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Moving load identification is an important part of bridge structure health monitoring; accurate and reliable load data can be used
to check the load of bridge design, and the load spectrum can provide a more practical basis for structural fatigue analysis. The
method of the BP neural network is used in bridge moving loads identification. The numerical examples of identification of the axle
loads of a two-axle vehicle moving on a simply supported bridge under various speeds and weights are carried out. The sensitivity
of the bridge deflection and strain to moving loads is analyzed, and the influences of different activation function combinations
and algorithm on network are discussed. The identification results of different load conditions are analyzed and the effect of noise
is considered. Finally the rationality of the method is verified by experiments. It is shown that the indirect estimation of vehicle

weight by BP neural network from dynamic responses is feasible.

1. Introduction

With the quick development of transportation and infras-
tructure, bridge plays an important role and becomes a key
part of the lifeline. In recent decades, all kinds of bridges have
been built worldwide, such as highway bridge, railway bridge,
both railway and highway bridges, and city crossroad. From
construction to operation, bridge is subjected to different
types of loads, such as environmental loads and vehicle loads.
The vibration of bridge can be easily generated when various
vehicles travel across the deck. Continual operation traffic
loads over time can lead to fatigue and deterioration of bridge
structures. The axle loads and gross weight of vehicles are
important information for bridge design, fatigue life assess-
ments of existing bridges, design code calibration, and con-
trol of overweight vehicles to highway regulations. Therefore,
itis necessary to obtain accurate axle loads of moving vehicles
on the bridge. The measurement technology of dynamic
vehicle has been developed for many years, and the most
widely used device is the Weight-in-Motion system. Weight-
in-Motion system is a set of sensors and a set of electronic
devices containing software to measure the weight of the

vehicle. It can be divided into different categories according to
different sensors. At present, there are three types of sensors
in Weight-in-Motion system, which are strain gauge sensor,
capacitive sensor, and piezoelectric transducer. The Weight-
in-Motion system based on the resistance strain gauge has
the advantages of fast measurement, high sensitivity, reliable
performance, and stability, but the maintenance is huge
and expensive and needs digging up the road surface when
installing, and this will cause some damage to the structure.
The Weight-in-Motion system based on the capacitive sensor
has high sensitivity and can obtain the large amount of
variation with high signal-to-noise ratio with system stability.
It has a simple structure and can work in extreme temperature
or other rigorous environments. The disadvantage is that
the electromagnetic interference is obvious and the filling
medium in capacitors is easy to deform. Besides, it needs to
be checked regularly. The Weight-in-Motion system based on
the piezoelectric transducer is the main research direction
in the field of dynamic weighing. Piezoelectric transducer is
a kind of capacitive sensor, but compared with the general
capacitive sensor, its size is smaller and easier to install.



Compared to the strain sensor, the construction difficulty
of the piezoelectric transducer is smaller, the service life is
longer, and the economic cost is lower [1]. Although the
Weight-in-Motion system has developed rapidly, it still has
many shortcomings. For example, the currently widely used
Weight-in-Motion system is weak in high-speed detection,
sensitivity, and accuracy and needs to excavate the deck
during installation, and they all can only measure the static
axle loads. In fact, the dynamic effects of the moving vehicle
cause much larger bridge responses, especially when unfavor-
able road roughness exists, which will increase the average
surface damage about two to four times compared to that
from the static axle forces [2]. Therefore, it is necessary to
identify the dynamic force between the vehicle and bridge.
With the bridge accidents having increased year after year, the
government and the engineer are paying more attention to the
monitoring for bridge and more bridge monitoring systems
have been successively established. Monitoring the dynamic
response of the bridge is one of the important contents in the
health monitoring system. The normal monitoring system of
bridge will produce important information every day. Using
these data for moving load identification can not only achieve
the purpose of monitoring the running state of the bridge, but
also identify the vehicle load without increasing cost, which
has important significance.

Axle loads identification methods based on the inverse
problem of decomposing the dynamic bridge response to
vehicle axle loads have been studied and developed for
many years. At present, the methods that are used com-
monly include time domain method, frequency-time domain
method, finite element method, and fitting method. The time
domain approach models the structure and forces with a set of
second-order differential equations. The forces are modeled
as step functions in a small time interval. These equations
of motion are then expressed in the modal coordinates, and
they are solved by convolution in the time domain. The forces
are then identified using the modal superposition principle
[3]. Frequency-time domain method performed the Fourier
transformation on the equation of motion that was expressed
in modal coordinates. The relation between the responses
and the forces was obtained in the frequency domain. The
time histories of the forces were found by the least-squares
method [4]. In the finite element method, the measured
displacements are expressed as the shape functions of the
finite elements of the structure which is modeled as a straight
beam. The measured responses can be limited to a small num-
ber of master degrees of freedom of the structural system.
This avoids the usual modal coordinate transformation and
the errors accompanied with the modal truncation in the
dynamic responses [5]. In the fitting method, the vibration
response of the beam is fitted with select function, and their
derivatives are obtained by means of spline numerical differ-
entiation. Then the regularized solution is obtained by using
Tikhonov regularization and singular values decomposition
[6, 7]. All of these methods have promoted the development
of moving loads identification of bridge. But because of
the complexity of bridge moving loads identification, each
method has its merits, limitations, and disadvantages. Such
results from all the above methods exhibit large fluctuations
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in the identified force time histories, and they are highly
sensitive to the noise level in the measured responses. They
need to be improved and enhanced for practical application
in field tests.

The problem of identifying parameters of vehicles trav-
eling on bridges is actually an inverse optimization prob-
lem. As an inverse problem of structural mechanics, force
identification is difficult to solve the differential equations
of motion of the system directly. In order to solve this
bottleneck problem, more suitable tools are needed. Artificial
neural network (ANN) is a functional abstraction of the
biologic neural structures of the central nervous system [8].
ANN has the powerful ability of pattern reorganization and
classification. ANN operates as a black box, model-free, and
adaptive tool to capture and learn significant structures in
data. The computing abilities of ANN have been proven in
the fields of prediction and estimation, pattern recognition,
and optimization [9-12]. ANN is suitable particularly for
problems that are too complex to be modeled and solved
by classical mathematics and traditional procedures. In the
past two decades, artificial neural networks have experienced
significant developments in the domain of the inverse. ANN
has opened up new possibilities for diverse fields such as dam-
age detection of bridges [13-16] and structures [17-21], smart
structures [22], and model updating of structural systems
[23, 24]. As a very important innovation in ANN, BP neural
network is the abbreviation of erroneous reverse transmission
neural network, which is presently one of the most successful
and widely applied neural network models. And its strong
ability of logical reasoning makes it particularly suitable for
solving the problems like damage identification and load
identification [25]. However, if the neural network is applied
to moving load identification, the input and output of the
network should be determined and network structure (e.g.,
number of hidden neurons or kernels), activation function
and algorithm, and so forth should be established also, since
these parameters have important influence on the perfor-
mance of the network. How to establish a suitable neural
network model and use the proposed model for moving load
identification is the focus of the neural network method in
loads identification.

In this paper, the BP neural network method is applied to
identify the moving loads. The sensitivity of input and output
is analyzed, and the influence of different activation function
combinations and algorithms on loads identification accu-
racy is studied. It is considered that the BP neural network
method is feasible for moving loads identification, which can
be used to identify the location, speed, and dynamic loads of
the vehicle under the action of moving loads.

2. Dynamic Response of Bridge under
Moving Loads and Its Sensitivity

In this study, the dynamic loads on the bridge are identified
by dynamic responses, and the responses of the bridge under
the action of moving loads are analyzed. A time-varying force
is moving on a simply supported Euler-Bernoulli beam, as
shown in Figure 1. The size of the cross section and the
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FIGURE 1: Simply supported beam subjected to a moving force.

mass per unit length are both constants, and the bridge
has viscous proportional damping and only elastic small
deflections occur [26]. The bridge length is L, and the force
P(t) moves from the left side to the right side in a constant
speed v. The dynamic equation can be written as

O’u(x,t)  ou(x,t) o*u (x,1)
EI
"o T TP T o M

=5(x—-wvt)P(t).

The beam deflection response under moving force can be
obtained by solving (1) as

2 & 1 . nnx
u(x,t)z—z sin —
mL = wp, L
(2)
t VT ¢ o (i
. Jo P (1) sin %e 5t sin wp,,, (t - T) dT,

where m is the mass per unit length, u(x,t) is the beam
deflection at point x and time point ¢, ¢ is the viscous
damping parameter, EI is the constant flexural stiffness, §(x)
is the Dirac delta function, wp, is the nth damping modal
frequency, w, is the nth nondamping modal frequency, and
&, is the damping ratio of the nth mode.

For the beam section with bending deformation, the
strain &(x, t) in the beam bottom can be calculated according
to deflection response u(x;, t); that is,

Y d*u (x,t) /dx?

e(x,t) = D) = Yn .
P \/[1+(du(x,t)/dx)2]3

(3)

For the small deformation of the beam, omitting the small
senior items in (3), we have

Y dzu(x, t)
e(x,t) = oD I ga (4)

where y;, is the distance between the bottom surface and
the flexural neutral surface of the beam and p(x,t) is the
curvature radius of the beam at point x and time ¢.

It can be seen from (4) that the strain is closely related
to the second derivative of the vertical deflection of the
beam. Therefore, the strain of the main section of the
beam under moving load contains a wealth of information
about high-frequency components, and it can intensively
represent the deformation characteristics of the structure. If
the noise interference is ignored, the dynamic strain implies
the parameter information of the load more comprehensively

than the deflection; thus, the strain responses can be collected
and analyzed in the actual moving load identification.

In order to verify the above viewpoint, the dynamic
response of a simply supported beam under moving load
is simulated by finite element software ANSYS; then the
deflection and the strain of the main section are analyzed. The
parameters of the simply supported beam are as follows: the
length of the beam L is 30 m, the elastic modulus E is 3.25 x
10"° N/m?, the moment of inertia I is 0.76923 m*, the cross-
sectional area S is 1.923 m?, and the density p is 2600 kg/m?.
The beam body is divided into 300 elements. The sampling
frequency is 100 Hz. It is assumed that 7 displacement gauges
and 7 strain gauges are installed evenly on the bottom of
beam along the x-axes, and the corresponding deflection and
strain responses are stored and analyzed, and the simulated
movingload is 392 kN and 794 kN, respectively, and the speed
is 20 m/s.

The deflection and strain responses of different locations
are shown in Figures 2 and 3, respectively. It can be seen that
the deflections and strains of the beam are affected not only
by the load value but also by the load location; the deflections
and the strains will increase when the load moves more close
to the measurement point or sensor. Meanwhile, the overall
sensitivity of deflection and strain to load value is similar, but
the strain is more sensitive to load location. Therefore, the
dynamic strain of beam is selected as the major signal in the
parameter identification of moving loads.

3. Identification of Moving Loads Using
BP Neural Network

Structural dynamic load can be solved by the dynamic
characteristics of the structure and the measured dynamic
response, which belongs to the second type of inverse
problems in structural dynamics [27]. Due to the diversity of
the bridge structure and the loads diversity and uncertainty
of the distribution in time and space domain, the moving
load identification for vehicle-bridge system model is hard to
be solved if it is viewed as a mathematical inversion process,
and there exist model errors and ill posed problems. Artificial
neural network has strong nonlinear mapping ability and
adaptive learning ability. It is unnecessary to establish a
complex mathematical model for neural network; highly
nonlinear mapping can be realized from R" (n is the input
node number) space to R™ (m is the output node number)
space [28], which is very suitable for solving the problem of
moving loads identification. Using neural network to identify
the moving load, in fact, is to find the intrinsic link between
the parameters of the moving loads and the responses of the
bridge. It is just like a problem that predicts or estimates
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FIGURE 3: The strain time histories under moving load.

a datum y; (the parameters of the moving loads) from the
preceding n data x,, (the responses of the bridge). A typical
neural network structure is shown in Figure 4.

The network has many nonlinear neurons in every layer
to predict the corresponding datum y,. The input (x,)-
output (y,) relation of the nonlinear neurons is given by a
conventional sigmoid function such as y = tanh(x) and
the input x are expressed by a form ) w;x;, where w; is a
weight for an input component. When the data x,, are put into

the network, y, is expected to appear at the output after the
network being trained; that is, the data x,, are given to the
input of the network and y; is given to the output as a target.
Each weight w; in the network is adjusted so as to coincide
the output o, with its target y; by a gradient method. That is,
for an error function F defined by

2
F= ka’ & =0k~ Yo (5)
k=S,
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FIGURE 4: Network structure and nonlinear neuron.

where S, is a set of training patterns, a correction dw; of w; to
minimize the error function is given by

oF
Sw; = — 1% (6)

ow;

where # is a small positive constant. To calculate Sw; for
neurons in hidden layers, an error back-propagation (BP)
algorithm is used. The training process of BP is divided
into two phases. In the first phase (front-propagation), input
information is calculated in each hidden layer through the
input layer and the output of every neuron is obtained. In
the second phase (back-propagation), if the expectant output
cannot be obtained, the difference between the actual output
and target output can be computed layer by layer in recursion
and the weights are adjusted according to this difference until
the expectant output is acquired in the out layer.

For loads identification using neural network method,
the key means is to design structure of the neural network,
which mainly includes the selection and process of network
sample; network topology; activation function; and algo-
rithm selection. In this paper, the more commonly used
BP neural network is used to identify the moving loads
parameters based on neural network toolbox in numerical
analysis software MATLAB. Taking a simply supported beam
as an example, the influence of different activation function
and algorithm on the network is discussed, and the result is
analyzed.

Based on the above discussion, the moving loads iden-
tification of the simply supported beam bridge model men-
tioned above by BPNN is carried out. The vehicle model is
simplified into two moving concentrated forces. Dynamic
strains under different vehicle loads, wheelbase, and velocity
are obtained by numerical calculation. The dynamic strain
responses under different combinations of weight, speed,
and wheelbase are used as the input of the network, and
the loads parameters are used as the output, appropriate
network structure and learning algorithm are selected, and
the network is established and trained based on partial data.
Finally, the capacity of loads identification of the trained
network is studied.

3.1. Establishment of Training Sample Database. The strains
at the bottom eight points of bridge under moving loads were
simulated by finite element software ANSYS. The axle loads of
the vehicle are divided into four levels, respectively, including
2940 kg, 7840 kg, 11760 kg, and 19600 kg. The wheelbases are
taken for 3m, 4m, 5m, and 6 m, and the speeds are set as
5m/s, 10m/s, 20 m/s, and 25m/s. The front and rear axle
load ratio is 1: 1. In order to use the least number of samples
to get efficient network, L,(4°) orthogonal table is used to
determine the training sample database [29]. The sampling
frequency of the strain response is 100 Hz, the total sampling
time is 54.14 seconds, and the dynamic responses of the 16
groups of vehicles are obtained. 60% data are used for training
samples, and 20% data are used for validation, and the other
20% signals are testing data.

3.2. Analysis and Design of Network Structure. In the BP
neural network of load identification, the node number of the
input layer is equal to the number of measure points, and the
node number of the output layer is equal to the number of
parameters to be identified. The sample library is the dynamic
strain responses at the bottom of eight equal-part points of
the bridge. Therefore, the number of nodes in the input layer
is seven. In the identification of the load position, the network
output is the vehicle front and rear axle positions, so the
output layer node number is 2. In the identification of the
load value, due to the fact that the position of the load has
important influence on the result, the identification of load
position data is also added to the input data, so the number
of nodes in the input layer is nine and the node number of the
output layer is still 2, representing the vehicle’s front axle load
and rear axle load, respectively.

In determining the network’s hidden layer number, due
to the complexity and discontinuity of the parameter of loads
and the dynamic responses of bridge, the double hidden layer
network is used. Hagan et al. pointed that combination of
multilayer perceptron and back-propagating learning rules
breaks the limitation of linear reparability for single-layer
perceptron and can solve any classification problems. In
addition, a two-layer neural network is capable of approx-
imating any practical functions as long as the hidden layer
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TaBLE 1: Effects of different activation functions on the network.

Activation function Training time (s)

Iteration number

Mean square error Correlation coeflicient

tansig tansig 17 43
logsig logsig 118 70
logsig tansig 162 59
tansig logsig 184 70

3.7265 0.9736 0.9948
3.7288 0.9783 0.9962
3.6141 0.9738 0.9951
2.8518 0.9819 0.9971

TaBLE 2: Effects of different training methods on the network.

. . . Mean
Training Training Iteration Correlati fici
. . square orrelation coefficients
algorithm time (s) number
error
traingd 0 1677.6382  0.1354  0.1348
traingdm 0 166.6578  0.6972  0.4948
traingdx 12 90 12.6659 0.9311 0.9373
trainbfg 51 48 5.0487 0.9601  0.9880
trainrp 198 299 3.9941 0.9623  0.9871
trainlm 145 50 2.4951 0.9772  0.9961

has enough neurons and the transfer function is sigmoid
function [30]. In the selection of the hidden layer nodes,
the combinations of different nodes numbers are compared.
Finally, the combination of minimum errors is selected,
the nodes composition of the loads position identification
network is 7-21-10-2, and the nodes composition of the loads
value identification network is 9-21-10-2.

3.3. Determination of Activation Function and Algorithm.
The conventional activation functions in BP neural network
are logsig and tansig. The training algorithms are mainly
traingd (traditional gradient descent method), traingdm
(gradient descent method with momentum), traingdx (learn-
ing rate adaptive adjustment algorithm), trainbfg (quasi-
Newton method), trainrp (elastic gradient descent algo-
rithm), and trainlm (Levenberg-Marquardt algorithm). In
order to compare the effects of different activation functions
and algorithms on network performance and select the best
activation function and training algorithm, the influence of
different activation function and algorithm on the network is
calculated. The output results of the network simulation and
the output of the target are analyzed by linear regression anal-
ysis, and the correlation coeflicients are obtained. And the
results of the training time and the value of error function of
the training are added to consider as the basis for evaluating
the results of the network training. The comparison results
are shown in Tables 1 and 2.

According to Table 1, it can be seen that the convergence
time of different transfer functions is different, and the
earlier the convergence the higher the mean square error
value. The different combinations of activation functions have
very small influence on correlation coeflicients. The number
of iterations is not proportional to the training time. This
shows that the initial weights and thresholds of each training
network are random, and the gradient direction of error
decreases is different. In order to obtain the high accuracy of

the network model, tansig is used as the activation function
of the first hidden layer, and logsig is used as the activation
function of the second hidden layer.

It can be seen from Table 2 that different training algo-
rithms have a great impact on the accuracy of the network.
The network will fall directly into the local minimum with
the traditional gradient descent method and the gradient
descent method with momentum, and the available network
model cannot be established. Several other improved gradient
descent algorithms can construct available network, and the
correlation coefficient, the training time, and the mean square
error values are slightly different. Upon comprehensive con-
sideration, trainlm is used as the training function of the
network.

3.4. Accuracy Evaluation of the Network. To evaluate the
accuracy of the identified results, the relative output error and
the correct recognition rate are used as the evaluation index
of the network. The relative output error of the network is the
ratio of the distance between the actual output and the ideal
output vector of the network to the norm of the ideal output
vector [31], giving

m
" Ny — ¢
Re = Zz—l "yzm 1” , (7)
(1/m) Zizl "tz”
where || - || is the norm of a vector, y; is the actual output of

the network, ¢, is the ideal output of the network, and m is the
number of test samples.

The correct recognition rate of the network is the ratio
of the sample number, in which the relative error is less than
10%, to the total sample number. In general, it is believed that
the network has practical value if the correct recognition rate
is more than 60% [32].

4. Identification Result Analysis

4.1. Identification Results of the Constant Loads. The identifi-
cation results of the vehicle’s front and rear axle position are
shown in Figures 5 and 6. If the vehicle’s axle is not on the
bridge, the output will be zero, and when it is on the bridge,
the output is the distance from the load to the entrance of the
bridge. It can be seen that the identified position curve is close
to the true position curve. There is only a very small deviation
near the bridge support. Hence, the identification accuracy
will be improved by only selecting the data that the vehicle is
completely on the bridge, when the vehicle speed is identified.
Furthermore, the entrance time and leave time of the front
and rear axle on the bridge can be determined distinctly, so
whether the axle is on the bridge can be well identified.
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Because the front axle location minus rear axle position
of the vehicle is the wheelbase, the wheelbase identification is
realized by the location identification. For the identification
of the vehicle wheelbase, the data that two axles are both
on the bridge are selected and the identification results are
shown in Table 3. It can be seen that the accuracy of the
network has a great change when the wheelbase is identified.
The identification results are usually better if the wheelbase is
larger and the speed is lower, and vice versa.

Once the loads positions are identified, the amplitude of
the response is regarded only related to the magnitude value
of loads. Therefore, when the network is trained to identify
the load value of the axle, the identified location information
and the strain response information are used as the input of
the network, and the front and rear axles load values are set
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FiGURE 8: Identified value of the rear axle load.

as the output of the network. The vehicle’s front and rear axles
identification results are, respectively, shown in Figures 7 and
8. The identification accuracy is adequate when the vehicle is
completely on the bridge; the larger error still occurs when the
vehicle moves into and leaves the bridge. Likewise, whether
the load is on the bridge can be clearly distinguished.

The correct recognition rates of the load identification
network under different axle loads and speeds are shown in
Table 4. It can be seen that almost all of the network correct
recognition rates are more than 60% in all cases, and higher
correct recognition rate will be achieved if the vehicle speed
is low and the wheelbase is small.



TaBLE 3: Correct recognition rate of wheelbase in different speeds.

Shock and Vibration

TaBLE 6: Effect of different noise levels on recognition effect.

Wheelbase (m) Speed (m/s) Correct recognition rate Nose level

5 10 20 25 5% 10% 15% 20%
3 73.93 66.67 46.53 47.50 Before filtering 79.60%  63.21% 51.51% 41.47%
4 88.32 85.99 34.62 34.52 After filtering 83.61%  83.61% 77.59%  63.55%
5 87.94 82.16 58.88 61.63
6 88.28 90.87 64.55 70.45

TaBLE 4: Correct recognition rate of load value in different wheel-
bases and speeds.

Wheelbase (m) Speed (m/s)
5 10 20 25

3

Front axle 76.20 83.13 85.54 87.97

Rear axle 68.67 81.02 79.52 86.47
4

Front axle 85.96 74.27 76.61 81.75

Rear axle 85.82 66.67 75.44 75.18
5

Front axle 81.82 83.24 60.23 72,34

Rear axle 81.11 83.81 66.48 68.79
6

Front axle 79.28 78.45 81.22 53.79

Rear axle 71.69 79.28 79.56 60.69

TABLE 5: Vehicle speed identification results with different wheel-
bases.

Wheelbase (m) Actual speed (m/s)
5 10 20 25
3
Identified speed (m/s) 4.9742 9.9619 20.0291  24.6465
Relative error (%) 0.52 0.38 0.15 1.41
4
Identified speed (m/s) 5.0206  9.8656  20.5416 25.5117
Relative error (%) 0.41 1.34 2.71 2.05
5
Identified speed (m/s) 4.9981 10.0727 20.3806  25.6549
Relative error (%) 0.04 0.73 1.9 2.62
6
Identified speed (m/s) 4.9666  9.8695  20.2944 25.6746
Relative error (%) 0.67 1.3 1.47 2.7

The slope of the vehicle position curve is the speed of
the vehicle. Therefore, when the vehicle is completely on the
bridge, the position curve is fitted and the slope of the fitted
curve is calculated; thus, the average speed of the vehicle
is obtained. The speed identification results with different
speeds and wheelbases of the vehicle are listed in Table 5. The
maximum relative error of the identified results is 2.7%, when
the wheelbase is 6 m and the speed is 25m/s. The general
trend is that the recognition accuracy is higher when the
speed and wheelbase of the vehicle are small, and for the same

wheelbase the recognition accuracy of speed decreases with
the increased speed.

4.2. Identification Results of the Dynamic Axle Loads. In order
to verify the identification effect of the loads varying with
time by network, the vehicle’s axle loads on the bridge assume
the trigonometric function as P = 39.2 x (1 + 0.15 x
cos(13.35)) kN, the speed v is 10 m/s, and the wheelbase is
6 m. The identification results are shown in Figures 9 and 10,
and the recognition result of the front axle is better than the
rear axle, and the loads frequency can be identified. By adding
different levels of noise in the sample, the effect of noise on
the recognition results is shown in Table 6. The noise has
great impact on the identification accuracy, but when adding
10% of the noise, the network correct recognition rate is still
greater than 60%, which shows that the network has a good
fault tolerance. After signal filtering technique is used, even
the noise level reaches 20%, the correct rate of the network is
still higher than 60%, indicating that the network is still valid
in this case.

5. Model Experiment and Identification
Using ANN

The experimental simulation of a vehicle moving on a bridge
is carried out to investigate the effect of the previously
presented identification methods for dynamic axle loads by
the bottom strains of the bridge. When the BP neural network
is used to identify the moving loads of the actual structure,
the finite element model of the actual structure is firstly
established, the responses of the bridge are simulated, and
the simulated responses of the bridge are compared with
the measured responses to ensure that the finite element
model is accurate. Then the effective finite element model
is used to simulate the responses of the bridge under dif-
ferent conditions, and the network is trained by the vehicle
loads information and the bridge response information. The
trained neural network will have the capability of identifying
the moving loads from the bridge responses. Then the
measured response information of the bridge is used as input
of the network, and the loads information can be obtained.
The corresponding load identification by BP neural network
strategy flowchart is shown in Figure 11.

The composition and the cross section mechanism of
the experimental model are shown in Figures 12 and 13,
respectively. The deck of the bridge model is made of a
uniform thickness steel plate and is divided into three spans
consisting of a leading span, a main span, and a trailing span.
Leading span and trailing span are used for acceleration and
deceleration of the vehicle model, respectively. The auxiliary
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FIGURE 9: Identified value of the front dynamic axle load.
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FIGURE 10: Identified value of the rear dynamic axle load.

beam and the main girder share a bearing, and there is a
small gap between them, and foam filled in the gap to reduce
the impact loads caused by the vehicle when it steps on
and leaves the bridge. Since the deck of the main span is
well separated from the two side spans, it is free from the
structural continuity of the side spans. Consequently, the
main span can be treated as a simply supported bridge. The
bridge model parameters are as follows: the length of the
beam L is 2 m with a 10 mm x 150 mm uniform cross section,
the elastic modulus E is 2.07 x 10" N/m?, the moment of
inertia I =1.295 x 10~® m*, and the density p = 7850 kg/m®.
A U-shaped aluminum section is glued to the upper surface

of the beams as a direction guider for the vehicle model. A
vehicle model having two axles and two rubber wheels for
each axle is employed.

In order to measure the dynamic strain responses of
the bridge under moving vehicles, seven strain gauges are
installed at each cross section at the 1/8 to 7/8 span. Nine
steel bars are arranged at equal space on one side of the main
girder, and a sheet steel with a strain gauge is fixed on the
vehicle model; when the model vehicle passes through the
model beam, the sheet steel on the model vehicle will hit the
steel bar, the vibration signal will be recorded by the strain
gauge on the sheet steel, and the speed of the model vehicle
can be obtained by analyzing the signal of the voltage.

The completed model beam and model car are shown
in Figures 14 and 15. The weight of the model car varied as
9.38 Kg, 16.26 Kg, and 20.42 Kg by adjusting the weight on the
car, and the speed varied as 0.33 m/s, 0.66 m/s, or 1.00 m/s,
and the wheelbase is 20 cm and 25 cm, respectively, and 18
groups of signals for different cases are collected.

The strain responses at the bottom of the model beam
under the model vehicle moving are shown in Figure 16; in
this case, the model vehicle’s weight is 9.38 Kg, front and
rear axles load ratio is 1:1, wheelbase is 25cm, speed is
0.25m/s, and sampling frequency is 1000 Hz. It can be seen
from Figure 16 that the strain curves of the measuring points
are symmetrical, and the peak point varies with the relative
position between the vehicle and the measuring point; the
linear degree of strain curves at 1/8 and 7/8 span is slightly
poor, but strain curves at other points of measurement are
superior.

Because the time-varying loads of the vehicle are
unknown in the test, the accurate and reasonable target
results for network learning are indefinite; therefore, the
software ANSYS is used to establish the finite element model,
as shown in Figure 17, and the test process under different
experimental conditions is simulated; the simulation samples
are obtained. In order to verify the rationality of the finite
element model, the comparison between the test and the
simulation strain curve at midspan of the main beam is shown
in Figure 18. It is obvious that the simulation results are
reasonable.

After the simulation data is obtained, the network is
trained with the method mentioned above, and then the
trained network is used to identify the parameters of loads; in
this case, the vehicle’s weight is 9.2 kg, the speed is 0.35 m/s,
and the axle load ratiois 1: 1.

The position identification results of the model vehicle are
shown in Figures 19 and 20, and the front axle identification
result is better than the result of the rear axle. Overall, the
identification of the position curve and the ideal curve is in
good agreement. The main identification error occurs when
the model vehicle moves into and leaves the bridge. This
identification error is mainly caused by the relatively small
signal-to-noise ratio of the strain response when the vehicle’s
position is close to the supports.

The position curve is fitted and the slope of the obtained
line is the speed of the vehicle model. The average speed
identification results of the model vehicle with different
speeds are listed in Table 7. As can be seen from the table,
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FIGURE 11: Flowchart for load identification by BP neural network.
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FIGURE 13: Cross-sectional of vehicle-bridge model.
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FIGURE 15: Model vehicle.
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TABLE 7: Average speed identification results of model vehicle.

1

FIGURE 17: Finite element model of model beam.
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FIGURE 18: Comparison of measured and simulated strain of
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TABLE 8: Position identification error results of model vehicle.

Speed (m/s) 0.3337 0.5213 0.7069 1.0847 1.2681
Maximum
position 0.085 0001  0.088 0481  0.464
identification
error (m)

Measured speed (m/s) 0.3337 0.5213 0.7069 1.0847 1.2681

Identified speed (m/s) 0.3479 0.5413 0.7308 1.1108 1.2975
Absolute error (m/s) 0.0142 0.0210 0.0239 0.0261 0.0294
Relative error (%) 4.26 4.02 3.38 2.41 2.32

the identification results of the vehicle’s speed are accurate,
and the absolute error of identification becomes larger with
the increase of the speed. The relative error decreases with
the increase of the speed.

The identification error of vehicle’s position can be
obtained by multiplying the vehicle’s speed by the total time
of the vehicle passing through the bridge; the result is shown
in Table 8. It can be seen that, with the increase of the speed,
the position error is gradually increasing, especially when the
vehicle’s speed is higher; that is, the speed error can lead to
large position errors, so it is important to identify the speed
correctly.

The dynamic identification results of the vehicle’s front
and rear axle loads are shown in Figures 21 and 22, respec-
tively, compared with the axial static load. It can be seen that
the identified force varies around the static axial load of the
vehicle, and a clear pitching motion of the vehicle can be
observed from the time histories. It is worth noting that the
maximum value of the loads identified is much greater than
the static load value when the vehicle enters and leaves the
bridge, and this is mainly caused by the impact load of the
vehicle when moving through the gap at the link between
model beams.
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FIGURE 19: The position identification results of the model vehicle
(front axle).

2.5

Rear axle position (m)

0 1 2 3 4 5 6 7
Time (s)

+ Identified position
—— Actual position

FIGURE 20: The position identification results of the model vehicle
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6. Conclusion

For vehicle-bridge dynamic system, axle load identification
is a classic inverse problem. The dynamic strain is selected
to identify the loads parameter because it is sensitive to
both load location and load value. In order to overcome
the computing deficiency of the traditional identification
method, BP neural network is applied to identify the moving
loads, and the accuracy is verified by experiments. The results
show that the BP neural network method is feasible for
moving load identification, which can be used to identify
the position, the wheelbase, and the dynamic loads of the
vehicle based on dynamic strain responses of the bridge

Shock and Vibration
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FIGURE 21: The front axle force identification results of the model
vehicle.
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FIGURE 22: The rear axle force identification results of the model
vehicle.

subjected to moving loads. In the application of neural
network for moving load identification, the transfer function
in different combinations has little effect on the results, but
the different training methods have a great influence on the
results. The identification for the constant moving load has
a higher recognition accuracy; the identification results of
the time-varying force are not so better, but it is still able
to recognize the load value. The values of the identified
force are consistent with the actual regularity and have good
antinoise performance. The identification method of moving
load using ANN and dynamic strain can be used as a simple,
low-cost, and convenient means for short-term monitoring
or condition assessment for bridge inspection.



Shock and Vibration

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is partially supported by the Natural Science
Foundation of China under Grants nos. 51478024 and
51108009 and the Foundation of Beijing Key Lab of Earth-
quake Engineering and Structural Retrofit under Grant no.
USDE201403.

References

[1] H. Nishida, H. Sato, H. Kawai, and S. Nakao, “Special vehicle
automatic measurement system and its application,” in Proceed-
ings of the 5th International Conference on Weigh-in-Motion of
Heavy Vehicles (ICWIM °08), 2008.

[2] L.Dengand C. S. Cai, “Identification of dynamic vehicular axle
loads: theory and simulations,” Journal of Vibration and Control,
vol. 16, no. 14, pp. 2167-2194, 2010.

[3] S. S. Law, T. H. T. Chan, and Q. H. Zeng, “Moving force
identification: a time domain method,” Journal of Sound and
Vibration, vol. 201, no. 1, pp- 1-22,1997.

[4] S. S. Law, T. H. T. Chan, and Q. H. Zeng, “Moving force
identification—a frequency and time domains analysis,” Journal
of Dynamic Systems, Measurement and Control, vol. 121, no. 3,
pp. 394-401, 1999.

[5] S. S. Law, J. Q. Bu, X. Q. Zhu, and S. L. Chan, “Vehicle axle
loads identification using finite element method,” Engineering
Structures, vol. 26, no. 8, pp. 1143-1153, 2004.

[6] Y. X. Rong, “Vibration response curve moving fitting method
and moving forces identification,” Noise and Vibration Control,
vol. 26, no. 3, pp. 42-43, 2006.

[7] L. Zhong Xian and C. Feng, “Identification and parametric
analysis of moving loads on simply supported and multi-span
continuous bridges,” Engineering Mechanics, vol. 23, no. 12, pp.
91-99, 2006.

[8] H. Adeli and S. L. Hung, Machine Learning: Neural Networks,
Genetic Algorithms, and Fuzzy Systems, John Wiley & Sons, New
York, NY, USA, 1995.

[9] S. Gholizadeh, E. Salajegheh, and P. Torkzadeh, “Structural
optimization with frequency constraints by genetic algorithm
using wavelet radial basis function neural network,” Journal of
Sound and Vibration, vol. 312, no. 1-2, pp. 316-331, 2008.

[10] S. Gholizadeh and E. Salajegheh, “Optimal design of structures
subjected to time history loading by swarm intelligence and an
advanced metamodel,” Computer Methods in Applied Mechanics
and Engineering, vol. 198, no. 37-40, pp. 2936-2949, 2009.

[11] S. Gholizadeh, J. Salajegheh, and E. Salajegheh, “An intelligent
neural system for predicting structural response subject to
earthquakes,” Advances in Engineering Software, vol. 40, no. 8,
pp. 630-639, 2009.

[12] S. Gholizadeh and E. Salajegheh, “Optimal seismic design of
steel structures by an efficient soft computing based algorithm,”
Journal of Constructional Steel Research, vol. 66, no. 1, pp. 85-95,
2010.

[13] K. Kawamura, A. Miyamoto, D. M. Frangopol, and R. Kimura,
“Performance evaluation of concrete slabs of existing bridges
using neural networks,” Engineering Structures, vol. 25, no. 12,
pp. 1455-1477, 2003.

13

[14] W.T.Yeungand]. W. Smith, “Damage detection in bridges using
neural networks for pattern recognition of vibration signatures,”
Engineering Structures, vol. 27, no. 5, pp. 685-698, 2005.

[15] J.J. Lee and C. B. Yun, “Damage diagnosis of steel girder bridges
using ambient vibration data,” Engineering Structures, vol. 28,
no. 6, pp. 912-925, 2006.

[16] M. Mehrjoo, N. Khaji, H. Moharrami, and A. Bahreininejad,
“Damage detection of truss bridge joints using artificial neural
networks,” Expert Systems with Applications, vol. 36, no. 3, pp.
1122-1131, 2008.

(17] C.-B. Yun, J.-H. Yi, and E. Y. Bahng, “Joint damage assessment
of framed structures using a neural networks technique;
Engineering Structures, vol. 23, no. 5, pp. 425-435, 2001.

[18] C.S. Huang, S. L. Hung, C. M. Wen, and T. T. Tu, “A neural
network approach for structural identification and diagnosis of
a building from seismic response data,” Earthquake Engineering
& Structural Dynamics, vol. 32, no. 2, pp. 187-206, 2003.

[19] J. L. Zapico and M. P. Gonzdlez, “Numerical simulation of
a method for seismic damage identification in buildings;
Engineering Structures, vol. 28, no. 2, pp. 255-263, 2006.

[20] H. E Lam and C. T. Ng, “The selection of pattern features for
structural damage detection using an extended Bayesian ANN
algorithm,” Engineering Structures, vol. 30, no. 10, pp. 2762
2770, 2008.

[21] O. R. de Lautour and P. Omenzetter, “Prediction of seismic-
induced structural damage using artificial neural networks,”
Engineering Structures, vol. 31, no. 2, pp. 600-606, 2009.

[22] K.-V. Yuen and H.-E Lam, “On the complexity of artificial
neural networks for smart structures monitoring,” Engineering
Structures, vol. 28, no. 7, pp- 977-984, 2006.

[23] B.Xu, Z. Wu, G. Chen, and K. Yokoyama, “Direct identification
of structural parameters from dynamic responses with neural
networks,” Engineering Applications of Artificial Intelligence, vol.
17, no. 8, pp. 931-943, 2004.

[24] Y. Lu and Z. Tu, “A two-level neural network approach for
dynamic FE model updating including damping,” Journal of
Sound and Vibration, vol. 275, no. 3-5, pp. 931-952, 2004.

[25] Q. Chen, Y. W. Chan, and K. Worden, “Structural fault diagnosis
and isolation using neural networks based on response-only
data,” Computers & Structures, vol. 81, no. 22-23, pp. 2165-2172,
2003.

[26] L. Fryba, Vibration of Solids and Structure under Moving Loads,
Thomas Telford Publishing, London, UK, 1999.

[27] G. R. Liu and X. Han, Computational Inverse Techniques in
Nondestructive Evaluation, CRC Press, Boca Raton, Fla, USA,
2003.

[28] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice Hall, 2nd edition, 1998.

[29] Z. Yi and X. Boling, “Orthogonal method for training neural
networks,” Journal of Nanjing University, vol. 37, no. 1, pp. 72-
78,2003.

[30] M. T.Hagan, H. B. Demuth, M. H. Beale, and O. D. Jestis, Neural
Network Design, PWS, Boston, Mass, USA, 1996.

[31] J. Hu, Study of load identification and damage detection based
on artificial neural networks [M.S. thesis], Zhejiang University,
Hangzhou, China, 2005.

[32] D. H. Wu and R. D. Zhao, “Research on the method of load
identification for concrete bridge based on neural network;’
China Railway Science, vol. 23, no. 1, pp. 25-28, 2002.



International Journal of

Rotating
Machinery

International Journal of

The SCientiﬁC Journal of DiStribUted
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Journal of ‘ Electrical and Computer
Robotics Engineering

Advances in
Modelling & International Journal of
rrenaion ot o Simulatio Aerospace
ston in Engineering Engineering

Observation

e

/!
| Journal of

International Journal of Antennas and Active and Passive e
Chemical Engineering Propagation Electronic Components Shock and Vibration



