors change in the little range, this yields

Φ
𝛼

Φ
𝛽

≈
𝑜

𝑠
. (29)

In the same way, if the dynamic characteristics of thin
walled structures are affected bymanyparameters, (22) can be
obtained according to the recursive relation. Consequently,
the additional principle is proved.

Therefore, the basic principles can be summarized as
follows:

(1) In distorted scaling laws, if the scaling factor 𝜆
𝑗
is

explicit and presented in the governing equation, the
index of scaling factor 𝜆

𝑗
can be directly determined.

(2) When sensitivity’s absolute values satisfy |Φ
1
| >

|Φ
2
| > ⋅ ⋅ ⋅ > |Φ

𝑛
|, the index relation of the scaling

factor 𝜆𝑘𝑛
𝑛
is |𝑘

1
| > |𝑘

2
| > ⋅ ⋅ ⋅ > |𝑘

𝑛
| and 𝑘

1
: 𝑘

2
: ⋅ ⋅ ⋅ :

𝑘
𝑛
≈ Φ

1
: Φ

2
: ⋅ ⋅ ⋅ : Φ

𝑛
in the distorted scaling law.

(3) If the sensitivityΦ
𝑗p > 0, 𝜆𝑗

is positively proportional
to 𝜆

𝜔
in the distorted scaling law; conversely, 𝜆

𝑗
is

inversely proportional to 𝜆
𝜔
if the sensitivityΦ

𝑗p < 0.

Finally, the procedure of similitude design method of
typical thin walled structures is given out.

Step 1. Deducing complete scaling law of typical thin walled
structures based on the governing equation.

b

z, w

O

𝜃, �
a

r, u

h

Figure 2: The thin walled annular plate.

Step 2. Assuming distorted scaling laws according to the
governing equation of typical thin walled structures.

Step 3. Analyzing the sensitivity of the natural frequencywith
respect to structural parameters.

Step 4. According to the principles for dynamic scaling laws,
determining the distorted scaling law of typical thin walled
structures.

4. Numerical Validation

Take the thin walled annular plate as an example; geometri-
cally complete scaling law of a thin walled annular plate is
firstly established. According to the above three principles,
the distorted scaling law of the first order’s frequency is
determined based on the sensitivity analysis. Finally, the
determining method of the distorted scaling law is validated
by the numerical analysis.

The structure of a thin walled annular plate is shown in
Figure 2. 𝑎 is outer radius, 𝑏 is inner radius, and ℎ is thickness.
The coordinate system 𝑂𝑟𝜃𝑧 is established, and 𝑂 is the
center point of the end surfaces, 𝑟 is radial displacement, 𝜃
is deflection angle, and 𝑧 is axial displacement. Displacement
𝑢 is along direction 𝑟, displacement V is along direction 𝜃, and
displacement 𝑤 is along direction 𝑧.

According to (8), the governing equation of thin walled
annular plates can be written as

𝐿
𝑤−40

𝜕
4
𝑊

𝜕𝑟4
+ 𝐿

𝑤−42

𝜕
4
𝑊

𝜕𝑟2𝜕𝜃2
+ 𝐿

𝑤−44

𝜕
4
𝑊

𝜕𝜃4

+ 𝐿
𝑤−30

𝜕
3
𝑊

𝜕𝑟3
+ 𝐿

𝑤−31

𝜕
3
𝑊

𝜕𝑟𝜕𝜃2
+ 𝐿

𝑤−20

𝜕
2
𝑊

𝜕𝑟2

+ 𝐿
𝑤
𝑊 = 0,

(30)

where 𝐿
𝑤−40

= 1, 𝐿
𝑤−42

= 2/𝑟
2, 𝐿

𝑤−44
= 1/𝑟

4, 𝐿
𝑤−30

= 2/𝑟,
𝐿
𝑤−31

= 2/𝑟
3, 𝐿

𝑤−20
= 1/𝑟

2, and 𝐿
𝑤
= 12𝜌ℎ𝜔

2
(1 − 𝜇

2
)/𝐸ℎ

2.
The geometric sizes and material parameters of the thin

walled annular plate are listed in Table 1; the boundary
condition is clamped on the inner radius edge and free on
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Table 1: The geometric sizes and material parameters.

Outer radius Inner radius Thickness Young’s modulus Density Poisson’s ratio
a/mm b/mm h/mm E/GPa 𝜌/kg⋅m−3

𝜇

100 12 6 210 8000 0.3

Table 2: The dynamic characteristics of the prototype.

Order 𝑖 1 2 3 4 5
Natural frequency 𝜔/Hz 541.90 647.94 836.11 1819.9 3168.1

Vibration modes

𝑚 = 2, 𝑛 = 1 𝑚 = 1, 𝑛 = 1 𝑚 = 4, 𝑛 = 1 𝑚 = 6, 𝑛 = 1 𝑚 = 8, 𝑛 = 1

Table 3: Natural frequencies of the 1st mode (2, 1) as a result of the
distorted outer radius.

Outer radius Scaling factor of Natural frequencies
a/mm outer radius 𝜆

𝑎
𝜔m/Hz

Model 1 96 0.96 597.47
Model 2 98 0.98 568.69
Model 3 102 1.02 516.92
Model 4 104 1.04 493.59

the outer radius boundary. For vibration experiments, natural
frequencies should be proportional between the distorted
model and prototype under the condition of the same vibra-
tion modes. By using ANSYS, 20-node element SOLID186 is
selected to build the thin walled annular plate. Then, analyze
its free vibration characteristics, and the previous five orders’
natural frequencies and vibration modes are listed in Table 2.
𝑚 is circumferential half wave number and 𝑛 is radial half
wave number.

4.1. Geometrically Complete Scaling Law. According to the
governing equation (30), it yields

𝜆
𝑊

𝜆4
𝑟

=
𝜆
𝜌
𝜆
2

𝜔

𝜆
𝐸
𝜆
2

ℎ

𝜆
𝑊
. (31)

Under the condition of geometrically complete simili-
tude, scaling factors can be expressed as

𝜆
𝑎
= 𝜆

𝑏
= 𝜆

𝑟
= 𝜆

ℎ
= 𝜆, 𝜆

𝜇
= 1. (32)

Therefore, geometrically complete scaling law of the thin
walled annular plates is

𝜆
𝜔
=
1

𝜆
√
𝜆
𝐸

𝜆
𝜌

. (33)

4.2. Distorted Scaling Law. In general, scaling factors 𝜆
𝑎
and

𝜆
𝑏
are independent in distorted scaling laws [29].𝜆4

𝑟
= 𝜆

−𝑜

𝑎
𝜆
−𝑠

𝑏

is considered in (31). In addition, from (31), 𝑜 + 𝑠 = −4

N
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The prototype
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The scaling factor 𝜆a
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Figure 3: The fitted curve of outer radius distorted models.

should be subjected to the distorted scaling law. Therefore,
the distorted scaling law of thin walled annular plates can be
written as

𝜆
𝜔
= 𝜆

ℎ
√

𝜆
𝐸

𝜆
𝜌
𝜆−𝑜
𝑎
𝜆
−𝑠

𝑏

= 𝜆
ℎ
√
𝜆
𝐸
𝜆
𝑜

𝑎
𝜆
𝑠

𝑏

𝜆
𝜌

,

𝑜 + 𝑠 = −4.

(34)

From (34), the indexes of the scaling factors 𝜆
𝐸
, 𝜆

𝜌
,

and 𝜆
ℎ
have been determined by the governing equation.

However, the indexes 𝑜 and 𝑠 need to be determined by the
sensitivity analysis.

In order to obtain the sensitivity of the first order’s natural
frequencywith respect to the scaling factor𝜆

𝑎
, other sizes and

material parameters remain unchanged and the first order’s
natural frequencies of distorted models are listed in Table 3
by ANSYS simulation.

In Figure 3, the curve is fitted by natural frequencies and
the quadratic equation is

𝜔
1𝑎
= 2270𝜆

2

𝑎
− 5837𝜆

𝑎
+ 4109. (35)
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Table 4: Parameters of the distorted model.

Outer radius Inner radius Thickness Young’s modulus Density Poisson’s ratio
a/mm b/mm h/mm E/GPa 𝜌/kg⋅m−3

𝜇

130 12 8 72 2700 0.3

Table 5: The distorted scaling laws.

Order
𝑖

Sensitivity
Φ

𝑎

Sensitivity
Φ

𝑏

Distorted scaling laws Frequencies of model
𝜔m/Hz

Predicted frequencies
𝜔pr/Hz

Error
𝜂/%

1 −1297 232.3 𝜆
𝜔
= 𝜆

ℎ
√
𝜆
𝐸
𝜆
0.61

𝑏

𝜆
𝜌
𝜆4.61
𝑎

387.56 527.33 2.69

2 −1437 144.9 𝜆
𝜔
= 𝜆

ℎ
√
𝜆
𝐸
𝜆
0.36

𝑏

𝜆
𝜌
𝜆4.36
𝑎

490.27 645.64 0.35

3 −1765 109.1 𝜆
𝜔
= 𝜆

ℎ
√
𝜆
𝐸
𝜆
0.23

𝑏

𝜆
𝜌
𝜆4.23
𝑎

647.17 837.91 0.22

4 −3621 10 𝜆
𝜔
= 𝜆

ℎ
√
𝜆
𝐸
𝜆
0.01

𝑏

𝜆
𝜌
𝜆4.01
𝑥

1445.2 1818.1 0.10

5 −6247 5 𝜆
𝜔
= 𝜆

ℎ√
𝜆
𝐸

𝜆
𝜌
𝜆4
𝑎

2517.5 3162.9 0.16

Table 6: The errors between the distorted models and prototype.

Model 𝜆
𝑎

𝜆
𝑏

𝜆
ℎ

Γ Ψ
Frequencies of model

𝜔m/Hz
Predicted 1st frequencies

𝜔pr/Hz
Error
𝜂/%

M1 1 0.6 0.6 1.67 1.67 274.72 535.06 1.26
M2 1 0.8 0.8 1.25 1.25 400.15 535.41 1.20
M3 1 1.2 1.2 0.83 0.83 700.91 552.49 1.95
M4 1 1.4 1.4 0.71 0.71 878.43 566.25 4.49
M5 1 1.2 0.6 0.71 1.67 357.47 563.55 3.99

Furthermore, adopting the adjusted square 𝑅2 to verify
the efficiency of the fitted curve, the adjusted square 𝑅2 can
be denoted as

𝑅
2

= 1 − [
𝑛
󸀠
− 1

𝑛󸀠 − (𝑘 + 1)
](1 −

∑ (𝑌̂
𝑖
− 𝑌)

2

∑(𝑌
𝑖
− 𝑌)

2
)

(𝑖 = 1, 2, . . . , 𝑛
󸀠
) ,

(36)

where 𝑛󸀠 is fitted point numbers; 𝑘 is the order of fitted
polynomial; 𝑌̂ is the fitted value; 𝑌 is the average value; 𝑌 is
the true value.

By comparing and analyzing, the fitted curve is thought
to be effective and suitable if 𝑅2

> 0.99 in this paper.
The adjusted square of the fitted curve is 𝑅2

𝑎
= 0.999.

So the fitted curve of the first order’s natural frequency is
effective.

The sensitivity of the natural frequencywith respect to the
scaling factor 𝜆

𝑎
is

Φ
1𝑎
=

d𝜔
1𝑎

d𝜆
𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑎=1

= 4540𝜆
𝑎
− 5837 = −1297. (37)
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Figure 4: The fitted curve of inner radius distorted models.

In the sameway, the fitted curve of the first order’s natural
frequencies of inner radius distorted models is shown in
Figure 4.

The fitted equation of the first order’s natural frequency is

𝜔
1𝑏
= 5.4𝜆

2

𝑏
+ 221.5𝜆

𝑏
+ 315. (38)
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Table 7: Parameters of experimental plates.

Outer radius Inner radius Thickness Young’s modulus Poisson’s ratio Density
a/mm b/mm h/mm E/GPa 𝜇 𝜌/kg⋅m−3

Prototype 100 12 6 210 0.3 8000
Model 130 12 8 72 0.3 2700

Table 8: The comparison of experimental and predicted results.

Orders
𝑖

Model
𝜔m/Hz Vibration modes Prototype

𝜔p/Hz Vibration modes Modes Predicted frequencies
𝜔pr/Hz

Errors
𝜂/%

1 639.34 862.31 𝑚 = 4, 𝑛 = 1 827.77 4.01

2 1431.5 1842.5 𝑚 = 6, 𝑛 = 1 1798.5 2.39

3 2512.8 3203.6 𝑚 = 8, 𝑛 = 1 3157.1 1.45

In Figure 4, the adjusted square of the fitted curve is 𝑅2

𝑏
=

0.999, so the fitted curve is thought to be effective.
The sensitivity of the first order’s natural frequency with

respect to the scaling factor 𝜆
𝑏
is

Φ
1𝑏
=

d𝜔
1𝑏

d𝜆
𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑏=1

= 10.8𝜆
𝑏
+ 221.5 = 232.3. (39)

As a result of the sensitivity analysis,

Φ
𝑎
: Φ

𝑏
=

d𝜔
1𝑎

d𝜆
𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑎=1

:
d𝜔

1𝑏

d𝜆
𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑏=1

= −1297 : 232.3. (40)

According to Principle 2, this yields

𝑜 : 𝑠 = −1297 : 232.3. (41)

From (34), 𝑜 + 𝑠 = −4 is satisfied.
Solving simultaneous equations yields

𝑜 = −4.61,

𝑠 = 0.61.

(42)

Therefore, the distorted scaling law of the first order’s
natural frequency of thin walled annular plates can be written
as

𝜆
1𝜔
= 𝜆

ℎ
√
𝜆
𝐸
𝜆
0.61

𝑏

𝜆
𝜌
𝜆4.61
𝑎

. (43)

4.3. Numerical Validation. In the same way, the previous
five orders’ distorted scaling laws are determined and the
effectiveness of distorted similitude models is validated.
Finally, the procedure of determining the accurate distorted
scaling laws is presented.

The geometric sizes and material parameters of the
distorted model are listed in Table 4.

Similarly, the sensitivity of the natural frequencies with
the scaling factors 𝜆

𝑎
and 𝜆

𝑏
can be obtained. By using the

sensitivity value, the previous five orders’ distorted scaling
laws of thin walled annular plates are shown in Table 5.

The error between the natural frequency of the prototype
and the predictive natural frequency can be denoted as

𝜂 =

󵄨󵄨󵄨󵄨󵄨
𝜔p − 𝜔pr

󵄨󵄨󵄨󵄨󵄨

𝜔p
× 100%. (44)

Table 5 depicts that errors between the natural frequen-
cies of the prototype and predicted values are less than
5%, and their modes are the same. Therefore, the previous
five orders’ distorted scaling laws can accurately predict the
dynamic characteristics of a prototype.

Γ is defined as Γ = 𝜆
𝑎
/𝜆

𝑏
, and Ψ is defined as Ψ = 𝜆

𝑎
/𝜆

ℎ
.

Different distortedmodels are selected and the scaling factors
are shown in Table 6. Taking the 1st frequency as an example,
the 1st frequencies of distorted models are obtained by using
ANSYS, and the error can be calculated by (44). Furthermore,
the predicted frequencies and errors are shown in Table 6.

5. Experiments Validation

In the experiment, test setup of the experimental plate is
shown in Figure 5 and parameters of the experimental plates
are listed in Table 7.

In addition, Table 8 depicts the vibration modes of the
prototype and model. Errors between the predicted values
and experimental values of the prototype are listed in Table 8.

From Table 8, errors between the previous five orders’
natural frequencies of experimental prototype and predicted
values are less than 5%, and vibration modes of experimental
prototype and model are the same.

The experimental errors are higher than the numerical
errors; the reasons are analyzed as follows:
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Hammer Model plateSensorPrototype 
plate

Figure 5: Test setup of the experimental plate.

(1) Themachining of the thin walled annular plates, such
as the dimensional error and deviation of material
parameters.

(2) The measurement accuracy of a test system, for
example, the precision of the sensor.

(3) The random error of the test procession.

6. Conclusions

In this paper, in order to investigate the similitude design
method of typical thin walled structures, the governing
equation of typical thin walled structures is firstly established
and the geometrically complete scaling law is deduced. In
order to determine accurate distorted scaling laws of thin
walled structures, three principles are proposed and theo-
retically proved by combining the governing equation and
sensitivity analysis. Taking the thin walled annular plate as an
example, geometrically complete and distorted scaling laws
are obtained based on the three principles. Finally, the design
method of similitude models of typical thin walled structures
is validated via experiments, and detailed conclusions are
listed as follows:

(1) The governing equation of typical thin walled struc-
tures is unified in (8).

(2) By employing the governing equation, geometrically
complete scaling law of typical thin walled structures
is obtained.

(3) In order to determine the accurate distorted scaling
law of thin walled structures, three principles are
proposed and theoretically proved by combining the
governing equation and sensitivity analysis.

(4) Taking thin walled annular plate as an example, the
design method of similitude models of thin walled
structures is validated by numerical simulation and
experiments.

There are also some restrictions about the similitude
design method; one of the limitations is that a numerical
model of the thin walled structure is always necessary to
compute the sensitivity.
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