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This paper mainly aims at revealing the nature of the galloping oscillation of iced catenary system under cross winds. The
aerodynamic force on the iced catenary system is assumed to be quasi-steady, and then the quasi-steady aerodynamic lift and
drag coefficients are completed in FLUENT. By fitting the discrete simulation data, the expression of the vertical aerodynamic
force is further obtained. According to the Den Hartog vertical galloping mechanism, the stability of iced catenary is discussed
and the initial icing angle corresponding to the critical stability is obtained. On this basis, the dynamic model of the simple iced
catenary system under cross winds is established. The partial differential vibration equation of the system is converted into the
ordinary differential equation by the Galerkin method and then numerically solved.The condition of the unstable catenary motion
in simulation is in agreement with that from theoretical stability analysis. In addition, the effects of structural damping, initial icing
angle, and wind velocity on the system responses are investigated.

1. Introduction

High speed train is driven by electric locomotives which gain
electrical power from pantograph-catenary system. There-
fore, proper functioning of catenary is one of the key factors
that guarantee the operating safety of high speed railway.
With the wide application of electrified railway, the working
environment is complicated and various. Especially for areas
of low temperature and high humidity and altitude, it is
extremely likely for catenary to be covered with ice. Covering
ice can not only severely affect the current collecting quality,
but also cause a large amplitude oscillation of catenary under
cross winds, which may lead to withdrawn train and equip-
ment damage [1]. Generally speaking, this kind of vibration
is known as galloping, which is also called dancing [2]. Due
to the widespread existence of galloping phenomenon, it is
of great significance for engineers to master the dynamic
characteristics of catenary system with galloping oscillation.

Investigations on iced conductor galloping have been of
interest to researchers for decades. Den Hartog [3] proposed
the vertical galloping criterion. He found that after icing
changed the cross section of conductor, under certain wind

velocity and angle of attack, when the negative slope of
lift force curve was larger than the amplitude of drag force
curve, the occurrence of instability phenomenon could cause
the conductor galloping in the vertical direction. Nigol and
Buchan further verified the galloping theory mentioned in
[4] by the wind tunnel experiment. Additionally, Nigol and
Buchan [5] found that when the vertical galloping condition
was not satisfied, the galloping would also be caused by the
self-excited torsional vibration of iced conductor. Aiming at
the galloping mechanism, Yu et al. [6, 7] proposed the novel
suggestion that the galloping was caused by the eccentricity
inertia of cross section of iced conductor.

Taking a linearized lumped parameter system with two
degrees of freedom as the research object, Luongo and
Piccardo [8] analyzed the bifurcation characteristic of the
system with galloping by the perturbation approach. Jones
[9] studied the linearized coupled vertical-horizontal gal-
loping behavior analytically and drew the conclusion that
the coupled galloping criterion might be either more or less
stringent than Den Hartog’s criterion. In reference [10], a
comprehensive analysis was presented for the galloping of an
oscillator thatmight vibrate both transversely and torsionally.
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Furthermore, a three-degree-of-freedommodel for galloping
was developed and analyzed analytically in [11, 12].

In the previous work, the galloping model was usually
considered as a lumpedmodel. Actually, the continuous char-
acteristics of multispan conductor are extremely important
and should not be ignored. In view of this, Desai et al.
[13] described the galloping behavior of the multispan iced
transmission line by the finite element method, in which the
three-node isoparametric cable element included torsional
and three translational degrees of freedomat each node. Since
then, the finite element method has been widely used in the
galloping research. Based on the work mentioned in [13],
Desai et al. [14] developed an efficient perturbation method
to calculate the galloping vibration of themultispan overhead
transmission line. Zhang el al. [15] established a computa-
tionally efficient hybrid model, in which the mode shapes
were determined by the finite element method and the initial
condition, and analytically investigated the steady vibration
amplitudes of the system.Keutgen andLilien [16] conducted a
wind tunnel test to obtain a full set of data of recent galloping
results, whichwere validated by the corresponding numerical
simulation. By using the spatial curved beam theory, Yan et
al. [17] considered the nonlinearity and bending stiffness of
iced conductor, and then presented the finite element model,
including three translational degrees of freedom and three
rotational degrees of freedom.

In the aspect of catenary galloping, Stickland et al.
[18] analyzed the aerodynamic characteristics of a series of
contact wires by experiment and determined the occurrence
conditions of vertical galloping for different contact wires
based on the Den Hartog criterion. Meanwhile, the effects of
mechanical damping on the occurrence conditions of gallop-
ing were introduced in [18]. Xie et al. [19] conducted a series
of wind tunnel tests on the 2 : 1 scaled model of iced contact
wires and obtained the relation between aerodynamic force
coefficients and angles of attack in the different turbulent flow
fields. Besides, the galloping stability of iced contact wire was
discussed by them. Song et al. [20] studied the wind-induced
vibration of the contact wire with different thickness of ice
coating and concluded that the thicker the ice coating was,
themore serious the wind deviation of contact wire could get.
Meanwhile, literature [20] stated that the influence of average
wind load was so little while the fluctuating wind load had a
significant effect on the current collecting quality. As for the
wind-induced vibration of high speed catenary, the dynamic
behaviors of the pantograph-catenary under stochastic wind
field were analyzed in reference [21].

Up to now, galloping as well as wind deviation of a single
contact wire and fluctuating wind response of iced contact
wire has been studied in detail. However, the attention that
has been paid to the galloping behavior of the whole iced
catenary is not sufficient. In this paper, the galloping behavior
of iced catenary system under average cross winds is studied.
To this end, the quasi-steady aerodynamic force coefficients
of iced contact wire are simulated by FLUENT.The condition
of critical instability obtained from the Den Hartog criterion
is verified by simulating the system response. On this basis,
the phenomenon of low frequency and large amplitude
vibration of catenary system under cross winds is explained.

Dw

(a) Without ice coating

dw

(b) With ice coating

Figure 1: Two kinds of cross section of contact wire.

Moreover, the effects of initial icing angle, damping, andwind
velocity on the galloping characteristics of catenary system
are discussed in detail.

2. Quasi-Steady Aerodynamic
Force of Iced Contact Wire

As one of typical slender structures in the actual engineering,
catenary system is mainly composed of messenger wire,
contact wire, and droppers. In certain circumstance, slender
wires may be covered with ice and then their cross sections
would become asymmetric. As a result, average cross winds
can cause the galloping vibration of the iced wires under
some certain conditions. Previous engineering cases have
illustrated that the mean lift and drag coefficients obtained
under static conditions can accurately describe the galloping
phenomenon [22].Here themean lift anddrag coefficients are
the functions of the angle of attack. Therefore, in this paper,
quasi-steady aerodynamic force is used to describe the action
of cross winds on the catenary system.

The cross sections of contact wire without and with ice
coating are shown in Figure 1. For the case of no ice coating,
the contact wire has a circular cross section with two side
grooves, which are used to install clamps. The diameter of
cross section of contact wire is𝐷𝑤 = 14.4mm [25].

The ice coating shown in Figure 1(b) is assumed ideal
crescent, and then an ice shape coefficient [26] is introduced
to describe the relation between ice thickness and diameter
of cross section; namely,

𝜆𝑤 = 𝐷𝑤𝐷𝑤 + 𝑑𝑤 , (1)

where 𝑑𝑤 is the thickness of ice coating and the value range
of 𝜆𝑤 is usually [1.2, 1.8]. In this paper, the coefficient is𝜆𝑤 = 1.6, indicating that the thickness of ice coating is𝑑𝑤 = 8.64mm.

To simulate the aerodynamic force on the catenary
system, the flow is considered two-dimensional and uniform.
The cross section of contact wire is fixed in the flow field.
According to [27], the drag force and the lift force, respec-
tively, satisfy

𝐹𝑙,𝑤 (𝛼𝑤) = 12𝜌air𝑈2𝐷𝑟,𝑤𝐶𝑙,𝑤 (𝛼𝑤) ,
𝐹𝑑,𝑤 (𝛼𝑤) = 12𝜌air𝑈2𝐷𝑟,𝑤𝐶𝑑,𝑤 (𝛼𝑤) ,

(2)
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Figure 2: Definition of angle of attack.
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Figure 3: Schematic diagram of computational field in FLUENT.

where 𝐹𝑑,𝑤 and 𝐹𝑙,𝑤 denote the drag force and lift force, 𝐶𝑑,𝑤
and 𝐶𝑙,𝑤 denote the drag coefficient and lift coefficient, 𝛼𝑤
denotes the angle of attack, 𝜌air denotes the air density, 𝑈
denotes the wind velocity, and 𝐷𝑟,𝑤 denotes the maximum
height of windward side of cross section and it is approxi-
mately equal to the diameter of cross section.

It is shown in Figure 2 that the range of angle of attack
is in [0∘, 180∘]. To simulate the aerodynamic characteristics
of iced contact wire under cross winds more accurately,
the increment of angle of attack is set to 10∘ in the CFD
simulations, meaning that there are 19 simulation cases.

CFD simulations in this paper are carried out by FLUENT
in which the Finite Volume Method is applied to spatially
discretize the governing equations. The boundary conditions
and mesh of the computational field for 𝛼𝑤 = 0∘ are
shown in Figure 3, where the computational field is divided
into three parts. The left boundary is velocity inlet and the

right boundary is flow outlet. The top boundary and bottom
boundary are considered as symmetry. Besides, the wall of
cross section of iced contact wire is set as no-slip wall. Due to
the drastic changes of the flow field near the cross sectionwall
and in the wake region, the grids should be further densified
in these two regions. The unstructured grids are applied all
over the computational domain and the corresponding total
grid number is 140,000. In order to ensure the computational
precision, the boundary layermesh is needed in the near-wall
region.

Since the quasi-steady aerodynamic forces can describe
the galloping process accurately, the Reynolds-Averaged
Navier-Stokes (RANS) equations, in which the transient
quantity in the Navier-Stocks equations is decomposed into
mean and fluctuating quantities, are considered here. SST 𝑘-𝜔
model is recommended as the viscousmodel in this work. It is
a two-equation eddy-viscosity turbulence model which does
not need the wall-function and plays a good performance on
the adverse pressure gradient, such as flow around a circular
cylinder while the Reynolds number is large. SIMPLE-type
pressure-velocity coupling scheme is used and second-order
upwind scheme is applied to discretize the momentum,
turbulent kinetic energy, and the specific dissipation rate.
During the simulation process, drag and lift coefficients of
the cross section wall are monitored. Wind velocity is set to
15m/s, time step is specified as 0.1ms, and the total simulation
time is 1 s. The time series data of the first 0.5 seconds are
deliberately excluded from the total time series data to ensure
that the data used correspond to the steady state.

The Reynolds number of the iced contact wire is Re =21110 which belongs to the subcritical region. In the sub-
critical region, the vortex street of the wake region becomes
turbulent gradually while the separation of boundary layer
appears because of the strong inverse pressure gradient near
the iced section wall. Figure 4 is the velocity contour maps
of the flow field near the wire section wall under different
angles of attack. From the figures the turbulent flow and the
separation of boundary layer can be seen clearly.

In accordance with the symmetry of cross section of iced
contact wire, the drag and lift coefficients follow the following
relationships.

𝐶𝑑,𝑤 (𝛼𝑤) = 𝐶𝑑,𝑤 (−𝛼𝑤) ,
𝐶𝑙,𝑤 (𝛼𝑤) = −𝐶𝑙,𝑤 (−𝛼𝑤) . (3)
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Figure 4: Velocity contour maps under different angles of attack.

According to the time-averaged value of the calculated
data, the relations between drag coefficient, lift coefficient,
and angle of attack are depicted in Figure 5.

It is clear that when the angle of attack is near ±0∘ and±180∘, the drag coefficient reaches theminimum because that
is when the windward side is the smallest, while the drag
coefficient reaches the maximum when the angle of attack
is near ±90∘ because that is when the windward side is the
largest. As for the lift coefficient, the peaks appear when the
angle of attack is near 40∘, 170∘, and −130∘, and the troughs
appear when the angle of attack is near −40∘, −170∘, and
130∘. The changing rules of drag and lift coefficients are in
agreement with the wind tunnel test data in [16].

To further verify the results of CFD, aerodynamic coef-
ficients of bluff body section such as a D-shape section
and a square section of iced conductor are performed by
FLUENT. The model parameters of D-shape section and
square section are referred to in [23] and [24], respec-
tively. Figures 6 and 7 show the comparison between the
results obtained by CFD in this work and the wind tun-
nel test results obtained in [23, 24]. It can be seen from

the pictures that the coefficients of drag and curves fit-
ted from CFD and wind tunnel tests have uniform ten-
dency.

3. Vertical Aerodynamic Force Model

Thegallopingmodel of iced contact wire is shown in Figure 8,
in which 𝑈 is the wind velocity, ̇𝑦𝑤 is the vertical vibration
velocity, and 𝑈𝑟 is the relative velocity between 𝑈 and ̇𝑦𝑤.

The angle between aerodynamic drag force and central
line of cross section of iced contact wire is described by 𝛼𝑤,
which is usually called angle of attack in the aerodynamics.
Additionally, 𝛼0,𝑤 denotes the initial icing angle, and 𝛼𝑟,𝑤
denotes the relative angle of attack. Therefore, the specific
geometric relationship between them can be expressed as

𝛼𝑤 = 𝛼0,𝑤 − 𝛼𝑟,𝑤, (4)

𝛼𝑟,𝑤 = arctan
̇𝑦𝑤𝑈𝑟 ≈

̇𝑦𝑤𝑈 . (5)
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Since the vertical galloping velocity is far less than the
wind velocity,𝑈𝑟 is approximately equal to𝑈.The component
of drag and lift forces on the axis 𝑦𝑤 can be expressed as

𝐹𝑦,𝑤 = −𝐹𝑑,𝑤 sin𝛼𝑟,𝑤 + 𝐹𝑙,𝑤 cos𝛼𝑟,𝑤. (6)

By substituting (2) into (6), (6) can be further derived as

𝐹𝑦,𝑤 = 12𝜌air𝑈2𝐷𝑤𝐶𝑦,𝑤, (7)

where 𝐶𝑦,𝑤 obeys
𝐶𝑦,𝑤 = −𝐶𝑑,𝑤 (𝛼𝑤) sin𝛼𝑟,𝑤 + 𝐶𝑙,𝑤 (𝛼𝑤) cos𝛼𝑟,𝑤. (8)

Aiming at the range of angle of attack [−50∘, 50∘], the drag
and lift coefficients are gradually extracted and then used in
the cube polynomial fitting; namely,

𝐶𝑑,𝑤 (𝛼𝑤) = 𝑑3𝛼𝑤3 + 𝑑2𝛼𝑤2 + 𝑑1𝛼𝑤 + 𝑑0,
𝐶𝑙,𝑤 (𝛼𝑤) = 𝑙3𝛼𝑤3 + 𝑙2𝛼𝑤2 + 𝑙1𝛼𝑤 + 𝑙0, (9)

where the polynomial coefficients 𝑑0, 𝑑1, 𝑑2, and 𝑑3 are
shown in Table 1. Correspondingly, the fitting curves of drag
coefficient and lift coefficient are shown in Figure 9.

By substituting (4) into (9), (8) is further expressed as

𝐶𝑦,𝑤 (𝛼𝑟,𝑤) = − [𝑑3 (𝛼0,𝑤 − 𝛼𝑟,𝑤)3 + 𝑑2 (𝛼0,𝑤 − 𝛼𝑟,𝑤)2
+ 𝑑1 (𝛼0,𝑤 − 𝛼𝑟,𝑤) + 𝑑0] sin𝛼𝑟,𝑤 + [𝑙3 (𝛼0,𝑤 − 𝛼𝑟,𝑤)3
+ 𝑙2 (𝛼0,𝑤 − 𝛼𝑟,𝑤)2 + 𝑙1 (𝛼0,𝑤 − 𝛼𝑟,𝑤) + 𝑙0] cos𝛼𝑟,𝑤.

(10)

Assuming the relative angle of attack 𝛼𝑟,𝑤 is rather small
at the very beginning of galloping, (10) can be expanded at𝛼𝑟,𝑤 = 0 by the Taylor expansion method, so that

𝐶𝑦,𝑤 (𝛼𝑟,𝑤) = 𝐶𝑦,𝑤󵄨󵄨󵄨󵄨󵄨𝛼
𝑟,𝑤
=0
+ 𝜕𝐶𝑦,𝑤𝜕𝛼𝑟,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼
𝑟,𝑤
=0

𝛼𝑟,𝑤

+ 12!
𝜕2𝐶𝑦,𝑤𝜕𝛼2𝑟,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼
𝑟,𝑤
=0

𝛼2𝑟,𝑤

+ 13!
𝜕3𝐶𝑦,𝑤𝜕𝛼3𝑟,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼
𝑟,𝑤
=0

𝛼3𝑟,𝑤 + 𝑂 (𝛼4𝑟,𝑤) ,

(11)

where𝑂(𝛼4𝑟,𝑤) denotes the terms proportional to 𝛼4𝑟,𝑤 and the
higher powers of 𝛼𝑟,𝑤 which are ignored.

Combining (5) with (11), the vertical aerodynamic force
on unit length of iced contact wire can be obtained according
to (7).

𝐹𝑦,𝑤 = 𝑎3,𝑤 ̇𝑦3𝑤 + 𝑎2,𝑤 ̇𝑦2𝑤 + 𝑎1,𝑤 ̇𝑦𝑤 + 𝑎0,𝑤, (12)

where the expressions of 𝑎3,𝑤, 𝑎2,𝑤, 𝑎1,𝑤, and 𝑎0,𝑤 are
𝑎3,𝑤 = 𝜌air𝐷𝑤2𝑈 [16𝑑3𝛼30,𝑤 + (32 𝑙3 + 16𝑑2)𝛼20,𝑤

+ (𝑙2 + 16𝑑1 − 3𝑑3)𝛼0,𝑤 + 12 𝑙1 + 16𝑑0 − 𝑑2] ,
(13)

𝑎2,𝑤 = 𝜌air𝐷𝑤2 [−12 𝑙3𝛼30,𝑤 + (3𝑑3 − 12 𝑙2)𝛼20,𝑤
+ (3𝑙3 − 12 𝑙1 + 2𝑑2)𝛼0,𝑤 + 𝑑1 + 𝑙2 − 12 𝑙0] ,

(14)

𝑎1,𝑤 = −𝜌air𝐷𝑤𝑈2 [𝑑3𝛼30,𝑤 + (𝑑2 + 3𝑙3) 𝛼20,𝑤
+ (𝑑1 + 2𝑙2) 𝛼0,𝑤 + 𝑑0 + 𝑙1] ,

(15)

𝑎0,𝑤 = 𝜌air𝐷𝑤𝑈22 [𝑙3𝛼30,𝑤 + 𝑙2𝛼20,𝑤 + 𝑙1𝛼0,𝑤 + 𝑙0] . (16)

As for the iced messenger wire, its cross section is similar
to that of iced contact wire; that is, 𝜆𝑚 = 𝜆𝑤. Here
the subscript 𝑚 represents the messenger wire. Due to the
same working environment and same order magnitude of
diameters (𝐷𝑤 = 14.4mm, 𝐷𝑚 ≈ 9.17mm), the Reynolds
of iced messenger wire and iced contact wire are in the same
interval (Re𝑤 = 21110,Re𝑚 = 13443).

As a result, the drag and lift coefficients of iced contact
wire and iced messenger wire are assumed to be the same.
Similarly, the vertical aerodynamic force on unit length of
iced messenger wire can be written as

𝐹𝑦,𝑚 = 𝑎3,𝑚 ̇𝑦𝑚3 + 𝑎2,𝑚 ̇𝑦𝑚2 + 𝑎1,𝑚 ̇𝑦𝑚 + 𝑎0,𝑚, (17)

where the coefficient forms of 𝑎3,𝑚, 𝑎2,𝑚, 𝑎1,𝑚, and 𝑎0,𝑚 are the
same as those shown in (13)–(16).
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Figure 6: Comparison of drag and lift coefficients from CFD and wind tunnel tests of a D-shape section.

Table 1: Polynomial coefficients of fitting curves.

Coefficient Value Coefficient Value
𝑑0 0.4238 𝑙0 0𝑑1 0 𝑙1 1.9841𝑑2 2.0079 𝑙2 0𝑑3 0 𝑙3 −2.0687

4. Galloping Vibration of Catenary System

In this section, the equations of vertical motion of the simple
catenary system under cross winds are derived. As shown
in Figure 10, the contact wire and messenger wire can be
described by the simply supported Euler-Bernoulli beams.

According to the mechanical characteristics, the droppers
are simplified as the nonlinear springs, in which the tensile
stiffness is far larger than the compression stiffness.

The infinitesimal method is used to derive the equations
of motion of the messenger and contact wires which are
simplified as Euler-Bernoulli beams [28]. Figure 11 is the force
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Figure 7: Comparison of drag and lift coefficients from CFD and wind tunnel tests of a square section.

̇yw

Ur

U

r,w

r,w

U 0,w

o

yw

z

w

Fl,w

Fd,w

Figure 8: Galloping model of iced contact wire in the vertical direction.



8 Shock and Vibration

Discrete data
Fitting curve

0

0.5

1

1.5

2

2.5
C

d
,w

−40 −30 −20 −10 0 10 20 30 40 50−50

w (∘)

(a) Drag coefficient

Discrete data
Fitting curve

−1

−0.5

0

0.5

1

1.5

C
l,
w

−40 −30 −20 −10 0 10 20 30 40 50−50

w (∘)

(b) Lift coefficient

Figure 9: Fitting curves.

x

x

z

z

U U U

Support

Dropper

Contact wire

Messenger wire
yc

yw

· · · · · · · · ·

Figure 10: Schematic diagram of simple catenary system under cross winds.

diagram of the Euler-Bernoulli beam infinitesimal element in
which𝑓(𝑥, 𝑡) denotes the vertical force per unit length,𝑦(𝑥, 𝑡)
the vertical displacement, 𝜌𝐴(𝑥) the mass per unit length,𝐸𝐼 the bending stiffness, 𝑇 the tensile force, 𝑀 the bending
moment, 𝑄 the shear force, and 𝑑𝑥 the length of the beam
element.

Derived from Figure 11(b), the force equation of motion
in the vertical direction can be expressed as

𝑄 − (𝑄 + 𝜕𝑄𝜕𝑥 𝑑𝑥) − 𝑇 sin 𝜃 + 𝑇 sin(𝜃 + 𝜕𝜃𝜕𝑥𝑑𝑥)
+ 𝑓 (𝑥, 𝑡) 𝑑𝑥 = −𝜌𝐴 (𝑥) 𝑑𝑥𝜕2𝑦 (𝑥, 𝑡)𝜕𝑡2 .

(18)

Due to the reason that 𝜃 is relatively small, there exists the
assumption sin 𝜃 ≈ 𝜃. Therefore, (18) can be derived as

− 𝜕𝑄𝜕𝑥 𝑑𝑥 + 𝑇𝜕𝜃𝜕𝑥𝑑𝑥 + 𝑓 (𝑥, 𝑡) 𝑑𝑥
= −𝜌𝐴 (𝑥) 𝑑𝑥𝜕2𝑦 (𝑥, 𝑡)𝜕𝑡2 .

(19)

According to the mechanical characteristic and deforma-
tion relationship introduced in material mechanics, we can
obtain that

𝜃 = 𝜕𝑦 (𝑥, 𝑡)𝜕𝑥 ,
𝑄 = 𝜕𝑀𝜕𝑥 ,
𝑀 = −𝐸𝐼𝜕2𝑦 (𝑥, 𝑡)𝜕𝑥2 .

(20)

Substituting (20) into (19), the equation of motion of an
equal section Euler-Bernoulli beam can be written as

𝜌𝐴 ̈𝑦 + 𝐸𝐼𝑦󸀠󸀠󸀠󸀠 + 𝑇𝑦󸀠󸀠 = −𝑓 (𝑥, 𝑡) . (21)

In which ̈𝑦 = 𝜕2𝑦/𝜕𝑡2, 𝑦󸀠󸀠󸀠󸀠 = 𝜕4𝑦/𝜕𝑥4, 𝑦󸀠󸀠 = 𝜕2𝑦/𝜕𝑥2.
For the iced messenger wire, the lumped external forces

include the elastic forces acted by droppers and the elastic
force acted by masts, and the distributed external forces
include the damping force and the aerodynamic force. For
the iced contact wire, the lumped external forces include the
elastic forces acted by droppers and the distributed external
forces include the damping forces and the aerodynamic
forces.
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Figure 11: Diagram of the Euler-Bernoulli beam.

Thus, the vertical vibration equation of iced messenger
wire under cross winds can be derived as

𝜌𝑚𝐴𝑚 ̈𝑦𝑚 + 𝐶𝑚 ̇𝑦𝑚 + 𝐸𝐼𝑚𝑦󸀠󸀠󸀠󸀠𝑚 + 𝑇𝑚𝑦󸀠󸀠𝑚
= − 𝑏∑
𝑖=1

𝐹𝑚,𝑖 −
𝑝∑
𝑖=1

𝐹𝑠,𝑖 + 𝐹𝑦,𝑚, (22)

in which 𝑦𝑚, 𝜌𝑚, 𝐴𝑚, 𝐶𝑚 are the vertical displacement,
linear density, area of cross section, and the structural
damping coefficient, respectively. 𝐸𝐼𝑚, 𝑇𝑚, 𝐹𝑚,𝑖, 𝑏, and 𝑝
denote bending stiffness, the tensile force acted on the iced
messenger wire, the sum of elastic force given by 𝑖th dropper
and gravity of droppers and clamps, the number of droppers,
and the number of support springs.

The elastic support force acted on themessenger wire (see
Figure 10) can be expressed as

𝐹𝑠,𝑖 = 𝑘𝑠𝑦𝑚,𝑠,𝑖 × 𝛿 (𝑥 − 𝑥𝑠,𝑖) , (23)

where 𝑘𝑠, 𝑦𝑚,𝑠,𝑖, 𝑥𝑠,𝑖 denote the support stiffness, the vertical
displacement of the messenger wire at 𝑖th support, and the
location of 𝑖th support on the 𝑥 axis, and 𝛿 is the Dirac
function.

By repeating the above steps, the vertical vibration equa-
tion of iced contact wire under cross winds can be expressed
as

𝜌𝑤𝐴𝑤 ̈𝑦𝑤 + 𝐶𝑤 ̇𝑦𝑤 + 𝐸𝐼𝑤𝑦󸀠󸀠󸀠󸀠𝑤 + 𝑇𝑤𝑦󸀠󸀠𝑤
= − 𝑏∑
𝑖=1

𝐹𝑤,𝑖 + 𝐹𝑦,𝑤. (24)

The coupling relations between contact wire and mes-
senger wire are achieved by the droppers. For each dropper
shown in Figure 10, the elastic forces acted on the contact wire
and messenger wire, respectively, obey

𝐹𝑚,𝑖 = 𝛿 (𝑥 − 𝑥𝑖) (12𝑚𝑖𝑔 + 𝑓𝑑,𝑖) ,
𝐹𝑤,𝑖 = 𝛿 (𝑥 − 𝑥𝑖) (12𝑚𝑖𝑔 − 𝑓𝑑,𝑖) ,

(25)

where 𝑥𝑖 is the location of 𝑖th dropper on the 𝑥 axis;𝑚𝑖 is the
total mass of 𝑖th dropper and clamps.

According to the mechanical characteristic, the elastic
force of 𝑖th dropper can be written as

𝑓𝑑,𝑖 = 𝑘𝑑,𝑖 (𝑦𝑚,𝑖 − 𝑦𝑤,𝑖 + Δ𝑙0) ,
𝑘𝑑,𝑖 = {{{

𝑘𝑡𝑑, (𝑦𝑚,𝑖 − 𝑦𝑤,𝑖 + Δ𝑙0) ≥ 0
𝑘𝑝𝑑, (𝑦𝑚,𝑖 − 𝑦𝑤,𝑖 + Δ𝑙0) < 0,

(26)

where 𝑘𝑡𝑑 and 𝑘𝑝𝑑 denote the tensile stiffness and compres-
sion stiffness, respectively, Δ𝑙0 is the initial elongation of
dropper, and 𝑦𝑚,𝑖 and 𝑦𝑤,𝑖 denote the vertical displacements
of messenger wire and contact wire at the position of 𝑖th
dropper.

In order to obtain the dynamic characteristic of the
catenary system, the Galerkinmethod is adapted to discretize
the partial differential equations. The main vibration mode
functions are assumed as 𝜑𝑚(𝑥) and 𝜑𝑤(𝑥), which satisfy the
boundary conditions of contact wire and messenger wire.
Therefore, the solutions to vibration equations of catenary
system can be expressed as

𝑦𝑚 = 𝑛∑
𝑖=1

𝜑𝑚,𝑖 (𝑥) 𝑞𝑚,𝑖 (𝑡) (27)

𝑦𝑤 = 𝑛∑
𝑖=1

𝜑𝑤,𝑖 (𝑥) 𝑞𝑤,𝑖 (𝑡) , (28)

where 𝑞𝑚,𝑖(𝑡) and 𝑞𝑤,𝑖(𝑡) are the mode coordinates of messen-
ger wire and contact wire; 𝑛 is the modal truncation order.

According to [25], the main parameters of catenary
system are shown in Table 2. In addition, the span of catenary
is set to 10, the tensile stiffness of dropper is 𝑘𝑡𝑑 = 106N/m,
the compression stiffness of dropper is 𝑘𝑝𝑑 = 0.5 × 104N/m,
and support stiffness is 𝑘𝑠 = 2.5 × 107N/m. Referring to
the structure design of actual catenary, the vector position of
dropper in each span obeys [3.375 10.125 16.875 23.625 30.375
37.125 43.875 50.625] (m).

Since the catenary structure is extremely complicated, the
analytical expression of main vibration mode functions can
hardly be derived. Thus the finite element method is applied
to analyze the catenary mode for obtaining the discretized
main vibration mode, as shown in Figure 12. The frequencies



10 Shock and Vibration

Messenger wire
Contact wire

108 216 324 432 5400
Length (m)

(a) First mode

Messenger wire
Contact wire

108 216 324 432 5400
Length (m)

(b) Second mode

Messenger wire
Contact wire

108 216 324 432 5400
Length (m)

(c) Third mode

Messenger wire
Contact wire

108 216 324 432 5400
Length (m)

(d) Fourth mode

Figure 12: Vibration mode shapes of the ten-span catenary.

Table 2: Parameters of catenary model.

Tensile force𝑇 (N)
Linear density𝜌𝐴 (kg/m)

Cross section area𝐴 (mm2)
Span length𝑙 (m)

Messenger wire 14000 0.64 105.65 54
Contact wire 20000 1.43 260.58 54

are listed inTable 3.One can observe that, in the figures of first
fourth modes, mode type in each span is the same. Indeed,
mode type in each span is the same of every ten modes.
Correspondingly, frequencies of the ten-span catenary are
distributed by groups of ten.

On this basis, (27) and (28) are substituted into (22)
and (24), respectively. And then multiply both sides of
the equations by 𝜑𝑚,𝑗(𝑥) and 𝜑𝑤,𝑗(𝑥). Thus the ordinary
differential equations of catenary system can be obtained by
numerical integration.Thedetailed derivation is shown in the
appendix.

Therefore, the discrete vibration equations of the catenary
system can be rewritten in the matrix form as follows:

Mq̈ + (C𝑙 + C𝑛) q̇ + Kq = Q, (29)

where M is the mass matrix, C𝑙 is the linear damping
matrix generated by structural damping, C𝑛 is the nonlinear
damping matrix generated by aerodynamic force, K is the

stiffness matrix, Q is the discrete force vector, and q is the
modal coordinates vector.

5. General Results and Discussion

5.1. Stability Analysis of Catenary System. As illustrated in
[27], the aerodynamical stability of the dynamic system is
mainly determined by the sign of the net damping coefficient.
For the case that the net damping coefficient is greater
than zero, the catenary system is aerodynamically stable.
Otherwise, the catenary system is aerodynamically unstable.

It can be seen from (22) and (24) that the unstable
conditions of iced messenger wire and iced contact wire,
respectively, obey

𝐶𝑤 − 𝑎1,𝑤 < 0, (30)

𝐶𝑚 − 𝑎1,𝑚 < 0. (31)
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Table 3: Frequencies of catenary.

Number Frequency (Hz)
(1) 1.0495
(2) 1.0605
(3) 1.0780
(4) 1.1006
(5) 1.1267
(6) 1.1541
(7) 1.1800
(8) 1.2017
(9) 1.2161
(10) 1.2213
(11) 2.0981
(12) 2.1208
(13) 2.1562
(14) 2.2011
(15) 2.2520
(16) 2.3051
(17) 2.3561
(18) 2.3998
(19) 2.4301
(20) 2.4410

Due to the reason that the structural damping coefficients
are positive, the necessary condition for the occurrence of
galloping motion of iced contact wire can be derived from
(15) and (30).

− 𝜌air𝐷𝑤𝑈2 [𝑑3𝛼30,𝑤 + (𝑑2 + 3𝑙3) 𝛼20,𝑤 + (𝑑1 + 2𝑙2) 𝛼0,𝑤
+ 𝑑0 + 𝑙1] > 0.

(32)

In the above equation, the air density 𝜌air, diameter of cross
section 𝐷𝑤, and wind velocity 𝑈 are positive. Therefore, (32)
can be further reduced; namely,

− [𝑑3𝛼30,𝑤 + (𝑑2 + 3𝑙3) 𝛼20,𝑤 + (𝑑1 + 2𝑙2) 𝛼0,𝑤 + 𝑑0
+ 𝑙1] > 0. (33)

Obviously, the necessary condition for the occurrence of
galloping motion of iced contact wire is only affected by the
drag and lift coefficients and initial icing angle. According
to the parameters in Table 1, the necessary condition of
instability of iced contact wire satisfies

󵄨󵄨󵄨󵄨𝛼0,𝑤󵄨󵄨󵄨󵄨 > 43.4∘. (34)

The above inequality is also the sufficient condition for
the occurrence of galloping of iced contact wire when the
structural damping is ignored.

On the assumption that the drag and lift coefficients of
messenger wire and contact wire are the same in Section 3,
(34) is also the necessary condition of instability of iced
messenger wire.
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Figure 13: Vertical vibration response of the mid-point of 5th span
contact wire in the condition of 𝛼0,𝑚 = 43.3∘ and 𝛼0,𝑤 = 43.3∘.

5.2. Effect of Initial Icing Angle. Considering that the main
range of galloping frequency is [0.1 (Hz), 3 (Hz)] [13], the
modal truncation order of the ten-span catenary is set to 20
in this paper. The Runge-Kutta method is used to calculate
the dynamic response of iced catenary system numerically. In
order to achieve the relatively accurate results, the integration
time step is specified as 0.0008 s and the steady-state response
of the mid-point of 5th span of iced contact wire is analyzed.

Keeping the parameters shown in Table 2, the effect of
initial icing angle on the dynamic characteristic is conducted
in this section, where the structural damping is not taken into
consideration.

In the condition of 𝑈 = 15m/s, when the initial icing
angles are 𝛼0,𝑚 = 43.3∘ and 𝛼0,𝑤 = 43.3∘, the vertical vibration
response of the iced contact wire is shown in Figure 13. It
is evident that the vertical vibration displacement gradually
reduces to the static vertical deformation, which is mainly
caused by the cross winds. Therefore, this phenomenon
shown in Figure 13 is called stable vibration.

When the initial icing angles are changed to 𝛼0,𝑚 = 43.4∘
and 𝛼0,𝑤 = 43.4∘, the vertical vibration displacement of
the iced contact wire is shown in Figure 14. By comparing
Figure 14 with Figure 13, it can be seen that with the increase
of initial icing angle, the vertical response progresses to a kind
of unstable vibration with low frequency and large amplitude
rather than static deformation. This is the moment when the
galloping vibration of iced contact wire occurs.

In the following, the effect of single initial icing angle
(initial icing angle of contact wire or initial icing angle of
messenger wire) on the dynamic characteristic of the system
is discussed. For the case of 𝛼0,𝑚 = 40∘ and 𝛼0,𝑤 = 45∘, only
the initial icing angle of contact wire meets the condition of
instability. Correspondingly, the vibration response of iced
contact wire is shown in Figure 15, in which the system
maintains a small amplitude vibration after reaching the
steady state. For the case of 𝛼0,𝑚 = 45∘ and 𝛼0,𝑤 = 40∘,
the similar dynamic phenomenon is shown in Figure 16. The
main reason of the above phenomena is that the relative
oscillations between contact wire and messenger wire are
restricted by the droppers.
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Figure 14: Vertical vibration response of the mid-point of 5th span contact wire in the condition of 𝛼0,𝑚 = 43.4∘ and 𝛼0,𝑤 = 43.4∘.
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Figure 15: Vertical vibration response of the mid-point of 5th span contact wire in the condition of 𝛼0,𝑚 = 40∘ and 𝛼0,𝑤 = 45∘.

In addition, beating phenomenon in Figures 14–16 can be
observed. The similarity of frequencies of every ten modes
can cause the modal coupling while the catenary is vibrating
under the action of cross winds which directly leads to the
beating phenomenon. And since the neglecting of structure
damping in this case, the phenomenon is particularly obvi-
ous.

When the initial icing angle of contact wire is equal to that
of messenger wire, the relation between maximum vertical
displacement and initial icing angle is depicted in Figure 17. It
is clear that the critical initial icing angle for the occurrence of
galloping motion is 43.4∘, which exactly meets the condition
of instability of iced contact wire obtained in Section 5.1. At
the interval of 40∘–43.4∘, the vibration of iced catenary system
is stable. Meanwhile, the wind deviation is small and changes
little with the increase of initial icing angle. At the interval
of 43.4∘–49∘, the galloping vibration of iced catenary system
occurs and the max displacement becomes larger with the
increase of initial icing angle.

5.3. Effect of Structural Damping. As shown in expres-
sion (34), the stability condition is closely related to the
structural damping. For most of actual engineering struc-
tures, the structure damping is usually characterized by the

proportional damping in numerical calculations. Thus, the
proportional damping matrix can be expressed as

C𝑙 = 𝛼M + 𝛽K, (35)

where damping coefficients can be derived as [29]

{{{{{{{{{{{{{

𝜁1𝜁2...
𝜁𝑛

}}}}}}}}}}}}}
= 12

[[[[[[[[[[[[
[

1𝜔1 𝜔1
1𝜔2 𝜔2... ...
1𝜔𝑛 𝜔𝑛

]]]]]]]]]]]]
]

{𝛼𝛽} , (36)

in which 𝜔𝑛 is the circular frequency, 𝜁𝑛 is the damping
ratio, and 𝑛 is the number of modes which is set to 20. The
estimation of the Rayleigh coefficients can be performed by
solving the overdetermined equation (36) by least-squares
solution. According to [30], the damping ratio is set to 0.0013,
and the coefficients are 𝛼 = 0.0125, 𝛽 = 0.0001.

After considering the structure damping, the vertical
vibration responses of contact wire with different initial icing
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Figure 16: Vertical vibration response of the mid-point of 5th span contact wire in the condition of 𝛼0,𝑚 = 45∘ and 𝛼0,𝑤 = 40∘.
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Figure 17: Relation between maximum displacement and initial
icing angle.
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Figure 18: Vertical vibration response of the mid-point of 5th span
contact wire in the condition of 𝛼0,𝑚 = 44.7∘ and 𝛼0,𝑤 = 44.7∘.
angles are analyzed. As shown in Figure 18, the contact wire is
still stable in the conditions of 𝛼0,𝑚 = 44.7∘ and 𝛼0,𝑤 = 44.7∘.
This phenomenon suggests that the structural damping can
raise the critical initial icing for unstable station.

When the initial icing angles are 𝛼0,𝑚 = 44.8∘ and𝛼0,𝑤 = 44.8∘, the system becomes unstable and the galloping

oscillation appears, as shown in Figure 19.Therefore, the new
critical initial icing anglewith the effect of structural damping
is about 𝛼0,𝑚 = 44.8∘ and 𝛼0,𝑤 = 44.8∘. Overall, the structural
damping has a positive contribution to themotion stability of
iced catenary system.

5.4. Effect of Wind Velocity. Taking the structural damping
into consideration, the effect of wind velocity on the vibration
response of iced catenary system is further discussed in
this section. In the range of wind velocity 1m/s–35m/s, the
Reynolds numbers of both iced contact wire and messenger
wire are in the transcritical scope. When the wind velocity is
in the range, the drag and lift coefficients are available.

For the case of 𝛼0,𝑚 = 45∘ and 𝛼0,𝑤 = 45∘, the
vertical vibration response of iced contact wire is calculated
in the condition of 𝑈 = 12.4m/s, as shown in Figure 20.
It is clear that the system response converges to a static
deformation, which is the deviation caused by the cross
winds. This phenomenon suggests that the iced catenary
system is stable at this moment. Keeping the initial icing
angles of contact wire andmessenger wire constant, the wind
velocity is changed to 𝑈 = 12.5m/s. Correspondingly, a
periodic vibration with low frequency appears in Figure 21,
which indicates the instability phenomenon.

The relation between maximum vibration in the steady-
state and wind velocity is further analyzed, as shown in
Figure 22.When the initial icing angle is 45∘, the critical wind
velocity of stability is 𝑈 = 12.5m/s. When the wind velocity
is smaller than the critical value, the iced catenary system is
stable.While thewind velocity is larger than the critical value,
the galloping vibration occurs and the vibration displacement
turns to be larger with the increase of wind velocity.

6. Conclusion

In this paper, the galloping vibration of iced catenary sys-
tem under cross winds has been investigated. By FLUENT
simulation, the lift and drag coefficients of quasi-steady
aerodynamic force acted on the iced catenary system have
been calculated. By fitting the discrete simulation data, the
expression of the vertical aerodynamic force has been further
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Figure 19: Vertical vibration response of the mid-point of 5th span contact wire in the condition of 𝛼0,𝑚 = 44.8∘ and 𝛼0,𝑤 = 44.8∘.
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Figure 20: Vertical vibration response of the mid-point of 5th span
contact wire in the condition of 𝑈 = 12.4m/s.

derived. Then the necessary condition of system stability has
been further obtained based on the Den Hartog galloping
mechanism. Moreover, the vibration equations of iced cate-
nary system have been solved by the Runge-Kutta method
and the corresponding responses have been analyzed by the
waveform. Meanwhile, the analysis of varying parameters,
for instance, the initial icing angle, structural damping, and
wind velocity, has been conducted. According to the analysis
results, the following conclusions can be obtained.

(1) As for vertical galloping vibration of iced catenary
system, the critical condition of motion stability is mainly
determined by initial icing angle, wind velocity, and struc-
tural damping.

(2) For the case of stable vibration, the dynamic response
of iced catenary system usually reduces to a static wind
deviation. For the case of unstable vibration, the galloping
motion occurs in the iced catenary system.

(3) Suspended on the messenger wire, the stability of
iced contact wire is improved when the initial icing angles of
messenger and contact wires are different.

(4) Increasing the structural damping can reduce the
chance that the galloping motion occurs. In the actual
engineering case,mechanical damping can be used to restrain
the galloping oscillation of the catenary.

Appendix

𝜌𝑚𝐴𝑚 𝑛∑
𝑖=1

(∫𝑙𝑐
0
𝜑𝑚,𝑗𝜑𝑚,𝑖𝑑𝑥) ̈𝑞𝑚,𝑖

+ 𝐶𝑚 𝑛∑
𝑖=1

(∫𝑙𝑐
0
𝜑𝑚,𝑗𝜑𝑚,𝑖𝑑𝑥) ̇𝑞𝑚,𝑖

+ [𝐸𝐼𝑚 𝑛∑
𝑖=1

(∫𝑙𝑐
0
𝜑𝑚,𝑗𝜑󸀠󸀠󸀠󸀠𝑚,𝑖𝑑𝑥)

+ 𝑇𝑚 𝑛∑
𝑖=1

(∫𝑙𝑐
0
𝜑𝑚,𝑗𝜑󸀠󸀠𝑚,𝑖𝑑𝑥)] 𝑞𝑚,𝑖

= − 𝑏∑
𝑘=1

𝑛∑
𝑖=1

𝑘𝑑,𝑘𝜑𝑚,𝑗 (𝑥𝑑,𝑘) 𝜑𝑚,𝑖 (𝑥𝑑,𝑘) 𝑞𝑚,𝑖

+ 𝑏∑
𝑘=1

𝑛∑
𝑖=1

𝑘𝑑,𝑘𝜑𝑚,𝑗 (𝑥𝑑,𝑘) 𝜑𝑤,𝑖 (𝑥𝑑,𝑘) 𝑞𝑤,𝑖

− 𝑏∑
𝑘=1

𝑘𝑑,𝑘Δ𝑙0,𝑘𝜑𝑚,𝑗 (𝑥𝑑,𝑘) − 12𝑔
𝑏∑
𝑘=1

𝑚𝑑,𝑘𝜑𝑚,𝑗 (𝑥𝑑,𝑘)

− 𝑝∑
𝑘=1

𝑛∑
𝑖=1

𝑘𝑠,𝑘𝜑𝑚,𝑗 (𝑥𝑠,𝑘) 𝜑𝑚,𝑖 (𝑥𝑠,𝑘) 𝑞𝑚,𝑖

+ 𝑎𝑚,3 𝑛∑
𝑖=1

𝑛∑
𝑙=1

𝑛∑
ℎ=1

(∫𝑙𝑐
0
𝜑𝑚,𝑗𝜑𝑚,𝑖𝜑𝑚,𝑙𝜑𝑚,ℎ𝑑𝑥)

⋅ ̇𝑞𝑚,𝑖 ̇𝑞𝑚,𝑙 ̇𝑞𝑚,ℎ + 𝑎𝑚,2 𝑛∑
𝑖=1

𝑛∑
𝑙=1

(∫𝑙𝑐
0
𝜑𝑚,𝑗𝜑𝑚,𝑖𝜑𝑚,𝑙𝑑𝑥)

⋅ ̇𝑞𝑚,𝑖 ̇𝑞𝑚,𝑙 + 𝑎𝑚,1 𝑛∑
𝑖=1

(∫𝑙𝑚
0
𝜑𝑚,𝑗𝜑𝑚,𝑖𝑑𝑥) ̇𝑞𝑚,𝑖

+ 𝑎𝑚,0 ∫𝑙𝑚
0
𝜑𝑚,𝑗𝑑𝑥 = 0, 𝑗 = 1, 2, . . . , 𝑛,

(A.1)
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Figure 21: Vertical vibration response of the mid-point of 5th span contact wire in the condition of 𝑈 = 12.5m/s.
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Figure 22: Relation between maximum vibration displacement and
wind velocity.
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𝑛∑
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