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The flexibility of the suspension multicables and driven length difference between two cables cause the translation and rotation
of the platform in the incompletely restrained cable-suspended system driven by two cables (IRCSWs2), which are theoretically
investigated in this paper. The suspension cables are spatially discretized using the assumed modes method (AMM) and the
equations of motion are derived from Lagrange equations of the first kind. Considering all the geometric matching conditions
are approximately linear with external actuator, the differential algebraic equations (DAEs) are transformed to a system of ordinary
differential equations (ODEs). Using linear boundary conditions of the suspension cable, the current method can obtain not only
the accurate longitudinal displacements of cable and posture of the platform, but also the tension between the platform and cables,
and the current method is verified by ADAMS simulation.

1. Introduction

Thedynamics of cable-driven parallel mechanisms have been
a topic of interest since the introduction of the first designs.
Cable-driven parallel mechanisms, due to cable light weight
and the ability to resist relatively large axial load, have a good
choice for a variety of applications, such as telescope [1],
haptic interface [2], elevators [3, 4], rescue robotics [5], heavy
load transportation [6], and mine hoisting [7]. Cable-driven
parallel mechanisms are suitable for lifting, positioning large
heavy load, and digging a vertical shaft.

The cable-driven mechanisms are generally divided into
two categories: the full constrained cable-driven mechanism
[8, 9] and cable-suspended mechanism [10–12]. The moving
platform of the full constrained cable-driven mechanism can
fully control all degrees of freedom; however, the suspended
cable mechanism uses external force to maintain all cables in
tension. Many cable-driven parallel mechanisms have been
mostly considered quasi-static devices; for instance, classic

determination method of the static workspace is addressed
in the related literature [13]. Dynamic models of cable-
suspended mechanism are built and studied on the optimal
tension distribution among the cable [14] and the deflection
of the suspended platform under the varying cable length.
Dynamic behaviors of cable-suspended mechanism are also
studied in [15, 16] and others.

All the works as mentioned above did not consider the
influence of the longitudinal vibration of cable on cable-
suspended mechanisms; however, they are subjected to the
longitudinal vibration caused by the external excitation for
high flexibility of cable. The longitudinal vibrations of cables
have been studied extensively for decades. Particularly, in
the typical sinking winch mechanism [17–19], simulation
platforms of a ship and a portable crane, the mechanism
used to sink the vertical shaft is composed of winches, head
sheaves, a construction platform, and suspension cables. In
this mechanism, the platform is hung by suspension cables.
Deb [20] analyzed the lateral vibration of a string fixed at both

Hindawi Publishing Corporation
Shock and Vibration
Volume 2016, Article ID 9295717, 11 pages
http://dx.doi.org/10.1155/2016/9295717
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ends excited by the lateral impact of an elastic load at any
point using Heaviside’s expansion theorem. Subsequently,
many scholars have focused on the vibrations of cables
characterized by time-varying length. Nguyen and Hong
[21] analyzed the longitudinal and transverse vibrations of
an axially moving string system at right side exerted by a
hydraulic actuator equipped with a damper using Hamilton’s
principle. Sandilo and van Horssen [22] studied the free
lateral responses of vertically translating media with variable
length, velocity, and tension, subject to general initial condi-
tions. The cable-suspended mechanism consists of not only
distributed-parameter components, such as the suspension
cable, but also lumped-parameter components, such as the
head sheave and the suspended platform [23]. A reduction
method is developed by Zhu et al. [24, 25] to deal with such
structural system into distributed- and lumped-parameter
components, and the distributed-parameter components can
be discretized using the AMM and the complicated natural
matching conditions can serve as the constraints of the
generalized coordinates [26].

Indeed, cable-driven parallelmechanismshave the poten-
tial to produce very fast motions and the control of such
motions requires a proper understanding of the vibration of
the mechanical system [22, 27]. However, swing conditions
often occur on these platforms. In order to improve reliability
of equipment on these swing conditions, the swing experi-
ments are designed for testing the behaviors of equipment
and elevators. An important feature of the system is that the
platform is shaken by the suspension cables. In addition, the
tensions in the suspension cables should be properly allocated
to meet the safety and performance requirements. Hence, it
is necessary to evaluate the design by calculating the dynamic
responses of the platform and the cables.

2. Description of Incompletely
Restrained Cable-Suspended Swinging
System (IRCSWs2)

According to the schematic, the 3D model of the novel
IRCSWs2 is designed in Figure 1. The IRCSWs2 is composed
of two cables, pulleys, actuators, base frame, and suspended
platform. Four connecting joints are symmetrically dis-
tributed around the suspended platform. Each cable is driven
by an actuator in the middle of each cable, and it can be
driven back and forth with a periodic motion. The system
is equivalent to the suspended platform hung with four
suspension cables.

For simplicity and without loss of generality, IRCSWs2
(Figure 1) can be described as the 𝑖th suspension system
model shown in Figures 2(a) and 2(b). Table 1 explains the
meaning of the symbols adopted in Figure 2. This model is
composed of four suspension cables of displacement 𝑙𝑖(t) at
time instant t and the total length 𝐿 𝑖; each suspension cable is
passed over a set of head sheaves, and the suspended platform
is attached to the lower ends of the four suspension cables
shown in Figure 2(a). Based on invariability of suspension
cable’s length, it can be straightened in vertical line shown
in Figure 2(b) and the corresponding sheave is located with

Table 1: Meaning of symbols in Figure 2.

𝑂-𝑋𝑌𝑍 Cartesian reference frame with origin at the
centroid of base frame𝑂𝑏-𝑥𝑦𝑧 Cartesian reference frame with origin at the
centroid of base frame(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) Coordinates of the lower ends with respect to𝑂𝑏-𝑥𝑦𝑧(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) Coordinates of the upper ends with respect to𝑂-𝑋𝑌𝑍𝑙𝑖𝑗 The displacement of the jth sheave𝑚𝑖𝑗 The equivalent mass of the jth sheave

Actuator

Suspended
platform

Cable 1st

Base frame

Pulley

Cable 2nd

Figure 1: 3D model of IRCSWs2.

the same ratio of cable. To keep conversation of energy,
elastic potential energy of the length 𝑙𝑖𝑗 is only caused by
constant value cable tension, and the rest cable (𝐿 𝑖 − 𝑙𝑖𝑗) is
caused by variable cable tension which is reflected in the total
potential energy. In addition, the kinetic energy of sheaves is
equivalent to concentratedmasses on suspension cable which
is reflected in its variable density. The mathematical model
and natural characteristics of constant length of suspension
cable considering the longitudinal vibration behavior and
the concentrated mass of head sheave are proposed. The
suspension cable has axial translating velocity V𝑖(𝑡) = ̇𝑙𝑖(𝑡)
and acceleration 𝑎𝑖(𝑡) = ̈𝑙𝑖(𝑡), where the overdot denotes
time differentiation. It must be noted that the upper ends
of suspensions cables are fixed to the actuator while the
lower ends are attached to the suspended platform. Figures
2(a) and 2(b) describe the longitudinal vibrations along the
axial transport motion. The displacement 𝑢𝑖 represents the
longitudinal displacement of the particle of 𝑖th suspension
cable at position 𝑥 at time t.

The suspended platform is driven by four suspension
cables with the upper ends fixed at actuators. It takes the
actuator displacement as input and then takes the pose of the
suspended platform and tensions and longitudinal vibration
in cables as output. The input-output mathematics model
of such a system is derived. When one actuator is working
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Figure 2: The 𝑖th suspension system model.

independently, the suspended platform is swinging motion
about a single coordinate axis.

In this paper, the AMM and Lagrange equations of
the first kind are combined and applied to IRCSWs2. The
suspension cables and the platform components are con-
nected by mechanical joints that impose restrictions on
their relative motion. Finite rotations introduce geometric
nonlinearities; hence, the systems are inherently nonlinear.
Mechanical joints result in algebraic constraints leading to
a set of governing equations that combines differential and
algebraic equations. Several challenging problems, such as the
tensions between four suspension cables and the suspended
platform, the deformations of the suspension cables, and the
pose of the suspended platform, are treated. Four suspension
cables are spatially discretized using the AMM and the
equations of motion are derived from Lagrange equations of
the first kind, while the geometric matching conditions at the
interfaces of the cables are accounted for by the Lagrangian
multiplier.The performance of dynamically periodicmotions
with small amplitude will be investigated. Thus, all the
geometric matching conditions can be approximately linear,
and the resulting spatially discretized equations, which are
differential algebraic equations (DAEs), are transformed to
ordinary differential equations (ODEs) and solved by anODE
solver.

3. Theoretical Model of IRCSWs2

3.1. Spatial Discretization. Ignoring the lateral vibration of
the suspension cables and the influences of the frictional
force, the IRCSWs2 can be modeled as four cables with
fixed length and the pulleys can be set as lumped-parameter

on cables. And the kinetic energy 𝐾𝑒 associated with the
longitudinal vibrations is

𝐾𝑒 = 4∑
𝑖=1

12 ∫𝐿 𝑖+𝑙𝑖(𝑡)
𝑙𝑖(𝑡)

𝜌𝑖 (𝑥) (𝐷𝑢𝑖𝐷𝑡 + V𝑖)2 d𝑥
+ (12𝑚𝑐ṙ𝑇𝑐 ⋅ ṙ𝑐 + 12𝜔𝑇I𝑐𝜔) ,

(1)

where 𝜌𝑖(𝑥) is the mass distribution function of the suspen-
sion cable and it is defined as 𝜌𝑖(𝑥) = 𝜌 + ∑𝑚𝑖𝑗𝛿(𝑥 − 𝑙𝑖𝑗),𝑗 = 1 ∼ 𝑛𝑡 (𝑛𝑡 is the number of the sheave of 𝑖th suspension
cable);𝜌 and 𝛿(⋅), respectively, represent the unitmass and the
Dirac delta function;𝑚𝑐 and I𝑐 are themass and inertia tensor
matrix of the suspended platform; r𝑐 and 𝜔 are the position
and the angular velocity vectors of the suspended platform.
The relationship of the body-fixed angular velocity vector 𝜔
can be determined by resolving the Euler rates into the body-
fixed coordinate fame. The operator𝐷/𝐷𝑡 is given by

𝐷𝐷𝑡 = 𝜕𝜕𝑡 + V𝑖
𝜕𝜕𝑥 . (2)

Furthermore, the angular and linear velocity vectors of
the suspended platform can be written as

𝜔 = E𝜃̇, (3)

𝜃̇ = [𝛼̇ 𝛽̇ 𝛾̇]𝑇 , (4)

ṙ𝑐 = [𝑥̇ 𝑦̇ 𝑧̇]𝑇 , (5)
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where

E = [[[
cos𝛽 cos 𝛾 sin 𝛾 0− cos𝛽 sin 𝛾 cos 𝛾 0

sin𝛽 0 1
]]] . (6)

The inertia tensor of the platform with respect to the
origin of 𝑂𝑏-𝑥𝑦𝑧 is denoted as

I𝑐 = [[[[
𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

]]]]
. (7)

The total potential energy 𝑉𝑒 of all the cables is
𝑉𝑒 = 4∑
𝑖=1

∫𝐿 𝑖+𝑙𝑖(𝑡)
𝑙𝑖(𝑡)

[𝑇𝑖 (𝑥, 𝑡) 𝜀𝑖 + 12𝐸𝐴𝜀2𝑖 ] d𝑥
− 4∑
𝑖=1

∫𝐿 𝑖+𝑙𝑖(𝑡)
𝑙𝑖𝑛𝑡 (𝑡)

𝜌𝑖𝑔 (𝑢𝑖 + 𝑥) d𝑥 − 𝑚𝑐𝑔𝑧,
(8)

where E is Young’s modulus of the cable;A is the cross section
area of cable; 𝑔 is gravity acceleration; 𝑇𝑖(𝑥, 𝑡) is the static
tensions in the cables at position 𝑥 due to the gravitational
acceleration 𝑔 and given as𝑇𝑖 (𝑥, 𝑡) = 𝑇0𝑖 + 𝜌𝑖𝑔 (𝑥 − 𝐿 𝑖 − 𝑙𝑖 (𝑡) ℎ (𝑙𝑖𝑛𝑡 (𝑡) − 𝑥)) ,

(𝑖 = 1 ∼ 4) , (9)

where 𝑇0𝑖 is the force of 𝑖th suspension cable caused by the
suspended platform and ℎ(𝑥) is unit step function; if 𝑥 ≥ 0,
then ℎ(𝑥) = 1; else if 𝑥 < 0, then ℎ(𝑥) = 0. The strain𝜀𝑖 can be approximated as 𝜀𝑖 = 𝜕𝑢𝑖/𝜕𝑥. The first term in
(8) represents the potential energy caused by the tension
and strain in the suspension cable, while the second term
represents the potential energy associated with gravity of the
suspended platform and suspension cables.

The geometric boundary conditions for the suspension
cable and the suspended platform are obtained as

𝑔𝑖 = 𝑙𝑖 (𝑡) + 𝐿 𝑖 + 𝑢𝑖 (𝑙𝑖 (𝑡) + 𝐿 𝑖, 𝑡) − √𝛿𝑥2 + 𝛿𝑦2 + 𝛿𝑧2
= 0, (10)

where𝛿𝑥 = 󵄨󵄨󵄨󵄨𝜗1,1󵄨󵄨󵄨󵄨 ,𝛿𝑦 = 󵄨󵄨󵄨󵄨𝜗2,1󵄨󵄨󵄨󵄨 ,𝛿𝑧 = 󵄨󵄨󵄨󵄨𝜗3,1󵄨󵄨󵄨󵄨 ,𝜗 = 𝑅 [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]𝑇 + r𝑐 − [𝑋𝑖, 𝑌𝑖, 𝑍𝑖]𝑇 (𝜗 ∈ R
3×1) ,

(11)

in which the rotation matrix R can be written in terms of the
roll-pitch-yaw Euler angles as follows:
R

= ( c𝛽 ⋅ c𝛾 −c𝛽 ⋅ s𝛾 s𝛽
c𝛼 ⋅ s𝛾 + c𝛾 ⋅ s𝛼 ⋅ s𝛽 c𝛼 ⋅ c𝛾 − s𝛼 ⋅ s𝛽 ⋅ s𝛾 −c𝛽 ⋅ s𝛼
s𝛼 ⋅ s𝛾 − c𝛼 ⋅ c𝛾 ⋅ s𝛽 c𝛾 ⋅ s𝛼 + c𝛼 ⋅ s𝛽 ⋅ s𝛾 c𝛼 ⋅ c𝛽 ) , (12)

where c(⋅)and s(⋅) denote shorthand writings for sin(⋅) and
cos(⋅) functions, respectively. And 𝛼, 𝛽, and 𝛾 are the rotation
angles around the fixed axes 𝑥, 𝑦, and 𝑧, respectively.

The paper is focused on the influence of small cables’ axial
motion due to the longitudinal variation of cable length on
their dynamic behaviors. With the linear vibration approxi-
mations, that is, |𝜅| ≪ 1, sin 𝜅 ≈ 𝜅, cos 𝜅 ≈ 1, (𝜅 = 𝛼, 𝛽, 𝛾),
and second-order item omitted, the nonlinear geometric
matching conditions at the interface between the suspension
cable and the suspended platform are rewritten as

𝑔𝑖 = 𝐿 𝑖 + 𝑢𝑖 (𝑙𝑖 (𝑡) + 𝐿 𝑖, 𝑡)− (𝑧 − 𝑍𝑖 (𝑡) + 𝑧𝑖 − 𝛽𝑥𝑖 + 𝛼𝑦𝑖) = 0, 𝑖 = 1 ∼ 4. (13)

The transformation 𝜉 = (𝑥− 𝑙𝑖(𝑡))/𝐿 𝑖 is used to transform
the time-varying spatial domain [𝑙𝑖(𝑡), 𝑙𝑖(𝑡) + 𝐿 𝑖], which is
converted to a fixed domain [0, 1] for 𝜉. By using the sep-
aration of variables method, the longitudinal displacements
can be approximated by expansions of a complete set of trial
functions and expressed as

𝑢𝑖 (𝜉, 𝑡) = 𝑛∑
𝑘=1

𝑈𝑖,𝑘 (𝜉) 𝑞𝑖,𝑘 (𝑡) , (14)

where 𝑛 represent the number of assumption mode methods;𝑞𝑖,𝑘(𝑡), inwhich 𝑖 = 1 ∼ 4, are the generalized coordinates;𝑈𝑖,𝑘
are the trial functions and should satisfy the homogeneous
boundary conditions in (13) and can be expressed as

𝑈𝑖,𝑘 (𝜉) = √2 sin(2𝑘 − 12 𝜋𝜉) . (15)

Substituting (1), (8), and (13) into Lagrange equations of
the first kind

𝜕𝜕𝑡 𝜕𝐾𝑒𝜕𝑞̇𝑘 − 𝜕𝐾𝑒𝜕𝑞𝑘 + 𝜕𝑉𝑒𝜕𝑞𝑘 =
4∑
𝑖=1

𝜆𝑖 𝜕𝑔𝑖𝜕𝑞𝑘 (16)

yields the equations of motion with holonomic constraints

Mq̈ = Q (q, q̇, 𝑡) + GT
𝜆,

g (q, 𝑡) = 0, (17)

whereM is mass matrices; Q is force vector; q = (q𝑇1 , . . . , q𝑇4 ,
r𝑇𝑐 , 𝜃𝑇)𝑇(q𝑖 = [𝑞𝑖,1, . . . , 𝑞𝑖,𝑛]𝑇, 𝑖 = 1∼ 4) is the vector of gener-
alized coordinates; and it should be noted that these (4𝑛 +6) generalized coordinates are not independent; however,
the geometric matching conditions (13) yield the holonomic
constraints g of the generalized coordinates, where g =(𝑔1, 𝑔2, 𝑔3, 𝑔4)𝑇 is a vector including all the constraint con-
ditions in (13); G = 𝜕g/𝜕q is the Jacobian of the constraint
equations, which is a 4 × (4𝑛 + 6) matrix; and 𝜆 is the array
of 4 Lagrange’s multipliers; denote the tensions between the
suspension cable and the suspended platform.

For selection of the independent generalized coordinates,
a transformation matrix T𝑟 is introduced,

p = T𝑟 ⋅ q, (18)
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where p = (𝑞1,1, . . . , 𝑞4,1, . . . , 𝑞1,𝑘, . . . , 𝑞4,𝑘, . . . , 𝑞1,𝑛, . . . , 𝑞4,𝑛,
r𝑇𝑐 , 𝜃𝑇)𝑇 is another sequence of the generalized coordinates.
The matricesM andQ are expressed as

M = T𝑟MT𝑇𝑟 ,
Q = T𝑟Q, (19)

where

M = diag (M1,M2,M3,M4,M𝑝)
Q𝑖 = F𝑖 − C𝑖q̇𝑖 − K𝑖q𝑖,
Q = [Q𝑇1 ,Q𝑇2 ,Q𝑇3 ,Q𝑇4 ,Q𝑇𝑝]𝑇
𝑀𝑖𝑗 = 𝐿 𝑖 ∫1

0
𝜌𝑖𝑈𝑖 (𝜉) 𝑈𝑗 (𝜉) d𝜉

𝐶𝑖𝑗
= V𝑖 (∫1

0
𝜌𝑖𝑈󸀠𝑖 (𝜉) 𝑈𝑗 (𝜉) d𝜉 − ∫1

0
𝜌𝑖𝑈𝑖 (𝜉) 𝑈󸀠𝑗 (𝜉) d𝜉)

𝐾𝑖𝑗
= 𝑎𝑖 ∫1
0
𝜌𝑖𝑈󸀠𝑖 (𝜉) 𝑈𝑗 (𝜉) d𝜉

+ 1𝐿 𝑖 ∫10 (𝐸𝐴 − 𝜌𝑖V2)𝑈󸀠𝑖 (𝜉) 𝑈󸀠𝑗 (𝜉) d𝜉
𝐹𝑖
= −𝐿 𝑖 ∫1

0
𝜌𝑖 (𝑎𝑖 − 𝑔)𝑈𝑗 (𝜉) d𝜉 + V𝑖

2 ∫1
0
𝜌𝑖𝑈󸀠𝑗 (𝜉) d𝜉

− ∫1
0
𝑇𝑖 (𝑥, 𝑡) 𝑈󸀠𝑗 (𝜉) d𝜉

− 𝐿 𝑖𝑔∫𝑙𝑖𝑛𝑡 (𝑡)/(𝐿 𝑖+𝑙𝑖(𝑡))
0

𝜌𝑖 (𝜉) 𝑈𝑗 (𝜉) d𝜉
M𝑝 = [𝑚𝑐I3

R𝑇I𝑐R
]

Q𝑝 = [Q1𝑝,Q2𝑝]𝑇 ,
Q1𝑝 = [0 0 𝑚𝑐𝑔𝑧]
Q2𝑝

= 12 𝜃̇𝑇 [0, 𝜕E𝑇𝜕𝛽 I𝑐E + E𝑇I𝑐
𝜕E𝜕𝛽 , 𝜕E𝑇𝜕𝛾 I𝑐E + E𝑇I𝑐

𝜕E𝜕𝛾 ] 𝜃̇
− [(𝜕E𝑇𝜕𝑡 I𝑐E + E𝑇I𝑐

𝜕E𝜕𝑡 ) 𝜃̇]
𝑇 .

(20)

Suspended
platform

Pulley
Cable 1

Base frame

Cable 2

Figure 3: ADAMS simulation model.

3.2. DAEs to ODEs for Solution. Considering the constraint
conditions in (13) are linear algebraic equations (17), a system
of DAEs could be transformed to ODEs. Equation (17) could
be expressed in the form

g (p, 𝑡) = Gp + g𝑟 (𝑡) = 0. (21)

By reduction method, the independent generalized coor-
dinate vector p1 is selected and the DAEs of constrained
mechanical system can be transformed to ODEs problem.
Thus the cable tensions are obtained by evaluating (23)

Φ
𝑇MΦp̈1 = −Φ𝑇Mü (𝑡) +Φ𝑇Q (p1, ṗ1, 𝑡) (22)

(T𝑟G𝑇)−1 (Φ𝑇MΦ (Up̈1 + ü (𝑡)) −Q (p1, ṗ1, 𝑡))= 𝜆. (23)

The parameters G, g𝑟(𝑡), p̈1, ṗ1, Φ, and ü(𝑡) in (21) and
(22) are shown in Appendix. And the initial displacement
and velocity of the suspension cable are necessary for the
numerical solution using Runge-Kutta method.

4. Simulation Model of IRCSWs2

An ADAMS simulation is built in order to validate the
performance, which is shown in Figure 3. The method
and procedure are presented by referring to literature [28].
The key parameters involved in the dynamic simulation of
IRCSWs2 are listed in Notations.

The distance between the cable attachment points to the
origin of 𝑂𝑏-𝑥𝑦𝑧 is 2.07m. Two translational actuators are
built to control the suspension cable with periodic motion.
The actuator movement profile is shown in Figure 4. The
actuator displacement is sine function with amplitude 0.2m
and frequency 0.1 Hz, while the jerk is constant during
startup. The equivalent mass of sheaves is assumed to be
constant.
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Figure 4: Movement profiles: (a) displacement 𝑙𝑖(t); (b) velocity V𝑖(t); (c) acceleration 𝑎𝑖(t).
4.1. The Convergence Analysis of IRCSWs2. It is necessary to
know the number of terms about assumption mode method
which decides the reliability of the result and computation
time.Above all, the convergence of the solution for governing
equation is examined by varying the number of included
modes in Figure 5. The results indicate that the model (𝑛 =10) converges very fast under lower order modes. In order
to decrease computing time, the number of the trial function
used in the AMM is 𝑛 = 10.
4.2. Examples and Discussion. The results of theoretical
calculation and ADAMS simulation are denoted by black
lines and red lines in Figures 6, 7, and 8, respectively. Two
translation joints are used to control the status of the cables.
Swing motions were successfully demonstrated with the
results. All results present approximately sinusoidal variation
with a sinusoidal excitation in Figure 6. The axial tension has
finite impulse response that is caused by sudden switch at 1

second just as shown in Figure 7. The displacements along
the 𝑥 axis, 𝑦 axis and 𝑧 axis are nearly zero, which validated
the assumptions under small excitation.

The two results of theoretical calculation and ADAMS
simulation are in excellent agreement (Figure 7). The cable
tension ranges between 28 kN and 33 kNwhich indicates that
the cable tension is small compared to the tensile capacity
of the cable (safety factor larger than 4) and that auxiliary
protections are usually designed in the practice to prevent
failures. The results show that the longitudinal vibration is
only slightly smaller than ADAMS results due to neglecting
the rigid body displacement of the suspended platform in 𝑥
and 𝑦 direction (Figures 6 and 8); however, during a cycle
time of 10 s, their variable trends have no great difference.
The higher mode of high-frequency variation is caused by
the constant jerk at the beginning of the motion. Due to
the low driving frequency and damping effect, this high-
frequency variation is quick to disappear. Therefore, the
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Figure 5: Longitudinal response with different numbers of modes.

theoretical model and the ADAMS simulation model are
both reasonable, and these two models could be adopted
independently to study the behavior of IRCSWs2.

For the normal case of system resonance and low levels of
excitation, the phase trajectory of the generalized coordinate𝑞11 when the initial stage is zeros is shown in Figure 9. Circle
family of phase trajectory is changing when the excitation
is different. The status of the system accelerations over an
extended period and the system behavior are on steady state
of maintaining swing motion of suspended platform with
system dissipation. In the upper half plane (d𝑞11 > 0), the
motion direction of system status is along positive direction
of horizontal axis; in the downhalf plane (d𝑞11 < 0), the phase
trajectorymoves to left similarity.The rate of phase trajectory
at horizontal axis is always parallel to the vertical axis of the
graph.

5. Conclusions

The dynamical characteristic of IRCSWs2 is investigated in
aspects of both theoreticalmodel and theADAMS simulation
model. The following conclusions could be drawn:

(1) The focus of this paper is to introduce and analyze
the motion of this novel IRCSWs2 by the AMM
and Lagrange equations of the first kind. The perfor-
mance of dynamically periodic motions with small
amplitude is investigated. Thus, all the geometric
matching conditions can be approximately linear, and
the resulting spatially discretized equations are trans-
formed to ordinary differential equations (ODEs) by
reduction method.

(2) In order to validate the theoretical model, the cor-
responding ADAMS simulation is built. The results
of theoretical model are consistent with the ADAMS
simulation by comparison.

(3) The translation displacement of suspended platform
is almost near zero, and rotations of angles about,
respectively, 𝑥- and 𝑦-axes present sinusoidal vari-
ation. The rotation about 𝑧 axes is tiny enough,
which can be neglected. Tensions and longitudinal

displacement also present sinusoidal variation, which
is useful to design and optimize the cable-suspended
system.

Appendix

Equation (13) could be expressed in the form

g (p, 𝑡) = Gp + g𝑟 (𝑡) = 0, (A.1)

where g𝑟(𝑡) = [𝑙1(𝑡), . . . , 𝑙4(𝑡)]𝑇. Without loss of generality,
suppose

G = (G0 G1) ,
p = [p𝑇0 p𝑇1 ]𝑇 , (A.2)

where G0 must be a nonsingular 4 × 4 matrix, because its
inverse matrix will be used subsequently. By (14) and (A.1)
and (A.2), one can obtain

G0 = diag (𝑈1,1 (1) , 𝑈2,1 (1) , 𝑈3,1 (1) , 𝑈4,1 (1)) ,
G1 = [G𝑐2, . . . ,G𝑐𝑛,G𝑝] ,
p0 = [𝑝1,1, 𝑝2,1, 𝑝3,1, 𝑝4,1]𝑇 ,
p1 = (𝑝1,2, . . . , 𝑝4,2, . . . , 𝑝1,𝑗, . . . , 𝑝4,𝑗, . . . , 𝑝1,𝑛, . . . , 𝑝4,𝑛, r𝑇𝑐 ,
𝜃
𝑇)𝑇 ,

(A.3)

in which

G𝑐𝑗 = diag (𝑈1,𝑗 (1) , 𝑈2,𝑗 (1) , 𝑈3,𝑗 (1) , 𝑈4,𝑗 (1)) ,
G𝑝 = [G𝑝1 ,G𝑝2 ,G𝑝3 ,G𝑝4 ]𝑇 ,
G𝑝𝑖 = [0, 0, 1, 𝑦𝑖, −𝑥𝑖, 0] .

(A.4)

G is constant matrix and can be accurately calculated.
Comparing the vectors p and q, if q is selected in (17), then
G0 will be a singular matrix. By this method, the redundant
constraints are eliminated and the DAEs of constrained
mechanical system can be transformed to ODEs problem.

By substituting (A.2) into (A.1), one has

p = Φ (𝑡) p1 + u (𝑡) ,
Φ (𝑡) = [−G0−1G1

I
] ,

u (𝑡) = [−G0−1g𝑟
0

] ,
(A.5)

where p1, a (4𝑛 + 2) vector, become the reduced generalized
coordinates, which are linearly independent; I is a (4𝑛 + 2)
identity matrix.

Differentiating (A.5) yields

ṗ = Φ (𝑡) ṗ1 + Φ̇ (𝑡) p1 + u̇ (𝑡) ,
p̈ = Φ (𝑡) p̈1 + 2Φ̇ (𝑡) ṗ1 + Φ̈ (𝑡) p1 + ü (𝑡) . (A.6)
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Figure 6: The pose of the suspended platform.
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Figure 9: The phase trajectory of 𝑞11: (a) no longitudinal excitation; (b) the excitation of the four suspension cables is given by 𝑒(𝑡) =0.01 sin(𝜋𝑡).
Combining (A.2) and (A.5) can yield GΦ = 0. Substitut-

ing (A.6) into the first equation in (17), premultiplying byΦ𝑇

and using the relationsΦ𝑇G𝑇 = (GΦ)𝑇 = 0 yield

U𝑇MUp̈1 = −U𝑇Mü (𝑡) + U𝑇Q (p1, ṗ1, 𝑡) , (A.7)

where p can be obtained by substituting the solution p1
into the geometric constraint equation (A.5) and q can be
assembled as

q = T𝑟 (Φ (𝑡) p1 + u (𝑡)) . (A.8)
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The cable is assumed to be at rest initially; hence the initial
conditions for generalized coordinates are expressed as (A.9)

𝑞𝑖,𝑘 (0) = ∫1
0
𝑢𝑖 (𝜉𝐿 𝑖, 0) 𝑈𝑖,𝑘 (𝜉) d𝜉

𝑞̇𝑖,𝑘 (0) = ∫1
0
𝑢𝑖 (𝜉𝐿 𝑖, 0) 𝑈𝑖,𝑘 (𝜉) d𝜉

+ V𝑖 (0) 𝑛∑
𝑗=1

𝑞𝑖,𝑗 (0) ∫1
0
𝜉𝑈󸀠𝑖,𝑗 (𝜉) 𝑈𝑖,𝑘 (𝜉) d𝜉

+ V𝑖 (0)√𝑙𝑖 (0)2 𝑞𝑖,𝑗 (0) .

(A.9)

Notations

Key Parameters

𝜌: Mass per unit length of suspension cable
(0.9753 kg/m)𝐿 𝑖: Total length of each suspension cable
(7.19m)𝑚𝑖𝑗: Equivalent mass of sheave (10 kg)𝐸: Young’s modulus (1.2 × 105MPa)𝑔: Gravity Acceleration (10m/s2)𝐴: Cross section area of cable (2.01 × 10−4m2)𝑚𝑐: Mass of suspended platform (1.2 × 104 kg)𝑓: The frequency of sinusoidal excitation
(0.1 Hz)𝑙𝑖𝑗 (𝑗 =1∼3): The initial displacement of sheave ((2, 4.8,
5.42)m)

I𝑐: Inertia tensor
(diag(1.48, 1.48, 0.08) × 105 kgm2).
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