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The dynamic effects of cable attachment on a cantilever beam with tip mass are investigated by an improved Chebyshev spectral
element method. The cabled beam is modeled as a double-beam system connected by springs at several discrete locations. By
utilizing high order Chebyshev polynomials as basis functions and meshing the system at the locations of connections, precise
numerical results of the natural frequencies and mode shapes can be obtained using only a few elements. The accuracy of this
method is validated through comparing the results of finite element method and those of spectral element method in literature.The
validatedmethod is implemented to investigate the effects of parameters, including spring stiffness, number of connections, density,
and Young’s modulus of cable. The results show that the mode shapes of the cabled beam system can be classified into two types:
beam mode shapes and cable mode shapes, according to their main deformation. Their corresponding natural frequencies change
in very different ways with the variation of system parameters. This work can be applied to optimize the dynamic characteristics of
precise spacecraft structures with cable attachments.

1. Introduction

In spacecraft applications, modeling and evaluating dynamic
behavior accurately during launch and in orbit are extremely
important. Cables as power and signal transfers are used in
almost all satellites. Previous tests have shown that cables have
remarkable influences on precision space structures, not only
changing the mass distribution but also adding damping and
in general changing the entire dynamic response [1, 2]. The
influence of cables on space structures as a structural element
is a growing but relatively new concern, and as such, there are
only a few published studies that investigate modeling space
cables specifically [3].

Currently, the most commonly used method for model-
ing cabled structure is nonstructural mass method, including
lumpedmassmethodwhich adds lumpedmass at attachment
locations and distributed mass method which adds cable
as a distributed mass by changing the density of the host
structure. But both of these two methods have been proved
insufficient to modeling precise cabled structures connected
at discrete locations because they ignore the dynamic inter-
action between the cable and its host structure [4, 5]. In

space mission, an imprecise dynamic model might degrade
mission performance and destabilize structural control loops
[6]. In order to improvemodeling precision, the double-beam
system was proposed for modeling cabled beams, in which
cable ismodeled as a beam to contain its bending stiffness and
shear deformation, and springs are used to represent discrete
connections [7]. Although the dynamic characteristics of a
single beam can be obtained exactly by many ways, when
a secondary beam is attached to the main beam by springs
at several places, its solution becomes complicated. Previous
studies mostly focus on beams with continuous elastica
connection such as sandwich beam and composite beam
[8, 9], or beams with string connected at their ends [10].
Only a few researchers have performed dynamic analysis
for the double-beam system connected by springs at several
discrete locations. Babuška et al. [11] established a finite
element model for a cabled beam using software Nastran and
got its frequency response functions. But the preprocess of
finite element method (FEM) is usually tedious, especially
when the number or location of connections is changed.
Spak et al. developed a method to calculate cable properties
that are suitable to use for modeling purpose from direct
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physical measurements of cables [3, 12], compared different
damping models for space flight cables [13], and used the
distributed transfer function method to model cables and a
simple cabled structure [5]. Choi [14, 15] studied the natural
frequencies and damping of a cabled-harnessed structure
using spectral element method (SEM). The effects of the
number of connections, the spring stiffness of interconnec-
tions, and themass portion of an attached cable had also been
analyzed. However, this method is actually a semianalytical
and seminumerical method, needing to resolve analytical
solution of dispersion relations for every type of model.
Besides, because the SEM is a time-domain method, it is
inconvenient to obtain the mode shapes of cabled structures.
Remedia et al. [16] investigated the influence of harness
on spacecraft honeycomb panel through an experimental
campaign. Zhang et al. [17] presented a general analytical
approach for studying transverse vibrations of double-beam
systems, made of two Timoshenko beams connected by
discrete springs and coupled with multiple discontinuities.

However,mostly previous researches focus on beamswith
free-free boundary, and the changes of mode shapes due to
attached cables are also rarely discussed. Cantilever beam
with a tip mass as shown in Figure 1 is a typical model for
many beam-like space structures equipped with instrument
at its tip. Cables are usually essential for signal and power
transmission between the hub and tip equipment. If the tip
equipment is a very sophisticated machine and has a high
request to the dynamics characteristics, the effects of the
attached cablemust be taken into account.This is just the goal
of this research. To that end, the effects of cables property
parameters, such as density and Young’s modulus, need to
be investigated and the influences of connections’ number,
stiffness, and locations also should be studied. In order to get
the precise numerical solutions of both natural frequencies
and mode shapes, our approach used here is a Chebyshev
spectral element method (CSEM) improved from spectral-
Tchebychev techniquewhichwas developed by Yagci for solv-
ing linear and nonlinear beam equations [18, 19]. This tech-
nique uses orthogonal Chebyshev polynomials as basis func-
tions and applies Galerkin’s method to obtain the solution.
It has high accuracy and exponential convergence, and only
a small number of polynomials are sufficient to obtain the
machine-precision accuracy. It also requires fewer elements
than the FEMapproach, not needing remeshing after the con-
nections’ locations changed. Using projection matrices, any
linear boundary conditions can be incorporated. Different
from the meaning of SEM in literature [14] where Fourier
spectral decomposition is used for time-domain analysis,
“spectral” in CSEM means to perform spatial discretization
in elements using Chebyshev spectral method.

2. Problem Description

Consider a cantilever beam with tip mass and cable attach-
ment in Figure 1 which can be modeled as a double-beam
system as shown in Figure 2. Both the host beam and the cable
attachment are considered as Timoshenko beams to include
the effects of shear deformation and rotatory inertia.They are
connected by translational and torsional springs at several
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Figure 1: A cantilever beam with tip mass and cable attachment.
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Figure 2: Double-beam model for a cabled beam.

discrete points; 𝑘𝑡 and 𝑘𝑙 are the translational and torsional
stiffness, respectively. The rotational inertia of tip mass is
ignored. Because the two ends of the cable are usually slack,
free-free boundary conditions are adopted. The excitation
levels are thought to be in the linear region. Nonlinear behav-
ior, such as slack cables slapping against the host beam, is
not considered here. Based on this model, the Chebyshev
spectral element model will be established for this cabled
beam system, and numerical results of natural frequencies
and mode shapes will be compared with the results of
FEM and SEM. Then this validated model will be used to
investigate the changes of dynamic characteristics of a cabled
beam with variation of cable parameters, such as density and
Young’s modulus. The influences of the connection number
and springs’ stiffness will also be discussed.

3. Chebyshev Spectral Element Method

The discrete connections divide the beam and the cable
into several parts. The CSEM used herein meshes the beam
and the cable in the places of their connections and then
assemblies them like FEM. It is assumed that there are 𝑛 − 1
connections, 𝑛 cable elements, and 𝑛 beam elements. Adding
the tip mass element, there are totally 2𝑛 + 1 elements. But
unlike FEM which use low order polynomials in “small” ele-
ments, this method uses high order Chebyshev polynomials
to approximate the deformation in “big” elements. The main
advantage of the CSEM is that no remeshing is needed after
the locations or number of the connections changed. Besides,
only needing to change the number of polynomials, a good
balance between accuracy and efficiency can be obtained. It
can be considered as a combination of the Chebyshev spectral
method (CSM) and the finite element method, combining
the advantages of both methods. Furthermore, in order to
deal with different boundary conditions in the same way, a
projection matrix method will be used. In this section, we
firstly review the properties of the Chebyshev polynomials
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and then give the Chebyshev spectral element model of this
double-beam system.

3.1. Chebyshev Polynomials. The Chebyshev polynomials are
a group of recursive orthogonal polynomials which can be
given by [18]

𝑇𝑘 (𝑥) = cos (𝑘 arccos (𝑥)) , (1)

where 𝑘 = 1, 2, . . . and 𝑥 ∈ [−1, 1]. For an arbitrary interval𝑥 ∈ [𝑙1, 𝑙2], a mapping

𝑥 (𝜉) = 𝜉 𝑙2 − 𝑙12 + 𝑙2 + 𝑙12 ,
𝜉 (𝑥) = 2𝑙2 − 𝑙1 𝑥 − 𝑙2 + 𝑙1𝑙2 − 𝑙1

(2)

can be defined, and then scaled Chebyshev polynomials𝑇𝑘(𝜉(𝑥)) will be used. The Chebyshev polynomials form a
complete set, which means any square-integrable function𝑦(𝑥)which is infinitely differentiable in the interval [0, 1] can
be approximated by a truncated Chebyshev series expansion
as

𝑦 (𝑥, 𝑡) = 𝑁−1∑
𝑘=0

𝑎𝑘 (𝑡) 𝑇𝑘 (𝑥) , (3)

where𝑁 is the number of polynomials used for the truncated
expansion.

Adopting Gauss-Lobatto sampling method,

𝑥𝑘 = cos( 𝑘𝜋(𝑁 − 1)) , 𝑘 = 0, 1, 2, . . . , 𝑁 − 1. (4)

The values of function 𝑦(𝑥, 𝑡) at spatial sampling points 𝑥𝑘
form a vector y = {𝑦𝑘}. There exists a one-to-one mapping
between the expansion coefficients vector a = {𝑎𝑘} and
sampling value vector y:

a = T𝐹y,
y = T𝐵a, (5)

where T𝐹 is an𝑁×𝑁 forward transformation matrix and T𝐵
is the inverse matrix of T𝐹.

The derivative of each Chebyshev polynomial can be
recursively expressed in terms of lower order Chebyshev
polynomials. Therefore, the approximation of the spatial
derivative 𝑦󸀠 can be written as

𝑦󸀠 (𝑥, 𝑡) = 𝑁−1∑
𝑘=0

𝑏𝑘 (𝑡) 𝑇𝑘 (𝑥) , (6)

where coefficient vector b = {𝑏𝑘} can be got from a through
a different matrix D which just relates to the number of
Chebyshev polynomials and the definition domain of 𝑦.

b = Da. (7)

Similarly, the expansion coefficient vector a(𝑛) of the 𝑛th
spatial derivative of 𝑦 can be given as

a(𝑛) = D𝑛a (8)

and then the 𝑛th spatial derivative of 𝑦 can be obtained as

y(𝑛) = T𝐵a
(𝑛) = T𝐵D

𝑛T𝐹y = Q𝑛y, (9)

whereQ𝑛 is called the 𝑛th derivative matrix.
The definite integral of 𝑦 can be described as

∫𝑙2
𝑙1

𝑦𝑑𝑥 = v𝑇a, (10)

where k is the definite integral vector.
The inner product of functions 𝑓(𝑥) and 𝑔(𝑥) can also be

expressed by Chebyshev polynomials as follows:

∫𝑙2
𝑙1

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 = f𝑇Vg, (11)

where V is the inner-product matrix.

3.2. Timoshenko Beam Element. The governing equation of a
uniform Timoshenko beam is represented by [13]

𝜌𝐴𝑦̈ + 𝑐𝑦𝑦̇ − 𝜅𝐺𝐴 (𝑦󸀠󸀠 − 𝜑󸀠) = 𝑓
𝜌𝐼𝜑̈ + 𝑐𝜑𝜑̇ − 𝐸𝐼𝜑󸀠󸀠 − 𝜅𝐺𝐴 (𝑦󸀠 − 𝜑) = 𝑚, (12)

where 𝑦 and 𝜑 are the transverse displacement and the slope
due to bending, respectively. 𝜌 is the material density, 𝐴
is the cross-sectional area, 𝐺 is the shear modulus, 𝐸 is
Young’s modulus, and 𝐼 is the second moment of inertia.
Damping for the displacement and rotation is included
through coefficients 𝑐𝑦 and 𝑐𝜑. 𝑓 and 𝑚 are the applied force
and moment, respectively.

Assume that the approximate solution of (12) in the
spectral form is

𝑦 (𝑥, 𝑡) ≈ 𝑁−1∑
𝑘=0

𝑎𝑦𝑘 (𝑡) 𝑇𝑘 (𝜉 (𝑥))

𝜑 (𝑥, 𝑡) ≈ 𝑁−1∑
𝑘=0

𝑎𝜑𝑘 (𝑡) 𝑇𝑘 (𝜉 (𝑥)) .
(13)

Here, Chebyshev polynomials are chosen as trial functions.
Due to the fact that (13) is an approximation, submitting
(13) into (12) will produce an error or residual. According
to Galerkin’s method, the weighted residuals must be mini-
mized; namely,

∫𝐿
0
𝜃𝑦 (𝜌𝐴𝑦̈ + 𝑐𝑦𝑦̇ − 𝜅𝐺𝐴 (𝑦󸀠󸀠 − 𝜑󸀠) − 𝑓) 𝑑𝑥 = 0

∫𝐿
0
𝜃𝜑 (𝜌𝐼𝜑̈ + 𝑐𝜑𝜑̇ − 𝐸𝐼𝜑󸀠󸀠 − 𝜅𝐺𝐴 (𝑦󸀠 − 𝜑) − 𝑚) 𝑑𝑥
= 0,

(14)
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where 𝜃𝑦 and 𝜃𝜑 are the weighting functions coinciding with
the trial functions. Using the inner-product expression from
(11), the residuals can be rewritten as

𝜃
𝑇
𝑦V [𝜌𝐴ÿ + 𝑐𝑦ẏ − 𝜅𝐺𝐴 (Q2y −Q1𝜑) − f] = 0
𝜃
𝑇
𝜑V [𝜌𝐼𝜑̈ + 𝑐𝜑𝜑̇ − 𝐸𝐼Q2𝜑 − 𝜅𝐺𝐴 (Q1y − 𝜑) −m]
= 0.

(15)

Since this equation should be satisfied for arbitrary 𝜃𝑦 and 𝜃𝜑,
there must be

V [𝜌𝐴ÿ + 𝑐𝑦ẏ − 𝜅𝐺𝐴 (Q2y −Q1𝜑) − f] = 0

V [𝜌𝐼𝜑̈ + 𝑐𝜑𝜑̇ − 𝐸𝐼Q2𝜑 − 𝜅𝐺𝐴 (Q1y − 𝜑) −m] = 0
(16)

and this equation can be expressed in matrix form as

M𝑠q̈ + C𝑠q̇ + K𝑠q − F𝑠 = 0, (17)

where
M𝑠 = V𝑠M,
C𝑠 = V𝑠C,
K𝑠 = V𝑠K,
F𝑠 = V𝑠F,

(18)

V𝑠 = [V 0
0 V

] ,

q = [y
𝜑
] ,

(19)

M = [𝜌𝐴I 0
0 𝜌𝐼I] ,

C = [𝑐𝑦I 0
0 𝑐𝜑I]

(20)

K = [−𝜅𝐺𝐴Q2 𝜅𝐺𝐴Q1−𝜅𝐺𝐴Q1 𝜅𝐺𝐴I − 𝐸𝐼Q2] ,

F = [ f
m
] .

(21)

Here, q is the 2𝑁 element displacement vector, I is a 𝑁 ×𝑁 identity matrix, and Q𝑖 is the 𝑖th Chebyshev derivative
matrix defined in (9). This is the discrete equation of motion
of a Timoshenko viscous beam without imposing boundary
conditions.

3.3. Beam-Cable Coupled System. Now, consider the double-
beam system in Figure 2 which has 2𝑛 + 1 elements. For the
tip mass, at 𝑥 = 𝐿 there are

𝑚𝑡𝑦̈𝑡 − 𝜅𝐺𝐴 (𝑦󸀠𝐵 − 𝜑𝐵) = 0,
𝑦𝑡 = 𝑦𝐵. (22)

Define

q𝐺
𝑇 = {q𝐵,1𝑇 ⋅ ⋅ ⋅ q𝐵,𝑛𝑇 q𝐶,1𝑇 ⋅ ⋅ ⋅ q𝐶,𝑛𝑇 𝑦𝑡} (23)

M𝐺 = [[
[
M𝐵,𝑖 0 0
0 M𝐶,𝑖 0
0 0 𝑚𝑡

]]
]

,

C𝐺 = [[
[
C𝐵,𝑖 0 0
0 C𝐶,𝑖 0
0 0 0

]]
]

(24)

K𝐺 = [[
[

K𝐵,𝑖 02𝑛𝑁×2𝑛𝑁 02𝑛𝑁×1
02𝑛𝑁×2𝑛𝑁 K𝐶,𝑖 02𝑛𝑁×1

K31 01×2𝑛𝑁 0
]]
]

(25)

K31 = [01×2𝑁(𝑛−1) −𝜅𝐺𝐴Q1e𝑇1 𝜅𝐺𝐴e𝑇1 ] , (26)

where subscripts 𝐵 and 𝐶 represent beam and cable, respec-
tively; 𝑖 = 1, 2, . . . , 𝑛; q𝐺 is the 4𝑛𝑁 + 1 global displace-
ment vector, whose components q𝐵,𝑖 and q𝐶,𝑖 are elements’
displacement vectors defined in (19); M𝐺, C𝐺, and K𝐺 are(4𝑛𝑁 + 1) × (4𝑛𝑁 + 1) matrices; M𝐵,𝑖, C𝐵,𝑖, K𝐵,𝑖, M𝐶,𝑖, C𝐶,𝑖,
and K𝐶,𝑖 are 2𝑁 × 2𝑁 matrices defined in (20) and (21), and𝑖 = 1, 2, . . . , 𝑛. e𝑗 is a 1 × 𝑁 column vector whose jth element
is 1 and all other elements are zeros. 0 are matrix block with
all 0 elements. For clarity, in (25), the number of rows and
columns is indicated by subscript.

Considering the relation between spring forces and ele-
ment displacements at 𝑥𝑖 in Figure 2, the forces andmoments
acting on elements are

𝑓𝐵𝑖 = −𝑘𝑙 (𝑦𝐵𝑖 − 𝑦𝐶𝑖) ,
𝑚𝐵𝑖 = −𝑘𝑡 (𝜑𝐵𝑖 − 𝜑𝐶𝑖) ,
𝑓𝐶𝑖 = 𝑘𝑙 (𝑦𝐵𝑖 − 𝑦𝐶𝑖) ,
𝑚𝐶𝑖 = 𝑘𝑡 (𝜑𝐵𝑖 − 𝜑𝐶𝑖) .

(27)

Notice that all these forces are functions of displacements at
connection locations. So, the global force vector due to spring
connections can be written in terms of global displacement
vector as

F𝐺 = K𝑆q𝐺, (28)

where K𝑆 is a diagonal matrix whose (𝑁(𝑖 − 1) + 1)th and(𝑁𝑖)th entries are −1 and (2𝑛𝑁 + 𝑁(𝑖 − 1) + 1) and (2𝑛𝑁 +𝑁𝑖)th entries are 1, 𝑖 = 1, 2, . . . , 𝑛. According to (17), we can
assembly the global equation and get

M𝐺q̈𝐺 + C𝐺q̇𝐺 + (K𝐺 − K𝑆) q𝐺 = 0. (29)

This is the global discrete equation of the beam-cable cou-
pled system without considering element compatibility and
boundary conditions.
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3.4. Compatibility and Boundary Conditions. Adjacent ele-
ments (𝑖) and (𝑖 + 1) in Figure 2 should meet displacement
compatibility. That is, at the common points 𝑥 = 𝑥𝑖, the
two sides are required to have equal displacements, slopes,
forces, and moments. Mathematically, these compatibility
conditions can be expressed as

𝑦𝐵,𝑖 − 𝑦𝐵,𝑖+1󵄨󵄨󵄨󵄨𝑥=𝑥𝑖 = 0
𝜑𝐵,𝑖 − 𝜑𝐵,𝑖+1󵄨󵄨󵄨󵄨𝑥=𝑥𝑖 = 0
𝜑󸀠𝐵,𝑖 − 𝜑󸀠𝐵,𝑖+1󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑖 = 0

(𝑦󸀠𝐵,𝑖 − 𝜑𝐵,𝑖) − (𝑦󸀠𝐵,𝑖+1 − 𝜑𝐵,𝑖+1)󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑖 = 0.
(30)

Considering (9), their discrete form can be written as

e𝑇1 y𝐵,𝑖 − e𝑇𝑁y𝐵,𝑖+1 = 0
e𝑇1𝜑𝐵,𝑖 − e𝑇𝑁𝜑𝐵,𝑖+1 = 0

e𝑇1Q1𝜑𝐵,𝑖 − e𝑇𝑁Q1𝜑𝐵,𝑖+1 = 0
(e𝑇1Q1y𝐵,𝑖 − e𝑇1𝜑𝐵,𝑖) − (e𝑇𝑁Q1y𝐵,𝑖+1 − e𝑇𝑁𝜑𝐵,𝑖+1) = 0.

(31)

Besides, when spring stiffness is big enough, these connec-
tions in Figure 2 can be thought as rigid constraints. Instead
of using global force vectorF𝑠 in (28), we can handle them like
compatibility conditions in (30). For instance, when linear
spring stiffness is big enough, we can get

e𝑇1 y𝐵,𝑖 = e𝑇1 y𝐶,𝑖, 𝑖 = 1, 2, . . . , 𝑛 − 1. (32)

Similarly, generic linear boundary conditions can be written
as

𝑛∑
𝑖=1

1∑
𝑘=0

𝛼𝑖𝑘𝑗𝑦𝑖(𝑘) + 𝑛∑
𝑖=1

1∑
𝑘=0

𝛽𝑖𝑘𝑗𝜑𝑖(𝑘) = 0, (33)

where 𝑘 is the order of derivative, 𝑖 indicates 𝑖th element, and𝑗 denotes the particular boundary (right or left boundary of
the element). Its discrete is

𝑛∑
𝑖=1

1∑
𝑘=0

𝛼𝑖𝑘𝑗e𝑗Q𝑘y𝑖 + 𝑛∑
𝑖=1

1∑
𝑘=0

𝛽𝑖𝑘𝑗e𝑗Q𝑘𝜑𝑖 = 0. (34)

For example, for free-free boundary condition, there are

𝑦󸀠 − 𝜑 = 0,
𝜑󸀠 = 0,

at 𝑥 = 0, 𝐿.
(35)

Their discrete form can be written as

e𝑇𝑁Q1y𝐵,1 − e𝑇𝑁𝜑𝐵,1 = 0
e𝑇𝑁Q1𝜑𝐵,1 = 0

e𝑇1Q1y𝐵,𝑛 − e𝑇𝑁𝜑𝐵,𝑛 = 0
e𝑇1Q1𝜑𝐵,𝑛 = 0.

(36)

(31), (32), and (36) can be written in terms of global displace-
ment vector as

Bq𝐺 = b, (37)

where B is the compatibility and boundary condition matrix
whose rows are determined by (31), (32), and (36) and b is
a column vector whose element is the temporal part of the
boundary conditions. Here, b is a zero vector.

An effective way of imposing the boundary is using
projectionmatrices [19]; in this approach q𝐺 can be expressed
as

q𝐺 = Pq̃𝐺 + Rb, (38)

whereP andR are (4𝑛𝑁+1)×(4𝑛𝑁+1−𝑀) and (4𝑛𝑁+1)×𝑀
projection matrices, respectively, which can be determined
using singular value of B. And q̃𝐺 is a (4𝑛𝑁 + 1 − 𝑀)
vector which satisfies homogeneous boundary conditions,
while ensuring q𝐺 satisfies all the boundary conditions. And𝑀 is the number of compatibility and boundary conditions.

Substituting (38) into (29) and left-multiplying both sides
with P𝑇 result in

M̃𝐺 ̈̃q𝐺 + C̃𝐺 ̇̃q𝐺 + K̃𝐺q̃𝐺 = 0, (39)

where

M̃𝐺 = P𝑇M𝐺P,
C̃𝐺 = P𝑇C𝐺P, (40)

K̃𝐺 = P𝑇 (K𝐺 − K𝑆)P. (41)

(39) is the discrete governing equation of the cabled beam
system. Using state-space method, the numerical results of
the natural frequencies and modal shapes can be obtained.

4. Method Evaluation

To evaluate the accuracy and convergence ofCSEM, two cases
were studied, including a double-beam system with free-free
boundary and a cantilever cabled beam with tip mass. Their
results were compared with the results of SEM in literature
[14] and the results of FEM based on Nastran, respectively.

4.1. Free-Free Double-Beams System. Consider the free-free
double-beam system in literature [14], whose material prop-
erties are shown in Table 1. Using CSEM, the calculated
first 6 natural frequencies are summarized in Table 2, where
8 polynomials were used in every element. The results in
literature [14] where SEM was used are also included in
Table 2. It can be seen that the differences between CSEM and
SEM are all less than 0.100%.

Furthermore, the mode shapes can also be obtained
using CSEM, as shown in Figures 3 and 4. The blue lines
represent the beam’s mode shapes, and the orange lines
indicate the cable’s mode shapes. Comparing with the mode
shapes of a bare beam, it is obvious that the mode shapes
can be classified into two categories based on their main
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Table 1: Parameters of double beams.

𝐿 (m) 𝐴 (m2) 𝐼 (m4) 𝐸 (N/m2) 𝜌 (kg/m3)
Beam 1 1.2192 8.0645 × 10−5 6.7746 × 10−11 7 × 1010 2700
Beam 2 1.2192 4.03225 × 10−5 2.7098 × 10−12 2.333 × 1010 540

Table 2: Natural frequencies (Hz) of the double-beam system.

Mode 3 connections 5 connections Bare beam
SEM CSEM 8 Error SEM CSEM 8 Error

1 0.0119 0.0004 0.0053 0 0
2 6.8085 6.8086 0.001% 10.5753 10.5755 0.002% 11.1792
3 7.1844 7.1857 0.018% 15.7602 15.7683 0.050% 30.8144
4 11.1687 11.1686 0.001% 16.2981 16.3076 0.058% 60.4046
5 29.5254 29.5265 0.004% 30.1176 30.1166 0.003% 99.8429
6 34.6464 34.6469 0.001% 58.0927 58.0983 0.010% 149.1315

f6 = 34.6469Hz

f5 = 29.5256Hz

f4 = 11.1686Hz

f3 = 7.1857Hz

f2 = 6.8086 Hz

f1 = 0.0004 Hz

Figure 3: Mode shapes of the free-free double-beam system when
using 3 connections.

deformation component: mode shapes dominated by beam
deformation (beam mode) and mode shapes dominated by
cable deformation (cable mode). The corresponding natural
frequencies of beam modes are underlined in Table 2. It
should be noticed that the first four natural frequencies of the
bare beam are 0Hz, 11.1792Hz, 30.8144Hz, and 60.4046Hz,
respectively. They decrease slightly after being attached to a
cable. It is also obvious that when the cable and beam are
connected by 3 springs, the first flexible mode is no longer
a beam mode. This indicates that the number of connections
is a key factor to determine the first flexible mode shape of
the cabled beam system.

4.2. Cantilever Beam with Tip Mass and Cable Attachment.
Recall the cantilever beamwith tipmass and cable attachment
in Figure 1.The following parameters were used for the beam:
length 𝐿 = 1m, radius of cross section 𝑟 = 0.01m, Young’s

f6 = 58.0983Hz

f1 = 0Hz

f5 = 30.1166Hz

f4 = 16.3076Hz

f3 = 15.7683Hz

f2 = 10.5755Hz

Figure 4: Mode shapes of the free-free double-beam system when
using 5 connections.

modulus 𝐸 = 70GPa, material density 𝜌 = 2766.7 kg/m3,
shear factor 𝜅 = 0.889, Poisson ratio V = 0.3, and the tip mass𝑚𝑡 = 0.1 kg.

First, taking no account of the cable, we can get the
natural frequencies and mode shapes of the cantilever beam
with tip mass as shown in Figure 5 utilizing CSEM where
10 Chebyshev polynomials were used totally. Meanwhile, we
use the finite element software MSC/NASTRAN to resolve
this problem. A lumped point mass element (CONM2) and
50 beam elements (CBAR) were used to represent the tip
mass and cantilever beam, respectively.The results we got are
11.626Hz, 76.450Hz, and 219.85Hz. Both results agree well,
but obviously CSEM ismore efficient because it can get a high
precise result only using a few polynomials.
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f3 = 219.8192Hz

f2 = 76.4577Hz

f1 = 11.6267Hz

Figure 5: Mode shapes of the cantilever beam with tip mass.
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Figure 6: The convergence of the first five natural frequencies.

And then, we consider the cable’s effects using CSEM.
The parameters of the cable used here include length 𝐿𝑐 =1m, radius 𝑟𝑐 = 0.002m, density 𝜌𝑐 = 1000 kg/m3, Young’s
modulus of 𝐸 = 20GPa, shear factor 𝜅 = 0.889, and Poisson
ratio V = 0.3. The connection parameters include linear
spring stiffness 𝑘𝑙 = 106N/m and torsional spring stiffness𝑘𝑡 = 0N⋅m/rad, and number of connections is 5; that is,𝑛 = 6. The convergence of the first five natural frequencies
is shown in Figure 6. The results show that, only using 6
polynomials, the relative error (𝑓𝑖,𝑁 − 𝑓𝑖,𝑁−1)/𝑓𝑖,𝑁 converges
to 0.05%. Table 3 lists both the results of FEM using different
number of elements and the results of CSEM using different
number of polynomials in each element. Figure 7 shows the
first fivemode shapes.We can see that the results fromCSEM
are fairly close to those of FEM.

f5 = 218.26Hz

f4 = 76.114Hz

f3 = 60.850Hz

f2 = 60.483Hz

f1 = 11.570Hz

Figure 7: Mode shapes of cabled beam with 5 connections when𝑘𝑙 = 106 N/m.

Table 3: The natural frequencies (Hz) of the cabled beam with tip
mass.

Method 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
FEM 60 11.570 60.271 60.633 76.113 218.32
FEM 80 11.571 60.449 60.813 76.130 218.38
FEM 300 11.571 60.463 60.827 76.131 218.38
CSEM 5 11.570 60.499 60.866 76.114 218.26
CSEM 6 11.570 60.484 60.851 76.114 218.26
CSEM 7 11.570 60.484 60.850 76.114 218.26
CSEM 8 11.570 60.483 60.850 76.114 218.26

5. Cable Effects Analysis

There are many factors that might have influences on the
dynamic characteristics of a cabled beam with tip mass. In
this section we focus on the effects of connection parameters
and cable parameters; both of them might change in a big
range.

5.1. Effects of Connection Parameters. Using the same param-
eters in Section 4.2, the change of natural frequencies with
the variation of connection spring stiffness 𝑘𝑙 is shown in
Figure 8.The first natural frequency is nearly unchanged, and
the other ones increase and finally converge to stable values
with the increasing of spring stiffness 𝑘𝑙. When 𝑘𝑙 = 105N/m,
all of the first five natural frequencies stabilize. Observe the
mode shapes and natural frequencies shown in Figure 7 in
which 𝑘𝑙 = 106N/m; it is obvious that the 1st, 4th, and 5th
modes are beammodes and the 2nd and 3rd modes are cable
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Figure 8: Variation of natural frequencies versus connection stiff-
ness 𝑘𝑙.
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Figure 9: Variation of the natural frequencies with the number of
connections when 𝑘𝑙 = 105N/m.

modes. So it is concluded that the frequencies of beam mode
increase and converge faster than those of beam mode, and
the lower frequencies converge faster than higher ones. It also
can be seen that the changes of high order frequencies are
much bigger than those of low order frequencies.

The change of natural frequencies with the variation of
the number of connections is illustrated in Figure 9; here

f5 = 218.372Hz

f4 = 82.588Hz

f3 = 82.233Hz

f2 = 75.821Hz

f1 = 11.571Hz

Figure 10: Mode shapes of cabled beam with 6 connections when𝑘𝑙 = 105 N/m.

𝑘𝑙 = 105N/m. As the number of connections increases,
the natural frequencies of cable modes increase rapidly
and those of beam modes, as shown in purple circle, keep
nearly unchanged. This phenomenon results in mode shapes
exchanges between adjacent modes. Remember that when
the number of connections is 5, the 1st, 4th, and 5th modes
are beammodes. Observe themode shapes in Figure 10where
the number of connections changed to 6, the 1st, 2nd, and 5th
modes become beammodes, and 3rd and 4th modes become
cable modes. That is because the natural frequencies of cable
modes changed from 60.360Hz and 60.705Hz to 75.821Hz
and 82.233Hz, as shown in figure points 𝑃1 and 𝑃2.
5.2. Effects of Cable Parameters. Modeling a spaceflight cable
as a homogenous beam requires inputting various equivalent
parameters, such as density and Young’s modulus. In engi-
neering practice, there aremany different kinds of cables with
a wide range of material properties. The effects due to the
changing of cable parameters, including density and Young’s
modulus, are discussed in this section.

Figure 11 illustrates the variation of the natural frequen-
cies with the cable’s density. It can be observed that the
natural frequencies of cable modes decline gradually with
the increasing of the cable’s density. The low order natural
frequencies of beam modes keep nearly unchanged, and
high order ones have a slight decline. As a result, adjacent
frequency curves will cross at a series of special points, such
as points𝐶1 and𝐶2 in Figure 11. Compare themode shapes at
points𝐴 and 𝐵, where the density, respectively, is 1500 kg/m3
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Figure 11: Variation of the natural frequencies with the density of
cable, 6 connections, and 𝑘𝑙 = 105N/m.

and 3500 kg/m3, as shown in Figure 12.The natural frequency
decreases to 213.12Hz, and the deformation of the cable
increases obviously, due to the increasing of density.

Figure 13 shows the change of natural frequencies with
the increasing of Young’s modulus of cable material. It can
be seen that all the natural frequencies of beam modes are
nearly constant. But those of cable modes increase rapidly.
Comparing the mode shapes at points 𝐶 and 𝐷 as shown in
Figure 14, where the values of Young’smodulus are 10GPa and
50GPa, it can be seen that their natural frequencies almost
have the same value. With the increase of Young’s modulus,
the deformation curve of the cable mode becomesmore close
to that of the beam mode.

6. Conclusion

In this paper, a Chebyshev spectral element method (CSEM)
is presented for exploring the dynamic effects of cable attach-
ment on a cantilever beam with tip mass. The cabled beam
is modeled as a double-beam system connected by several
springs at discrete locations. Using high order Chebyshev
polynomials as basis functions, precise numerical results
of system’s natural frequencies and mode shapes can be
obtained using fewer elements. This method divides the
system according to the location of connections, not needing
remeshing after the number of connections changed.

In addition, projection matrices are used to deal with
differential boundary conditions. The results were compared
with those of spectral element method in literature and those
of finite element method based on software Nastran. It can be
seen that the CSEM has a good convergence and accuracy.

Based on the validated CSEM, the effect of connection
parameters, including their stiffness and number, was stud-
ied. The results show that the mode shapes can be classified

fB = 213.12Hz

217.53HzfA =

Figure 12: Mode shapes of 𝐴, 𝐵 points.
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Figure 13: Variation of the natural frequencies with the cable’s
Young’s modulus, 6 connections, and 𝑘𝑙 = 105 N/m.

into two types: beam mode shapes and cable mode shapes,
according to their main deformation. With the increase of
connection stiffness, the natural frequencies increase and
finally converge to stable values. The low order frequencies
increase and converge faster than the high order ones. The
frequencies of beammodes increase and converge faster than
those of cable modes. Changes of high order frequencies are
much bigger than those of low order frequencies. As the
number of connections increases, the natural frequencies of
cable modes increase rapidly and the natural frequencies of
beam modes keep nearly unchanged. The effects of cable’s
parameters, such as density and Young’s modulus, are also
investigated. It can be found that, with the increase of cable’s
density, the natural frequencies of cable modes decrease far
more rapidly than those of beammodes. With the increase of
Young’s modulus of cable material, the natural frequencies of
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fD = 76.020Hz

fC = 76.097Hz

Figure 14: Mode shapes at points 𝐶 and𝐷.

the beam modes keep nearly unchanged, and those of cable
modes increase gradually. Meanwhile, the deformation curve
of cable modes becomes more close to those of beam modes.
These results can be applied to optimize the dynamic charac-
teristics of precise cable-harnessed spacecraft structures.
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