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For underground explosions, a thin to medium thickness layer near the cavity of an explosion can be considered a theoretical shell
structure. Detonation products transmit the effective energy of explosives to this shell which can expand thus leading to irreversible
deformation of the surrounding medium. Based on mass conservation, incompressible conditions, and boundary conditions, the
possible kinematic velocity fields in the plastic zone are established. Based on limit equilibrium theory, this work built equations of
material resistance corresponding to different possible kinematic velocity fields. Combined with initial conditions and boundary
conditions, equations of motion and material resistance are solved, respectively. It is found that critical depth of burial is positively
related to a dimensionless impact factor, which reflects the characteristics of the explosives and the surrounding medium. Finally,
an example is given, which suggests that this method is capable of calculating the critical depth of burial and the calculated results
are consistent with empirical results.

1. Introduction

Underground explosions have been studied for different
purposes [1].They can be classified into contained explosions
(or camouflet explosions), bulging explosions, and cratering
explosions. Contained explosions occur when the depth of
burial of the explosive is sufficiently deep [2] and the model
best suited to such conditions is an explosion in an infinite
medium [3]. Bulging explosions occur when the depth of
burial of the explosive is within a certain range [4] and
are best modelled as explosions in a semi-infinite medium.
Cratering explosions may occur in various ways when the
depth of burial of the explosive is relatively shallow and they
are best modelled as explosions in a semi-infinite medium
[5]. A widely accepted zonal model divides the medium near
the cavity into a grinding zone, a radial cracking zone, and
an elastic zone [6], which can be the basis for the study of
bulging and cratering explosions. Owing to their significant
military and engineering application, bulging and cratering
explosions have arisen widespread concern for a long time.

Actually, bulging and cratering explosions are more complex
subjects which should take the influence of the free facet into
consideration in dynamic models.

At present, the cratering mechanism of blasting can be
divided into three kinds of effects: compressional stress wave
effects, tensile reflected wave effects, and gas pressure effects.
Since crushing and plastic deformation are omnipresent
in the medium surrounding the explosive source, com-
pressional stress wave effects predominate. After Hino [7]
proposed the concept of blastability coefficient, reflected
tensile wave effects have been widely accepted and increas-
ingly investigated by other researchers. To clarify the role
of gas pressure in the fragmentation of an underground
blast, Kutter and Fairhurst [8] designed a system of model
tests in which the combustion products were simulated
by pressurised oil. They concluded that the gas pressure
played an important role in blasting. Hagan agreed with
this view and coined the term “pneumatic wedging” to
describe previous observations [9, 10]. Meanwhile, many
other researchers, such as Dally et al. [11], Dally et al. [12], and
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Figure 1: Underground explosions: (a) contained; (b) bulging; (c) cratering.

Harries [13], verified the reasonability of the aforementioned
view in different ways. However, these research findings
exhibit fundamental mechanisms of explosive cratering and
cannot be used to solve most practical problems. Therefore,
researchers have to formulate different hypotheses or conduct
many tests to obtain any more practical computational
formulae.

Nowadays, the widely used theories for calculating the
explosive charge or the depth of burial of cratering explosions
include Livingston’s crater theory [14, 15], Boreskov’s formula
[16], Langefors’ formula [17, 18], Vlasov’s formula [19, 20],
and Pokrovskii’s formula [21, 22]. However, these theories
cannot be used to calculate critical depth of burial of explosive
charges to generate bulging and cratering in rock. Practically,
it is important and pressing to investigate the mechanism or
principle behind bulging explosions. A guide to bulging blasts
in roads when earth-penetrating bombs are used on airport
runway or highway pavements is needed.

As shown in Figure 1 [23], “n” denotes throwing index,
which is a ratio of the radius of the crater (B) to the
depth of burial of explosive (h). For contained explosions,
𝑛 = 0, shown in Figure 1(a); for bulging explosions, n
< 0.75, as shown in Figure 1(b); for cratering explosions,
n > 0.75, as shown in Figure 1(c). A critical depth of

burial, which forms the dividing line between a contained
explosion and a bulging explosion, can be called the first
critical depth of burial (FCDOB). Similarly, a critical depth
of burial which forms the dividing line between a bulging
explosion and a cratering explosion can be called the second
critical depth of burial (SCDOB). When the depth of burial
is between these two critical depths, a bulging explosion
tends to occur. This work focuses on two types of critical
depth of burial, which can be used to predict the type of
explosion and provide criteria for the occurrence of a bulging
explosion.

2. The Dynamic Model: An Introduction

As is known, scabbing or perforation will occur when a target
is subjected to blast loads [24, 25] (Figure 2). If the target is
a semi-infinite medium and the explosive is detonated in the
medium, scabbing or perforation will occur on the free facet
and irreversible deformation happens near the blast hole;
therefore, the progress is similar to that of a shallow buried
explosion (Figure 3). Furthermore, the progress of a bulging
explosion is similar to that of scabbing and the progress of a
cratering explosion is similar to that of perforation.
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Figure 2: Local destructive effects of targets under blast loads: (a) scabbing; (b) perforation.

(a) (b)

Figure 3: Shallow explosions: (a) bulging; (b) cratering.

Therefore, a method [26, 27] to calculate scabbing and
perforation can be used to investigate the category of an
underground explosion; however, the density of the medium,
and the effective energy of the explosives, should be con-
sidered when establishing any dynamic model of a shallow
buried explosion.

Before compressive waves reach the free surface, the
processes in a shallow explosion are similar to those in
a fully contained explosion. Hence, the initial conditions
in a shallow-burial explosion are the same as the state
parameters when coupled charges are detonated in an infinite
media.

Figure 4 shows the proven results on the zoning of
deformation and failure of rock under contained explosions
[6]. There are four zones: (1) cavity; (2) crushed zone; (3)

radial cracking zone; and (4) elastic zone. Besides, 𝑅
1
, 𝑅
2
,

and 𝑅
3
are the cavity, crushed zone, and radial crack zone

radii, respectively. However, all of them are posttest results
and are measured after any explosion which cannot describe
the dynamic processes inherent to explosive cavity expansion.

Regarding a thin layer near the cavity as an impact
body [28], the problem of an explosion in rock can be
transformed to a problem of impact between the impact body
and the surrounding medium. Detonation products trans-
mit effective initial mechanical energy to the surrounding
medium through the impact body, which leads to irreversible
deformation andmovement of themedium.The impact body
is a shell whose mass is constant and whose position moves
outwards with the cavity-expansion velocity. As supposed by
Forrestal and Tzou [29], when the cavity-expansion velocity
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Figure 4: The zoning of deformation and failure of rock under a
contained explosion.
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Figure 5: Outward motion of the impact body.

is large enough, the radially cracked region diminishes and
the response can be depicted by an elastic-plastic model
(Figure 5).

Radius r, as a varying displacement of the impact body,
is the position of the contact surface between the impact
body and the surrounding medium. Therefore, the initial
conditions of the impact body can be written as

𝑟|𝑡=0
= 𝑎
2
,

̇𝑟|𝑡=0
= V
0
.

(1)

According to the principle of the conservation of energy,
the kinematic energy of the impact body is

𝐸
𝑘
=

1

2

𝑀V2
0
= 𝜂𝑄V𝑄𝛿, (2)

where 𝜂 denotes a relative effective energy, 𝑄V is the specific
energy (kcal/kg), 𝑄 is the mass of the charge (kg), and 𝛿 =
4187 (J/kcal) denotes the mechanical equivalent of heat.

The equation of motion of the impact body is

𝑀 ̈𝑟 = −𝑃, (3)

whereM is the mass of the impact body, r is the displacement
of the impact body, and P is the deformation resistance of the
surrounding medium (material resistance).

The material resistance force can be acquired by seeking
the limiting load. When the load reaches the limit for an
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Figure 6: Velocity components in the velocity field of an infinite
medium.

ideal plastic-rigid body (with a yield plateau), free plastic
flow occurs. According to extremum principles and energy
equilibrium conditions, the rate of work can be written as
follows [27, 30, 31]:

∫

𝑆

𝑃
𝑘

𝑛𝑖
]
𝑖
𝑑𝑆 = ∫

𝑉

𝜎
𝑘

𝑖𝑗
𝜉
𝑘

𝑖𝑗
𝑑𝑉 +

𝑁

∑

𝑘=1

𝜏
𝑠
∫

𝑆
𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
[]𝑘
𝜏
]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑆
𝜏
, (4)

where 𝑆 and 𝑉, respectively, are the area and the volume of
the deformed body, 𝑃𝑘

𝑖
are components of surface forces, ]

𝑖

are components of the possible kinematic velocity fields, 𝜉𝑘
𝑖𝑗
=

(1/2)(𝜕]𝑘
𝑖
/𝜕𝑥
𝑗
+ 𝜕]𝑘
𝑗
/𝜕𝑥
𝑖
) are components of strain rates, 𝜎𝑘

𝑖𝑗

are components of the actual stress, 𝑆
𝜏
are surfaces of velocity

discontinuity, and [V𝑘
𝜏
] denotes the jump V𝑘

𝜏+
− V𝑘
𝜏−

on 𝑆
𝜏
.

By virtue of the Saint Venant-vonMises equation [31], it is
found that the vectors 𝜎𝑘

𝑖𝑗
and 𝜉𝑘
𝑖𝑗
are parallel and the quantity

𝜎
𝑘

𝑖𝑗
𝜉
𝑘

𝑖𝑗
, being the scalar product of parallel vectors, will be equal

to the product of their moduli; that is, 𝜎𝑘
𝑖𝑗
𝜉
𝑘

𝑖𝑗
= 𝜏
𝑠
𝐻
𝑘, where 𝜏

𝑠

is the yield limit for shear and𝐻𝑘 is the intensity of the shear
strain-rate. Then (4) can be written as

∫

𝑆

𝑃
𝑘

𝑖
]
𝑖
𝑑𝑆 = 𝜏

𝑠
∫

𝑉

𝐻
𝑘
𝑑𝑉 +

𝑁

∑

𝑘=1

𝜏
𝑠
∫

𝑆
𝜏

󵄨
󵄨
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󵄨
[]𝑘
𝜏
]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑆
𝜏
. (5)

According to (4) or (5), the upper bound for the limit
load of 𝑃𝑘

𝑖
can be calculated from the possible kinematic

velocity field. Therefore, the problem becomes one of how
to accurately establish the possible kinematic velocity field
which is based on experimental data.

3. The Limiting Material Resistance Load

3.1. Material Resistance to an Explosion in an Infinite Medium.
In a spherical coordinate system (Figure 6), a microelement
measuring 𝑑𝜃

0
in both 𝜑 and 𝜃 directions is cut from the

model of a contained explosion.The sketch of amicroelement
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near the cavity depicts the velocity components in the infinite
medium velocity field, where V

𝑟
, V
𝜑
, and V

𝜃
are components

of the velocity in 𝑟, 𝜑, and 𝜃 directions, respectively; 𝑎
2
is the

initial outer radius of the impact body, and r is the new outer
radius of the impact body which forms the contact surface
at some point. From 𝑎

2
to r, the motion of the impact body

is resisted by the surrounding medium which is in a plastic
state. Then it is essential to find the material resistance. The
limiting material resistance can be calculated as follows:

(1) Considering the symmetry of the velocity field, V
𝜃
=

V
𝜑
. According to the law of conservation of mass, that

is, V
0
⋅ 4𝜋𝑎
2

2
= V
𝑟
⋅ 4𝜋𝑟
2, the radial velocity of the

medium in the plastic zone is V
𝑟
= 𝑎
2

2
/𝑟
2V
0
. According

to the incompressibility condition, 𝜕V
𝑟
/𝜕𝑟 + 2(V

𝑟
/𝑟) +

𝜕V
𝜑
/𝑟𝜕𝜑 + 𝜕V

𝜃
/𝑟𝜕𝜃 = 0, and then V

𝜑
= V
𝜃
= 0.

(2) Since the velocity field is known, it is easy to obtain
the strain-rate components:

𝜉
𝑟
=

𝜕V
𝑟

𝜕𝑟

= −2

𝑎
2

2

𝑟
3
V
0
,

𝜉
𝜃
= 𝜉
𝜑
=

V
𝑟

𝑟

=

𝑎
2

2

𝑟
3
V
0
.

(6)

(3) The intensity of the shear strain-rate is

𝐻 = √2 (𝜉
2

𝑟
+ 𝜉
2

𝜃
+ 𝜉
2

𝜑
) = 2√3

𝑎
2

2

𝑟
3
V
0
. (7)

(4) Substitute the physical and geometric quantities into
(5), manipulate algebraically, and then the limiting
material resistance to an explosion in an infinite
medium is

𝑃
𝑘

𝜏
𝑠

= 2√3 ln( 𝑟
𝑎
2

) . (8)

Using (8), material resistance that resists the motion of
the impact body generated by the explosion in an infinite
medium is calculated. It is a function of the yield limit for
shear, the initial position of the contact surface, and the new
position of the contact surface at some point.

3.2. Material Resistance to Explosions in a Semi-Infinite
Medium. For explosions in a semi-infinite medium, it is
essential to consider the effect of the free surface. There are
two possible kinematic velocity fields: the first velocity field
is a single-variable field where the radial velocity is related
to the radial coordinate. It describes the motion when the
free surface has been detected by the shock wave before the
formation of a perforation body.However, the second velocity
field is a constant field where the radial velocity remains
constant over the whole deformation zone. It describes the
motion after the formation of the perforation body which
moves as one mass.

A funnel-shaped plastic region between the impact body
and the free surface will be formed when the explosive is
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Figure 7: The first velocity field of explosions in a semi-infinite
medium.

not buried deeply. In the funnel range, large displacements
will occur as the medium is in an ideal plastic state; but,
outside the funnel range, the deformation is restricted since
the medium is seen as a rigid body. As shown in Figure 7, ℎ
is the depth of burial of the explosive; 𝑎

1
, 𝑎
2
are, respectively,

the initial inner radius and outer radius of the impact body;
and 𝜑

0
is the interfacial angle between the plastic zone and

the rigid zone.
In the first velocity field, the plastic zone is the cone-shape

region shown in Figure 7 whose cone angle is 𝜑
0
and whose

height ranges from 𝑎
2
to ℎ.The initial zone of the impact body

ranges from the internal surface Σ
1
to the external surface Σ

2
.

The area of surface Σ
1
cut by the cone is 𝑆

1
= 2𝜋𝑎

2

1
(1−cos𝜑

0
);

the volume of the cone inside surface Σ
1
is 𝑉
1
= 2/3𝜋𝑎

3

1
(1 −

cos𝜑
0
); likewise, the area of surface Σ

2
cut by the cone, and

the volume of the cone inside surface Σ
2
, can be found.

Assuming that V
𝑟
, V
𝜑
, and V

𝜃
are velocity components in

the 𝑟, 𝜑, and 𝜃 directions (Figure 6), the limiting material
resistance is calculated as follows:

(1) The initial velocity of the impact body is such that
its average velocity is V

𝑟
|
𝑟=𝑎
2

= V
0
. According to the

law of conservation of mass, the radial velocity is
V
𝑟
= (𝑎
2

2
/𝑟
2
)V
0
. Considering the symmetry of the

velocity field and the incompressibility condition, the
compatible equations of this velocity field are 𝜕V

𝑟
/𝜕𝑟+

2(V
𝑟
/𝑟)+𝜕V

𝜑
/𝑟𝜕𝜑+𝜕V

𝜃
/𝑟𝜕𝜃 = 0 and V

𝜃
= 0. Combined

with the condition V
𝑟
= (𝑎
2

2
/𝑟
2
)V
0
, V
𝜑
= 0.

(2) The strain-rate components are

𝜉
𝑟
=

𝜕V
𝑟

𝜕𝑟

= −2

𝑎
2

2

𝑟
3
V
0
,

𝜉
𝜃
= 𝜉
𝜑
=

V
𝑟

𝑟

=

𝑎
2

2

𝑟
3
V
0
.

(9)

(3) The intensity of the shear strain-rate is

𝐻 = √2 (𝜉
2

𝑟
+ 𝜉
2

𝜃
+ 𝜉
2

𝜑
) = 2√3

𝑎
2

2

𝑟
3
V
0
. (10)
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(4) According to (5), the limitingmaterial resistance to an
explosion in a semi-infinite medium is

𝑃
𝑘

𝜏
𝑠

= (2√3 +

sin𝜑
0

(1 − cos𝜑
0
)

) ln( ℎ
𝑎
2

) . (11)

Equation (11) is solved at a certain time, at which the
material resistance corresponds to the initial position of
the contact surface. However, during the whole explosion
process, the impact body undergoes outward movement and
the position of the contact surface develops accordingly. It
can be assumed that the position of the contact surface is r
at some point in the dynamic process, which is also the new
outer radius of the impact body.Therefore, at some point, the
limiting material resistance to explosions in a semi-infinite
medium is calculated as

𝑃
𝑘

𝜏
𝑠

= (2√3 +

sin𝜑
0

(1 − cos𝜑
0
)

) ln(ℎ
𝑟

) . (12)

However, in the second velocity field (Figure 8), the
cone-shape region undergoes rigid bodymotion.The velocity
within the whole deformation zone remains unchanged,
which indicates that the rigid block is pressed out from the
medium.

Initially, the velocities of the rigid block and the impact
body are different; therefore there remains a resistance to
the effects of the explosion. As the motion develops, the
rigid block and the impact share the same velocity; the
resistance to explosion therefore becomes zero. This physical
process characterises the block motion after the formation of
a perforation.

After mathematical manipulation, the limiting material
resistance to an explosion can be written in the similar form
to that of (11):

𝑃
𝑘

𝜏
𝑠

=

tan𝜑
0

2 (1 − cos𝜑
0
)

((

ℎ

𝑎
2

)

2

− 1) . (13)

Likewise, at some point, the limiting material resistance
to explosions in a semi-infinite medium is

𝑃
𝑘

𝜏
𝑠

=

tan𝜑
0

2 (1 − cos𝜑
0
)

((

ℎ

𝑟

)

2

− 1) . (14)

4. Calculation Method: Critical
Depth of Burial

4.1. The Nondimensional Material Resistance. According to
the literatures [1, 4, 32–34], the cone angle of a standard
blasting crater is 𝜋/4. Therefore, it is assumed that the
interfacial angle 𝜑

0
= 𝜋/4. If the position of the contact

surface r is known, the material resistance in three velocity
fields can be, respectively, acquired through (8), (12), and (14).
Consequently, the relationships between material resistance
and the contact surface position can be acquired. These are
known as material resistance curves.

Equations (8), (12), and (14) can be transformed to
nondimensional forms. Assuming 𝑎

0
is the radius of the

explosive charge, for coupled charges, it is also the radius of
the blast hole.Then the depth of burial ℎ = ̃ℎ ⋅𝑎

0
, the position

of contact surface 𝑟 = 𝑟̃ ⋅ 𝑎
0
, and the initial external radius of

the impact body is 𝑎
2
= 𝑎̃
2
⋅ 𝑎
0
.

From (8), the dimensionless material resistance in the
velocity field in an infinite medium is

𝑃
𝑘

𝜏
𝑠

= 2√3 ln( 𝑟
𝑎
2

) = 2√3 ln( 𝑟̃
𝑎̃
2

) . (15)

From (12), the dimensionless material resistance in the
first velocity field of a semi-infinite medium is written as

𝑃
𝑘

𝜏
𝑠

= 5.88 (ln (̃ℎ) − ln (𝑟̃)) . (16)

From (14), the dimensionless material resistance in the
second velocity field of a semi-infinite medium is

𝑃
𝑘

𝜏
𝑠

= 1.71((

̃
ℎ

𝑟̃

)

2

− 1) . (17)

Under the assumption that ℎ = 10𝑎
0
, there are three

function curves 𝑃𝑘/𝜏
𝑠
∼ 𝑟̃ (Figure 9): curve 1 is the material

resistance curve in the first velocity field of a semi-infinite
medium, curve 2 is the material resistance curve in the
second velocity field of a semi-infinite medium, and curve 3
demonstrates thematerial resistance in the velocity field of an
infinite medium. In Figure 9, curves 1 and 3 intersect at A, at
which point the impact body begins to perceive the presence
of the free surface when the position of the contact surface
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reaches 𝑟𝐴. Besides, curves 1 and 2 intersect at B, which
indicates that the impact body pushes the mass block out of
the surface when the position of the contact surface reaches
𝑟
𝐵. In thewhole physical process, thematerial resistance is the
minimum value among those on the threematerial resistance
curves. To the left-hand side of A, the material resistance is
given by curve 3; to the right-hand side of A, the material
resistance is given by curve 1.

Since 𝑃𝑘 is the force per unit area, the total force on the
whole contact surface is

𝑃 = 𝑃
𝑘
⋅ 𝑆
𝑟
, (18)

where 𝑆
𝑟
is the area of the contact surface, in an infinite

medium, 𝑆
𝑟
= 4𝜋𝑟

2, and, in a semi-infinite medium, 𝑆
𝑟
=

2𝜋𝑟
2
(1 − cos𝜑

0
).

4.2. The First Critical Depth of Burial. According to (15) and
(16), the total material resistance in an infinite medium 𝑃 =

𝑃
𝑘
⋅ 4𝜋𝑎
2

0
𝑟̃
2. Therefore, based on (3), the equation of motion

in an infinite medium is

̈
𝑟̃ = −

8√3𝜋𝜏
𝑠
𝑎
0

𝑀

ln( 𝑟̃
𝑎̃
2

) 𝑟̃
2
. (19)

The initial conditions are calculated as

𝑟̃|𝑡=0
= 𝑎̃
2
,

̇
𝑟̃

󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

=

V
0

𝑎
0

.

(20)

Denoting 8√3𝜋𝜏
𝑠
𝑎
0
/𝑀 by 𝜔

1
, the equation of motion

may be transformed to

̈
𝑟̃ = −𝜔

1
ln( 𝑟̃

𝑎̃
2

) 𝑟̃
2
. (21)

As the differential equation cannot be solved directly, its
transformed form is

−Ṽ
𝑑Ṽ
𝑑𝑟̃

= 𝜔
1
ln( 𝑟̃

𝑎̃
2

) 𝑟̃
2
. (22)

After separation of variables and integrating,

1

2

(

V
0

𝑎
0

)

2

=

1

3

𝜔
1
ln( 𝑟̃

𝑎̃
2

) 𝑟̃
3
−

1

9

𝜔
1
𝑟̃
3
+

1

9

𝜔
1
𝑎̃
3

2
. (23)

After simplifying,

3 ln( 𝑟̃
𝑎̃
2

) 𝑟̃
3
− 𝑟̃
3
+ 𝑎̃
3

2
−

4.5

𝜔
1

(

V
0

𝑎
0

)

2

= 0. (24)

Denoting (4.5/𝜔
1
)(V
0
/𝑎
0
)
2 by 𝜉, a dimensionless impact

factor, by solving (24), we obtain

𝑟̃ = 𝑎̃
2
⋅ exp[1

3

𝑊(−

𝑎̃
3

2
− 𝜉

𝑎̃
3

2
⋅ 𝑒

) +

1

3

] , (25)

where𝑊(𝑥) represents the Lambert W-function, and when
the independent variable 𝑥 > −𝑒−1, the function increases
progressively, and the function result is a real single value.

Solving simultaneous equations (15) and (16) gives the
medium thickness corresponding to pointA in Figure 9.This
is also the depth of burial of the explosive and can be written
as

̃
ℎ = exp [−0.59 ln (𝑎̃

2
) + 1.59 ln (𝑟̃)] . (26)

By substituting (25) into (26), the minimum depth of
burial of explosive required to prevent scabbing becomes

̃
ℎ = 𝑎̃
2
⋅ exp[1.59(1

3

𝑊(−

𝑎̃
3

2
− 𝜉

𝑎̃
3

2
⋅ 𝑒

) +

1

3

)] . (27)

From (2), the form of the dimensionless impact factor
becomes

𝜉 =

3

2√3

𝜂𝑄V𝛿𝜌0

𝜏
𝑠

. (28)

The dimensionless impact factor can also be expressed as
follows:

𝜉 =

3

2√3

𝜂𝑄V𝛿𝜌0

𝜏
𝑠

= 𝜆𝜂(

𝜌
0

𝜌

)(

𝜎
𝑑

𝜏
𝑠

)(

𝑄V𝛿

𝐶
𝑝
V
𝑚

) . (29)

It is a dimensionless combination of multiparameters,
which characterises the relationships between the explosive
density (𝜌

0
), specific energy (𝑄V), the effective energy ratio

(𝜂), medium density (𝜌), yield strength (𝜏
𝑠
), peak pressure

(𝜎
𝑑
), plastic wave velocity (𝐶

𝑝
), andmaximum particle speed

(V
𝑚
).
The initial impact body is a thin shell around the cavity,

and its outer radius 𝑎
2
= 𝑎
0
(1 + 𝜀), where 𝜀 ≪ 1 denotes

the thickness of the shell. Therefore, 𝑎̃
2
, the dimensionless
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outer radius of the initial impact body, is 1 + 𝜀, and it is
approximately equal to 1. Consequently, (27) becomes

̃
ℎ = exp [1.59 (1

3

𝑊(−

1 − 𝜉

𝑒

) +

1

3

)] = 𝑓 (𝜉) . (30)

When using a coupled charge, 𝑎
0
is the radius of the

explosive charge, and it is also the radius of the blast hole.
Since the explosive density is assumed to be 𝜌

0
, the mass of

charge 𝑄 = (4/3)𝜋𝜌
0
𝑎
3

0
. Then the relationship between the

depth of burial and the mass of the charge is

ℎ =
̃
ℎ ⋅ 𝑎
0
=
̃
ℎ ⋅
3

√

𝑄

4𝜋𝜌
0
/3

. (31)

Therefore
ℎ

𝑄
1/3
=

̃
ℎ

(4𝜋𝜌
0
/3)
1/3
=

𝑓 (𝜉)

(4𝜋𝜌
0
/3)
1/3
. (32)

Equation (32) denotes the scaled critical depth of burial
for bulging, where the impact factor 𝜉 and the dimensionless
critical depth of burial ̃ℎ are determined by (28) and (30).
Equations (30) and (32) give the mass of the charge for
bulging or scabbing as 𝑄 = (4𝜋𝜌

0
/3)/(𝑓(𝜉))

3
⋅ ℎ
3. Therefore,

(4𝜋𝜌
0
/3)/(𝑓(𝜉))

3 is the functional expression of empirical
coefficient 𝑘

𝑠
, which is the critical coefficient for scabbing.

4.3. The Second Critical Depth of Burial. To calculate the
second critical depth of burial, this research uses the initial
conditions consisting of the displacement and velocity cor-
responding to those at point A in Figure 9. At point A, the
impact body is affected by the existence of the free surface and
the perforation begins to form. Then the material resistance
(in motion) can be calculated from curve 1 between A and B,
which corresponds to the first velocity field in a semi-infinite
medium. When the position of the contact surface 𝑟̃ reaches
point B, the perforation ends and the cratering is complete.
Therefore, the medium thickness ̃ℎ corresponding to point B
is the critical depth of burial for cratering.

According to (11) and (13), the material resistance in the
first velocity field of a semi-infinite medium is 𝑃 = 𝑃

𝑘
⋅

2𝜋𝑎
2

0
𝑟̃
2
(1 − cos𝜑

0
), and the mass of the impact body is𝑀 =

(2𝜋/3)(1 − cos𝜑
0
)(𝑟̃
3

𝑎
− 1)𝑎
3

0
𝜌; consequently, the equation of

motion of the perforation is transformed to

̈
𝑟̃ = −

17.64𝜏
𝑠

𝜌 (𝑟̃
3

𝑎
− 1) 𝑎

2

0

ln(
̃
ℎ

𝑟̃

) 𝑟̃
2
. (33)

Combining the initial conditions 𝑟̃|
𝑡=0
= 𝑟̃
𝑎
and ̇

𝑟̃|
𝑡=0
=

V
𝐴
/𝑎
0
and denoting 17.64𝜏

𝑠
/𝜌(𝑟̃
3

𝑎
− 1)𝑎
2

0
by 𝜔
2
, the equations

of motion are transformed to

̈
𝑟̃ = −𝜔

2
ln(

̃
ℎ

𝑟̃

) 𝑟̃
2
. (34)

This differential equation cannot be solved directly, and
its transformed form is

−Ṽ
𝑑Ṽ
𝑑𝑟̃

= 𝜔
2
ln(

̃
ℎ

𝑟̃

) 𝑟̃
2
. (35)

After separation of the variables and integration,

1

2

(

V
𝐴

𝑎
0

)

2

=

1

3

𝜔
2
ln(

̃
ℎ

𝑟̃

) 𝑟̃
3
+

1

9

𝜔
2
𝑟̃
3

−

1

3

𝜔
2
ln(

̃
ℎ

𝑟̃
𝑎

) 𝑟̃
3

𝑎
−

1

9

𝜔
2
𝑟̃
3

𝑎
.

(36)

The initial conditions of perforationwere given by (21), so

1

2

(

V
0

𝑎
0

)

2

−

1

2

(

V
𝐴

𝑎
0

)

2

=

1

3

𝜔
1
ln(

𝑟̃
𝑎

𝑎̃
2

) 𝑟̃
3

𝑎
−

1

9

𝜔
1
𝑟̃
3

𝑎

+

1

9

𝜔
1
𝑎̃
3

2
.

(37)

According to the initial conditions on the impact body,
the aforementioned equation may be transformed to

1

2

(

V
0

𝑎
0

)

2

−

1

2

(

V
𝐴

𝑎
0

)

2

=

1

3

𝜔
1
ln (𝑟̃
𝑎
) 𝑟̃
3

𝑎
−

1

9

𝜔
1
𝑟̃
3

𝑎

+

1

9

𝜔
1
.

(38)

Solving (36) and (38) simultaneously gives, after algebraic
manipulation.

(3 ln(
̃
ℎ

𝑟̃
𝑏

) 𝑟̃
3

𝑏
+ 𝑟̃
3

𝑏
− 3 ln(

̃
ℎ

𝑟̃
𝑎

) 𝑟̃
3

𝑎
− 𝑟̃
3

𝑎
) ⋅

𝜔
2

𝜔
1

− 𝜉
2

= 0

𝜉
2
=

4.5

𝜔
1

(

V
0

𝑎
0

)

2

− 3 ln (𝑟̃
𝑎
) 𝑟̃
3

𝑎
+ 𝑟̃
3

𝑎
− 1

= 𝜉 − 3 ln (𝑟̃
𝑎
) 𝑟̃
3

𝑎
+ 𝑟̃
3

𝑎
− 1,

(39)

where 𝜔
1
= 8√3𝜋𝜏

𝑠
𝑎
0
/𝑀 = 8√3𝜋𝜏

𝑠
/(4𝜋/3 ⋅ 𝜌(𝑟̃

3
− 1)𝑎
2

0
) and

𝜔
2
= 17.64𝜏

𝑠
/𝜌(𝑟̃
3

𝑎
− 1)𝑎
2

0
. Since 𝑟̃ = 𝑟̃

𝑎
as an initial condition,

𝜔
2

𝜔
1

= 1.697. (40)

From point A (Figure 9), the relationship between the
position of the contact surface and themedium thickness can
be written as:

𝑟̃|𝑡=0
= 𝑟̃
𝑎
=
̃
ℎ

0.63

. (41)

From point B (Figure 9), the relationship between the
position of the contact surface and themedium thickness can
be written as

𝑟̃|𝑡=𝑡
∗ = 𝑟̃
𝑏
=

̃
ℎ

1.65

. (42)

Combining (39) with (42), which include equations of
motion, boundary conditions, and initial conditions, an
equation for the critical depth of burial for cratering is
obtained:

0.945
̃
ℎ

3

+ 0.006 ln (̃ℎ) ̃ℎ
1.89

− 2.697
̃
ℎ

1.89

− 𝜉 + 1 = 0, (43)
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1, the first critical depth of burial
2, the second critical depth of burial
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Figure 10: Calculated critical depths of burial.

where ̃ℎ = 𝑔(𝜉) denotes the critical depth of burial for
cratering and 𝜉 denotes the dimensionless impact factor.
However, (43) cannot be solved by using an analytic method,
and there is no choice but to pursue an approximate solution
by numerical method. Then, substituting the solution into
(31) and manipulating algebraically, the scaled critical depth
of burial for cratering can be written in the same form as (32).
Similarly, from (32) and (43), the mass of the charge required
for cratering or perforation is given by𝑄 = (4𝜋𝜌

0
/3)/(𝑔(𝜉))

3
⋅

ℎ
3. Therefore, (4𝜋𝜌

0
/3)/(𝑔(𝜉))

3 is the functional expression
of empirical coefficient, and 𝑘

𝑝
is the critical coefficient for

perforation.

5. Calculation of Critical Depths of Burial

Assuming that the key variables [35] are known, they consist
of explosive density 𝜌

0
= 1630 kg/m3, the effective energy

ratio 𝜂 ≈ 0.8, specific energy 𝑄V = 1010 kcal/kg, mechanical
equivalent of heat 𝛿 = 4187 J/kcal, medium density 𝜌 =

2600 kg/m3, and material yield strength which ranges from
6MPa to 2MPa.

According to (28), (30), (32), and (43), the scaled forms of
the critical depth of burial curves ℎ/𝑄1/3 ∼ 𝜉 are illustrated
in Figure 10.

In Figure 10, as the material yield strength decreases,
the dimensionless impact factor 𝜉 increases, and the critical
depth of burial ℎ/𝑄1/3 rises. It indicates that materials with
higher yield strengths confer a greater blast-resistance and,
therefore, have a smaller explosive critical depth of burial
requirement to prevent bulging or cratering.These results are
consistent with empirical conclusions. Some cases involving
each critical depth of burial are summarised in Table 1.

From Table 1, the FCDOB ranges from 0.8m/kg1/3 to
1.4m/kg1/3, and the SCDOB ranges from 0.5m/kg1/3 to
0.7m/kg1/3. Actually, the scope of underground explosions
can be empirically divided into three types, whose critical

depths of burial are listed as follows [36, 37]: those whose
FCDOB ranges from 1m/kg1/3 to 2m/kg1/3 and whose
SCDOB ranges from 0.4m/kg1/3to 0.6m/kg1/3. The critical
depths of burial calculated by using the proposed theoretical
method are only approximately equal to the empirical values
found. In addition, two types of critical depth of burial
have divided the scope of underground explosions into
three regions—a, b, and c—which correspond to contained
explosions, bulging explosions, and cratering explosions,
respectively.

6. Conclusion and Recommendations for
Future Research

This research transformed the problem of an explosion to one
of an impact between a moving body and the surrounding
medium. Then it derived the material resistance to explosive
loading using limit load theorems and solved the equation of
motion by combining the initial conditions and the boundary
conditions. Finally, the research found two types of critical
depth of burial for bulging and cratering and proved the
correctness of the method through use of a case study. On
the basis of the above calculations and analysis, the following
was concluded:

(1) Two types of critical depth of burial are both posi-
tively related to the dimensionless impact factor. The
dimensionless impact factor 𝜉 reflects the properties
of the explosive performance and material strength,
and it also presents the blasting ability of an explosive
on its surroundingmaterials.The higher the explosive
parameters, the more effective the explosive and the
bigger the dimensionless impact factor; therefore, the
critical depth of burial is greater. On the contrary,
the higher the material yield strength, the stronger
the material resistance to explosion and the smaller
the dimensionless impact factor; therefore, the critical
depth of burial is smaller.

(2) In the ℎ/𝑄1/3 ∼ 𝜉 plane, two critical depth of burial
curves divide the plane into three regions correspond-
ing to contained explosions, bulging explosions, and
cratering explosions, respectively. Besides, the critical
depths of burial calculated by the proposed theoreti-
cal method are approximately equal to the empirical
results found.

(3) Based on the comparison with empirical results, the
theoretical calculation method is verified to be rea-
sonable. Besides, the theoretical method explains the
physical essence of the empirical critical coefficients.

Since the critical depth of burial is a theoretical value, it
is too difficult to implement an explosion which is located
exactly on the critical depth of burial curve locus. At the same
time, although there ismuch information about underground
explosions, some key parameters, such as the effective energy
ratio and material yield strength, are usually not given in
most references.Therefore, it is difficult to verify the precision
of the theoretical method. However, some verification tests,
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Table 1: Calculated results: two types of critical depth of burial.

Dimensionless impact factor 795.942 955.130 1193.913 1591.884 2387.825
∗1FCDOB (m/kg1/3) 0.844 0.914 1.004 1.142 1.365
∗2SCDOB (m/kg1/3) 0.540 0.570 0.610 0.667 0.757
∗3RCDOB 1.563 1.604 1.645 1.712 1.803
∗1FCDOB denotes the “first critical depth of burial.”
∗2SCDOB denotes the “second critical depth of burial.”
∗3RCDOB denotes the “ratio of first critical depth of burial to second critical depth of burial.”

which are more targeted towards the proposed calculation
method, are designed. Generation of more data and verifica-
tion in support of the postulated accuracy of the method are
recommended.

Nomenclature

𝑅
1
: The radius of the cavity

𝑅
2
: The radius of the crushed zone

𝑅
3
: The radius of the radical crack zone

𝑟: The radius of the spherical shell
𝑎
0
: The radius of the charge

𝜌
0
: The density of charge

ℎ: The depth of burial of explosives
𝐵: The radius of crater on the surface
𝑛: The throwing index
𝑎
1
: The initial radius of cavity

𝑎
2
: The initial radius of the spherical shell

V
0
: The initial velocity of the spherical shell

𝜂: A relative effective energy
𝑄V: The specific energy of explosives
𝑄: The mass of the charge
𝛿: The mechanical equivalent of heat
𝐸
𝑘
: The kinetic energy of the spherical shell

𝑀: The mass of the spherical shell
𝑃: Material resistance
𝑆: The area of the deformed body
𝑉: The volume of the deformed body
𝑃
𝑘

𝑖
: Components of surface forces

V
𝑖
: Components of the kinematic velocity fields
𝜉
𝑘

𝑖𝑗
: Components of strain rates

𝜎
𝑘

𝑖𝑗
: Components of the actual stress

[V𝑘
𝜏
]: The jump of velocity on surface 𝑆

𝜏

𝜏
𝑠
: The yield limit for shear
𝐻
𝑘: The intensity of the shear strain-rate

𝑟̃, ̃ℎ, 𝑎̃
2
: The nondimensional forms of 𝑟, ℎ, and 𝑎

2

𝜉: A dimensionless impact factor
𝑊(𝑥): The LambertW-function
𝑀: The mass of the spherical shell.
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