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Little is known about the movement characteristics of the supercavitating vehicle navigating underwater. In this paper, based on
a four-dimensional dynamical system of this vehicle, its complicated dynamical behaviors were analyzed in detail by numerical
simulation, according to the phase trajectory diagram, the bifurcation diagram, and the Lyapunov exponential spectrum. The
influence of control parameters (such as various cavitation numbers and fin deflection angles) on the movement characteristics
of the supercavitating vehicle was mainly studied. When the system parameters vary, various complicated physical phenomena,
such as Hopf bifurcation, periodic bifurcation, or chaos, can be observed. Most importantly, it was found that the parameter range
of the vehicle in a stable movement state can be effectively determined by a two-dimensional bifurcation diagram and that the
behavior of the vehicle in the supercavity can be controlled by selecting appropriate control parameters to ensure stable navigation.

1. Introduction

Liquid vaporization of a liquid occurs at any point when the
pressure at that point is reduced below a critical value. In
the initial stage, the above phenomenon is microscopic. As
time progresses macroscopically, small bubbles arise. Further,
these macroscopic bubbles join to form larger cavum of
steam and gas in the interface of the liquid or liquid and
solid, known as cavities [1]. The emergence, development,
and crumble processes of the cavity are called cavitation
phenomena. Supercavitation is a state in which the cavity
appears on the whole surface of the object and in the liquid
near the end. In this state, the formed cavity is like a big steam
bag, exceeding the end of the object or loading the entire
object inside; hence the name is supercavity [1-3].

A dimensionless cavitation number o that reflects the
cavity is introduced to investigate the characteristic of the
supercavity in a general case. The cavitation number o is
defined as o = (P, — P,)/0.5pV?, where P, is the ambient
pressure, P, is the cavity pressure, p is the water density, and
V is the vehicle velocity [1]. Once the supercavity becomes

stable, most of the vehicle’s surface is surrounded by gases and
the resistance of the vehicle decreases sharply. This increases
the navigation velocity and the distance travelled by the
vehicle [2-4]. However, when a supercavitation vehicle is
navigating at high speed under the water, most of the vehicle
is surrounded by the cavity; the wet area will be significantly
reduced, which results in the loss of most of the buoyancy. The
parts of the vehicle that are in contact with water are mainly
a cavitator in the front and fins at the rear of the vehicle.
When coming into contact with the cavity wall, the fin will
produce complex nonlinear planing force, which will increase
the frictional resistance of the vehicle, causing vibrations and
impact to the vehicle [5-10]. Hence, the key to ensuring
stable underwater navigation of the vehicle lies in effectively
controlling the behavior of the supercavitation vehicle and
reducing the impact of the collision between the vehicle and
the cavity wall.

Based on a four-dimensional dynamical system of a
supercavitating vehicle, its complicated physical phenomena
were studied by means of multiple dynamical analysis, aiming
at the complex nonlinear planing force, generated by the



contact between the fins and the cavity walls. The most
important finding of this study was that the region and
parameter range of the vehicle in a stable movement state
are determined by the two-dimensional bifurcation diagram.
The movement characteristics of the supercavitation vehicle
under different control parameters were also discussed in
detail.

To the best of our knowledge, it is very difficult to find any
related work in this paper up till now.

2. Dynamic Modeling of
the Supercavitating Vehicle

2.1. Force Analysis. When the underwater vehicle is navi-
gating at high speed in the supercavitating state, most of
the vehicle will be enveloped by the cavity and only a
small part of the surface will have a contact with the water.
While the cavitator at the front has a direct contact with
water, the cavitator can rotate by a certain angle. Different
hydrodynamic power can be provided for the vehicle with
the change of the angle, and a planing force can be produced
when the fin contacts with the cavity wall. Four fins were
symmetrically arranged in the rear part of the vehicle. A
part of the fin penetrates the cavity wall to have a direct
contact with the water, thus providing the required force
and momentum to stabilize and control the vehicle with the
cavitator. In this case, the control surface is composed of the
cavitator and the four fins [5]. The deflection angles of the
cavitator and the fins are usually selected as the feedback
control inputs to ensure the stable underwater movement
of the vehicle. The shape and the force diagram of the
supercavitating vehicle are presented in Figure 1.

The forces acting on the vehicle in its own coordinate
system are indicated in Figure 1. The main forces include the
lift force on the cavitator, F., ;o> the lift force on the fin,
Fgp» the gravity at the centroid of the vehicle, Fy,;y» and
the planing force generated by the interaction between the fin
and the cavity wall, Fjj,iy,, the last of which is a complicated
nonlinear planing force that consequently causes vibration
and impact to the vehicle. The expression of the planing force

is as follows [11]:
R\ 1+H
1-( —— — e
(h’+R’) (1+2h’>“ 0

where V is the velocity of the vehicle and R’ = (R, -
R)/R, where R, and R are the radius of the cavity and the
vehicle, respectively. The immersion depth of the aft of the
supercavitating vehicle i’ is given as follows [11]:
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where

f(w) =2w+ (w + wy) tanh [k (w + wy)]
(3)
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FIGURE 1: Shape and force diagram of the supercavitating vehicle.
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FIGURE 2: Dynamic behavior distribution diagram of the system.

where the positive value of w at the transition point is
wy, = (R. — R)V/L and k is a constant used to control the
approximated error, which is generally set to 300.

The geometrical angle between the vehicle centerline
and the cavity centerline is the immersion angle « of the
supercavitating vehicle, expressed as [11]

a=2 _tanh (kw) &, (4)
174 14

where R, is the cavity radius and R, is the shrinkage ratio at a
distance L from the cavitator.

2.2. Dynamic Modeling. Through the interactive relationship
between the vehicle and the cavity, obtained in the previous
section, the model can be established based on the force
equations [12]. According to the coordinate system presented
in [13], the origin is the center of the disk cavitator at the
front of the supercavitating vehicle. X-axis aligns with the
symmetry axis of the vehicle and points forward. Z-axis is
perpendicular to X-axis, facing vertically downward, and w is
the velocity in Z-axis direction. V represents the longitudinal
velocity of the cavitator at the vehicle front, and 0, g, and z
are the pitching angle, pitching rate, and depth of the vehicle,
respectively.
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According to the theory of rigid body dynamics, the
following relationship can be derived, relating the above
variables [13]:
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FIGURE 8: The motion state of the system when k = -21.95.

The feedback controller is designed for the supercavi-
tating vehicle with control inputs being the deflection J, of
the fin and the deflection &, of the cavitator. §, = kz and
0. = 15z — 300 — 0.3q [12, 14] were adopted in this paper,
where k is the feedback gain of the control variable z.

3. Dynamic Behavior of the Underwater
Supercavitating Vehicle

According to [15], the system parameters of the supercavi-
tation vehicle are as follows: g = 9.81m/s*>, m = 2, R, =

0.0191m, R = 0.0508m, L = 1.8m, V € [67.7, 92.3] m/s,
o € [0.0198, 0.0368], n = 0.5, and C,, = 0.82. To realize
the stable movement of the supercavitating vehicle, the effects
of cavitation number ¢ and the fin control law k on the
stable movement state of the vehicle were analyzed based
on the four-dimensional dynamical system. Here, the rest
of the parameters remain constant and the two-dimensional
bifurcation diagram (o, k) is presented in Figure 2, where the
parameters are the cavitation number ¢ and the control gain
k of the fin deflection angle §,.
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In the phase space of (0, k), the dynamic behavior of the
system is presented in Figure 2. The horizontal section is
the bifurcation diagram of the system for different cavitation
numbers o and the vertical section is the bifurcation diagram
of the system when the control gain k varies. The parameter
ranges for different system states can be determined by
the two-dimensional bifurcation diagram. The region in red
represents the stable movement state of the vehicle, which
means the vehicle will navigate steadily when o and k are
equal to the values corresponding to any point (o, k) within
this region. The green area shows the periodic oscillatory
nature of the vehicle movement, which means that the vehicle
will oscillate periodically and, hence, will become unstable.
Moreover, the vehicle navigating with the states of the yellow
area will suffer from vibration and impact and then collapse.
When the vehicle alters from the steady state to the periodic
state, the Hopf bifurcation occurs. The boundary between
the red and green regions, that is, the critical switching line
of the stable state and the periodic state, is also called the
Hopf bifurcation line. Similarly, the boundary between the
green and yellow areas indicates the switch between the
periodic and chaotic states, where the physical phenomena,
such as tangent bifurcation and period doubling bifurcation,
can occur.

It can be observed from (1) that, in the four-dimensional
dynamical system of the underwater vehicle, only the planing
force Fjj.ing is the nonlinear force associated with the
system state variable and the vertical velocity w. This is
primarily attributed to the fact that the complicated nonlinear
force acts on the fin of the vehicle that the vehicle suffers
from vibration, impact, and even collapse due to unstable
movement. Therefore, the nonlinear dynamic characteristics
can be further understood by analyzing the system from the
point of view of nonlinearity, thus preparing for the stable
control of the supercavitating vehicle.

3.1. Nonlinear Dynamical Characteristic of the Vehicle under
Different Cavitation Values. According to the dynamical
behavior distribution diagram, presented in Figure 2, the
bifurcation diagram between the system state variable w and

the cavitation number o is provided in Figure 3 (k = 1, i.e,
8, =zand §, = 15z — 300 — 0.3gq). Some simple explanations
are given as follows.

When the cavitation number o of the system falls in
the range of [0.0198, 0.02687], the trajectory of the vehicle
converges to a stable equilibrium point.

When o is equal to 0.02687, the Hopf bifurcation occurs,
as a result of which the stable equilibrium point becomes the
stable periodic trajectory and the vehicle oscillates periodi-
cally.

After a series of period doubling bifurcation, the system
falls into a chaotic state and the vehicle suffers from huge
impact. When the cavitation number ¢ is approximately
0.03083, the system has three stable periodic trajectories.

The bifurcation diagram shown in Figure 3, when o ¢
[0.0315, 0.0325], is magnified in Figure 4, which depicts the
diversified bifurcation behaviors of the system.

After a series of period doubling bifurcations, the system
shifts from three periodic trajectories into three huge chaotic
attractors, respectively. when o is approximately 0.03197, this
phenomenon is referred to as chaos crisis [12].

When o is equal to 0.032, the chaotic attractors suddenly
change into periodic trajectories and form one period-2
window and two period-3 windows. This phenomenon is
referred to as tangent bifurcation. The tangent bifurcation
will cause intermittent chaos and the periodic trajectories
suddenly develop chaotic bands in the periodic window after
experiencing a period doubling bifurcation.

When o is equal to 0.03204 the secondary chaotic band
coincides with the unstable periodic trajectories, which then
causes the chaotic crisis. The secondary narrow chaotic band
will then transform into a broad chaotic band.

With the increase of o, the obvious period-2 window
occurs for ¢ € [0.03207, 0.03225] and when o is approxi-
mately 0.032228, the broad chaotic band suddenly changes
into two periodic trajectories.

3.2. Nonlinear Dynamic Characteristic of the Vehicle under
Different Fin Deflection Angles. When the cavitation number
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is set as 0 = 0.0315, the cavitator deflection angle is §. =  effective range of the control gain k for the supercavitating
15z — 300 — 0.3q and the fin deflection angle is §, = kz. The  vehicle is presented in Figure 5 when o = 0.0315.
bifurcation diagram of the supercavitating vehicle, between Figure 5 shows that when k falls within the wider range

the system state variable w and the control gain k of the fin [-76.14, —52.38], the system is in a chaotic state and finally
deflection angle, is presented in Figure 5. According to the  the period-2 trajectory occurs through period doubling
dynamical behavior distribution presented in Figure 2, the  bifurcation.



2.0 T T T T

w (m~s‘1)

-1.0

_2.0 1 1 1 1
-0.4 -0.2 0 0.2 0.4 0.6

Shock and Vibration

Lyapunov exponent spectrum

-100 P\W =

t(s)
(b)

FIGURE 11: (a) Phase trajectory diagram in w — 6 plane when k = —55 and (b) Lyapunov exponent spectrum.

When k is approximately 8.56, the periodic state ends
and the system is in the divergent state. The corresponding
magnified part in Figure 5 for -80 < k < =50 is given
in Figure 6, which indicates that the system changes from a
periodic state into a chaotic state when k = —77.9.

When k is approximately —77.54, the tangent bifurcation
occurs, leading to an intermittent chaos and forming the
period-3 windows and then three stable periodic trajectories.

The period doubling bifurcations occur for the three
trajectories when k is approximately —77, —76.16, or —75.5.
When k is approximately —74.6, the secondary chaotic band
and the unstable periodic trajectories converge into chaos.

When k is approximately —73.58, the tangent bifurcation
occurs. The system suddenly switches from chaotic state to
periodic state and the period-three windows forms. With the
occurrence of a series of period doubling bifurcation, the
system enters into the chaotic state again when k is between
—71.18 and —52.64, upon which the system switches back from
the chaotic state to the periodic state.

4. Movement Characteristic Analysis of the
Underwater Supercavitating Vehicle

When the system of the supercavitating vehicle is not con-
trolled, the movement state of the system is unstable [12, 14].
To investigate its movement characteristics alone, according
to the two-dimensional bifurcation diagram, the rest of the
parameters of the system should be kept constant. Assuming
that o is equal to 0.0315, the feedback control laws 8, =
15z — 300 — 0.3q and §, = —21.95z, which corresponds to
the point (0.0315, —21.95) in the red stable movement area in
Figure 2. The phase trajectory diagram is shown in Figure 7(a)
when the control gain of the fin deflection angle k is equal to
—-21.95.

It can be observed that when k = -21.95, the phase
trajectory of the system gradually stabilizes at an equilibrium
point. The Lyapunov exponent spectrum as a function of time

is presented in Figure 7(b) in which the values of the largest
Lyapunov exponent curve are negative within a finite time.

The motion state of the supercavitating vehicle is pre-
sented in Figure 8, in which the system state variables, namely,
the vertical position z, the transverse speed w, the pitch angle
0, and the pitch rate g, are attracted to the equilibrium point
(0.0047, 0.0866, 0.0012, 0) with less settling time under the
control of the law of stable movement.

Figures 8(e) and 8(f) demonstrate that the immersion
depth K’ of the fin and the corresponding planing force F,
are both 0. This indicates that the fin is inside the cavity and
does not have any contact with the cavity; the vehicle is in a
stable navigation state.

When o is equal to 0.0315, the feedback control laws are
8. = 15z — 300 — 0.3g and J, = 3z, which corresponds to the
point (0.0315, 3) in the green periodic oscillation region in
Figure 2.

Figure 9(a) tells us that the phase trajectory is a limit
cycle with period 2 when the control gain of the fin deflection
angle k is equal to 3. The Lyapunov exponent spectrum
corresponding to k = 3 is shown in Figure 9(b). It is not
difficult to find that the system approximately has a zero
Lyapunov exponent and three negative Lyapunov exponents.

The motion state of the supercavitating vehicle is shown
in Figure 10, in which the system state variables, namely,
the vertical position z, the transverse speed w, the pitch angle
0, and the pitch rate velocity g, oscillate periodically at the
equilibrium point (0.0416, 1.3937, 0.0190, 0).

The immersion depth ' of the fin oscillates periodically
in the range of [0, 0.06] (in m), which indicates that the
vehicle continuously collides with the cavity wall.

The fin is inside the cavity at times and does not come in
contact with the cavity, which results in zero planing force
F,. The fin penetrates the cavity into the water at times
and produces the planing force oscillating periodically in the
range of [0, 48] (in N). The above actions repeat again and
again, and such phenomenon is referred to as “fin attack
phenomenon.” It also indicates that the vehicle is in an
unstable periodic oscillating state.
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When o is equal to 0.0315, the feedback control laws of
0. = 15z — 300 — 0.3g and §, = —55z are selected, which
corresponds to the point (0.0315, —55) in the yellow chaotic
area in Figure 2.

Figure 11(a) demonstrates that the phase trajectory is a
chaotic attractor when the control gain of the fin deflection
angle k is equal to —55, which indicates that the chaos
has occurred and the movement of the vehicle has the

characteristics of a nonlinear dynamic behavior. The Lya-
punov exponent spectrum corresponding to k = -55 is
given in Figure 11(b). It is relatively easy to find that the
system has a positive Lyapunov exponent and three negative
Lyapunov exponents, suggesting that the system is in a four-
dimensional chaotic state.

The motion state of the system is presented in Figure 12.
After the launch of the supercavitating vehicle, the four
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system state variables, namely, z, w, 0, and g, are in the intense
nonperiodic oscillating state. Thus, the vehicle in motion will
experience instability.

It can be observed from Figures 12(e) and 12(f) that within
the time range of [1, 2] (values in s), the fin of the vehicle
is continuously into contact with the cavity wall under the
action of gravity and produces the planing force. The planing
force increases gradually with the increase of immersion
depth and the vehicle will rebound inside the cavity, which
results in the loss of the planing force. The above actions
repeat subsequently and the planing force oscillates. The
existence of the planing force will cause vibration and impact
to the vehicle, resulting in the loss of stability of the vehicle.
Therefore, precise control must be exerted on the vehicle to
avoid the above situations [16, 17].

5. Conclusions

The nonlinear dynamic characteristic movement states under
different control parameters of the supercavitating vehicle
were analyzed based on a four-dimensional dynamical model
of the vehicle. The following conclusions have been mainly
derived:

(1) The movement trajectories of the supercavitating
vehicle have complicated dynamical behavior: the
system will experience Hopf bifurcation, periodical
windows, chaos, and other nonlinear phenomena
when the control parameters vary.

(2) The movement state of the vehicle under different
control parameters was numerically and precisely
analyzed according to the phase trajectory diagram,
the bifurcation diagram, and the Lyapunov exponen-
tial spectrum.

(3) Most importantly, the authors were the first to
find that the range of parameters of the vehicle in
any movement state can be determined by a two-
dimensional bifurcation diagram. The importance of
selecting appropriate control parameters to realize the
stable navigation of the supercavitating vehicle was
demonstrated.

It is believed that the work presented in this paper is of
great importance for further studies on the stable control
of the underwater supercavitating vehicles, especially for
engineering practice.
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