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A universal method combining the differential quadrature finite element method with the virtual spring technique for analyzing
the free vibration of thin plate with irregular cracks is proposed. Translational and rotational springs are introduced to restrain the
vertical displacement and orientation of the plate.Themass matrix and stiffness matrix for each element are deduced involving the
effects of the virtual springs. The connection relationships between elements can be modified by setting the stiffness of the virtual
springs.The vibration of two rectangular plates with three irregular shaped cracks and different boundary conditions are presented.
The results are compared with those obtained by ANSYS, where the good agreement between the results validates the accuracy and
efficiency of the present method.

1. Introduction

Cracks occurring in the plate cause the changes of the natural
frequencies and the dynamic response behavior under loads.
The effects of the cracks on the vibration characteristic of the
structures have been widely studied. Krawczuk [1] proposed
a FEM model of a rectangular plate with a through crack by
modifying the stiffnessmatrix of the plate element to simulate
the effect of the crack. Yong-gang et al. [2] studied the
nonlinear vibrations formoderate thickness rectangular plate
with surface penetrating crack of different location anddepth.
Qu et al. [3] proposed an approach to analyze the vibration of
a piezoelectric composite plate with multiple cracks, which
may be used for damage detection. An extended finite
element method is proposed by Bachene et al. [4] to study
the vibration of cracked plates. Vibration of rectangular plate
and square plate with through-edge and center cracks are
studied. This method is later used to analyze the vibration
of cracked functionally graded material plates by Natarajan
et al. [5], where only straight cracks are studied. Huang and
Leissa [6] used the Ritz method to analyze the vibration of
rectangular plate with side cracks. A new set of functions

added to the traditional admissible functions is proposed,
which indeed accelerate the convergence of the numerical
solutions. The effects of the location and orientation of the
side crack are studied. Later the method is applied to the
thick rectangular plate [7, 8], where the internal cracks
are taken into account. Hosseini-Hashemi et al. [9] firstly
proposed a set of exact closed-form characteristic equations
incorporating the shear deformation and rotary inertia to
analyze the free vibration of moderately thick rectangular
plates with multiple all-over part-through cracks. However,
the boundary conditions of the two opposite edges are limited
to be simply supported and the cracks are required to be
perpendicular to the simply supported edges. Natarajan et
al. [10] studied the vibration of functionally graded material
plates with a through center crack using an 8-noded shear
flexible element. However, only the effect of the lengths of
cracks is studied without presenting further discussions on
the cracks. Ismail and Cartmell [11] investigated the forced
vibration of a plate with surface crack of variable angular
orientation. Bose and Mohanty [12] analyzed the vibration of
a rectangular thin isotropic plate with a part-through surface
crack with different orientation and location. Torabi et al. [13]
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applied the differential quadrature element method (DQEM)
to analyze the free transverse vibration of a nonuniform
Timoshenko beam with multiple cracks. The compatibility
conditions at the damaged section are considered as a
discontinuity in slope and vertical displacements. Heydari et
al. [14] proposed a continuous model for flexural vibration of
Timoshenko beamswith vertical edge crack, where the effects
of shear deformation and rotary inertia are considered. Broda
et al. [15] studied the longitudinal vibration of beams with
breathing cracks. Joshi et al. [16, 17] proposed an analytical
modeling and studied the vibration of a rectangular platewith
internal crack. The cracks are limited to be perpendicular to
each other and parallel to one of the edges and located at the
center of the plate. Y. C. Chen developed a special boundary
element method (BEM) to analyze the elastodynamic of
anisotropic elastic plates with holes and cracks. Nguyen-Thoi
et al. [18] used an extended cell-based smoothed discrete
shear gap method to analyze the free vibration of cracked
Mindlin plate, where triangular elements are used.The effects
of location and orientation of the cracks on the vibration
characteristic are studied. Azam et al. [19] proposed a FEM
model to analyze the vibration of a square plate with side
crack. Bhardwaj et al. [20] used the extended isogeometric
analysis to simulate the cracked functionally graded material
palates.

According to the literature available, most of the
researches are focused on the straight cracks with various
locations and orientations. Few literatures on more complex
cracks can be found. Monfared and Bagheri [21] studied a
functionally graded material palate with multiple interacting
arbitrary shaped cracks, where circular cracks and parabolic
cracks are considered. Raffo and Quintana [22] presented a
general algorithm to obtain approximate analytical solutions
for the vibrations of a rectangular plate with internal curved
line hinge, which can be regarded as a kind of crack where
only the translational displacement is equal on the two sides
of the crack.

In order to propose a universalmethod for vibration anal-
ysis of plate with irregularly shaped through cracks, a differ-
ential quadrature finite element method (DQFEM) proposed
by Xing et al. [23, 24] is used. The DQFEM has been widely
used to model plate structures with complex geometries [25–
30], which has been proved to be an efficient method using
less element numbers and obtaining high accurate results.
This method makes it possible to model cracks with irregular
shapes simply by disconnecting the adjacent elements so that
a crack emerges between the elements. However, each time
the locations of cracks change, the stiffness matrix is need
to be modified to satisfy the new connection relationships.
To overcome the disadvantages of the original DQFEM, the
virtual spring technique is introduced. The virtual spring
technique has been used widely in simulation of the elastic
boundary conditions as well as the coupling conditions [31,
32].Thus, the connection relationships between elements can
be easily modified just by setting the stiffness of the virtual
springs.

In this paper, the virtual spring technique is introduced
into the DQFEM. Based on the DQFEM theory, the mass

matrices and stiffness matrices involving the springs’ stiff-
ness of the elements are deduced. The vibration results
of two rectangular plates with different shaped cracks are
presented. Based on the DQFEM theory, the mass matrices
and stiffness matrices involving the spring’s stiffness of
the elements are deduced. The convergence studies on the
stiffness of the springs are carried out. The vibration results
of two rectangular plates with different shaped cracks are
presented. The results are compared with those obtained by
ANSYS.

2. Theory and Formulations

2.1. The Differential Quadrature Rules. The differential quad-
rature (DQ)method approximates the 𝑠th derivative of a one-
dimensional function 𝑓(𝑥), which is derivable in the interval[𝑎, 𝑏], at a point 𝑥 between the derivable interval by using
a summation including the weighting coefficients and the
function values at all grid points in the solution domain.
According to the differential quadrature rules, the 𝑠th-order
derivative of function 𝑓(𝑥) can be written as

𝑑𝑠𝑓 (𝑥)𝑑𝑥𝑠 𝑖 =
𝑁∑
𝑗=1

𝐴(𝑠)𝑖𝑗 𝑓𝑗, (1)

where 𝑁 is the grid numbers in the interval. 𝐴(𝑠)𝑖𝑗 is the𝑠th-order weighting coefficient; thus, [𝐴(𝑠)𝑖𝑗 ] is the 𝑠th-order
weighting coefficient matrix. The off-diagonal terms of the
first-order weighting coefficient matrix are given by (2). The
higher-order weighting coefficient matrix can be derived by
the recurrence relationships given by

𝐴(1)𝑖𝑗 = ∏𝑁𝑘=1,𝑘 ̸=𝑖 (𝑥𝑖 − 𝑥𝑘)(𝑥𝑖 − 𝑥𝑗)∏𝑁𝑘=1,𝑘 ̸=𝑗 (𝑥𝑗 − 𝑥𝑘) (2)

𝐴(𝑠)𝑖𝑗 = 𝑠(𝐴(𝑠−1)𝑖𝑖 𝐴(1)𝑖𝑗 − 𝐴(𝑠−1)𝑖𝑗𝑥𝑖 − 𝑥𝑗)
For 𝑖 ̸= 𝑗, 2 ≤ 𝑠 ≤ (𝑁 − 1)

𝐴(𝑠)𝑖𝑖 = − 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐴(𝑠)𝑖𝑗 1 ≤ 𝑠 ≤ (𝑁 − 1) .
(3)

According to the two-dimensional DQ rule, the partial
derivatives of function 𝑓(𝑥, 𝑦) at grid point (𝑥𝑖, 𝑦𝑗) can be
written as

𝜕𝑟𝑓𝜕𝑥𝑟 𝑖𝑗 =
𝑀∑
𝑚=1

𝐴(𝑟)𝑖𝑚𝑓𝑚𝑗,
𝜕𝑠𝑓𝜕𝑦𝑠 𝑖𝑗 =

𝑁∑
𝑛=1

𝐵(𝑠)𝑗𝑛𝑓𝑖𝑛,
𝜕𝑟+𝑠𝑓𝜕𝑥𝑟𝜕𝑦𝑠 𝑖𝑗 =

𝑀∑
𝑚=1

𝐴(𝑟)𝑖𝑚 𝑁∑
𝑛=1

𝐵(𝑠)𝑗𝑛𝑓𝑚𝑛,
(4)



Shock and Vibration 3

where 𝐴(𝑟)𝑖𝑚 and 𝐵(𝑠)𝑗𝑛 are the weighting coefficients along 𝑥
and 𝑦 directions, respectively. 𝑀 and 𝑁 are the numbers of
the grid point in 𝑥 and 𝑦 directions in the solution domain.
For simplicity, a single index notation is used to present the
compact form of the two-dimensional DQ rule, which are
given as follows [24]:

𝜕𝑟𝑓𝜕𝑥𝑟 𝑘 =
𝑀×𝑁∑
𝑚=1

𝐴(𝑟)𝑘𝑚𝑓𝑚,
𝜕𝑠𝑓𝜕𝑦𝑠 𝑘 =

𝑀×𝑁∑
𝑚=1

𝐵(𝑠)𝑘𝑚𝑓𝑚,
𝜕𝑟+𝑠𝑓𝜕𝑥𝑟𝜕𝑦𝑠 𝑘 =

𝑀×𝑁∑
𝑚=1

𝐹(𝑟)𝑘𝑚𝑓𝑚,
(5)

where 𝑘, 𝑚 = (𝑗 − 1)𝑀 + 𝑖, (𝑖 = 1, 2, . . . ,𝑀; 𝑗 = 1, 2, . . . , 𝑁)
and

f

= [𝑓11 ⋅ ⋅ ⋅ 𝑓𝑀1 𝑓12 ⋅ ⋅ ⋅ 𝑓𝑀2 ⋅ ⋅ ⋅ 𝑓1𝑁 ⋅ ⋅ ⋅ 𝑓𝑀𝑁 ]𝑇

A(𝑟) = [[[[[[[[

A(𝑟) 0 ⋅ ⋅ ⋅ 0

0 A(𝑟) ⋅ ⋅ ⋅ 0... ... d
...

0 0 ⋅ ⋅ ⋅ A(𝑟)

]]]]]]]]
,

B(𝑠) = [[[[[[[[

B(𝑠)11 B(𝑠)12 ⋅ ⋅ ⋅ B(𝑠)1𝑁
B(𝑠)21 B(𝑠)22 ⋅ ⋅ ⋅ B(𝑠)2𝑁... ... d

...
B(𝑠)𝑁1 B(𝑠)𝑁2 ⋅ ⋅ ⋅ B(𝑠)𝑁𝑁

]]]]]]]]
,

(6)

where A(𝑟) and B(𝑠) are both (𝑀 × 𝑁) × (𝑀 × 𝑁) matrix,
representing the weighting coefficient matrices related to the
derivative in 𝑥 and 𝑦 direction, respectively, in which

A(𝑟) = [[[[[[[[

𝐴(𝑟)11 𝐴(𝑟)12 ⋅ ⋅ ⋅ 𝐴(𝑟)1𝑀𝐴(𝑟)21 𝐴(𝑟)22 ⋅ ⋅ ⋅ 𝐴(𝑟)2𝑀... ... d
...𝐴(𝑟)𝑀1 𝐴(𝑟)𝑀2 ⋅ ⋅ ⋅ 𝐴(𝑟)𝑀𝑀

]]]]]]]]
,

B(𝑠)𝑖𝑗 = [[[[[[[[

𝐵(𝑠)𝑖𝑗 0 ⋅ ⋅ ⋅ 00 𝐵(𝑠)𝑖𝑗 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 𝐵(𝑠)𝑖𝑗

]]]]]]]]
.

(7)

Note that the two-dimensional DQ rules can be treated as
one-dimensional DQ rule applied both in 𝑥 and 𝑦 direction.
Thus, 𝐴(𝑠)𝑖𝑗 = 𝐵(𝑠)𝑖𝑗 , where 𝐴(𝑠)𝑖𝑗 represents the 𝑠th-order

weighting coefficient along 𝑥 direction of grid point at 𝑗th
row and 𝑖th column. 𝐵(𝑠)𝑖𝑗 represents the 𝑠th-order weighting
coefficient along 𝑦 direction of grid point at 𝑗th row and 𝑖th
column.

2.2. Equations of Motion of the Rectangular Plate Element.
The concept of finite element in finite element method is
adopted into the DQFEM [25]. In order to deduce the
equations of motion of the whole structure, we need to start
from a single element. Thus, the equations of motion of a
rectangular element or a square element are firstly given here.
A rectangular plate element is shown in Figure 1, in which
two sets of virtual springs are attached to the four sides
of the element 𝑒. The first set of virtual springs connected
the plate element to the ground, which are combined by
translational and rotational springs.The translational springs
restrict the translations of the grid points along the normal
direction of the element, while the rotational springs restrict
the rotations of the points along the normal direction of each
side of the element. The stiffness of the translational and
rotational springs is denoted by 𝑘𝑒𝑡𝑖, 𝑘𝑒𝑟𝑦𝑖, and 𝑘𝑒𝑟𝑥𝑖, where 𝑒
means the eth element of the structure, 𝑡 and 𝑟 represent the
translational and rotational springs, and 𝑥 and 𝑦 denote the
normal directions of each side of an element. 𝑖 is the 𝑖th side
of a square element. For 𝑘𝑒𝑟𝑦𝑖, due to the fact that the only
normal directions of side 1 and side 3 are in 𝑦 direction, thus𝑖 = 1, 2 for the rotational springs, which is the same as 𝑘𝑒𝑟𝑥𝑖 and
can be observed in Figure 1. The other set of virtual springs
connected the element to an adjacent element, which also
consists of translational and rotational springs. The stiffness
of these coupling springs is expressed by 𝑘𝑒,𝑒𝑖𝑐𝑡𝑖 , 𝑘𝑒,𝑒𝑖𝑐𝑟𝑦𝑖, and 𝑘𝑒,𝑒𝑖𝑐𝑟𝑥𝑖,
where the superscript 𝑒, 𝑒𝑖 represents the coupling springs
connecting the eth element and eith element, 𝑒𝑖 means the
adjacent element is connected to the 𝑖th side of element e, and
c indicates the coupling springs. For simplicity, the first set of
virtual springs is called element springs, while the other sets
are called coupling springs.

By introducing the virtual springs into the DQFEM,
the elastic boundary conditions and the elastic coupling
relationships between elements can be easily achieved. In
other words, by simply setting the stiffness of the coupling
springs to be zero or an infinite large value, the connected or
broken relationships between two adjacent elements can be
easily achieved. For broken relationships, we can regard them
as cracks in the structures.

Then we consider a rectangular Kirchhoff thin plate
element divided into𝑀 grid points along the 𝑥 direction and𝑁 grid points along the 𝑦 direction with two sets of virtual
springs attached to the element. The displacement function
of the 𝑒th element is defined as

𝑤𝑒 (𝑥, 𝑦) = 𝑀∑
𝑖=1

𝑀∑
𝑗=1

𝑙𝑖 (𝑥) 𝑙𝑗 (𝑥) 𝑤𝑒𝑖𝑗, (8)

where 𝑙𝑖 are the Lagrange polynomials and 𝑤𝑒𝑖𝑗 = 𝑤𝑒(𝑥𝑖, 𝑦𝑗) is
the displacement at theGauss Lobatto quadrature points [24].



4 Shock and Vibration
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Figure 1: The coupling relationships between element e and four adjacent elements.

Then the potential energy and kinetic energy of eth element
are given as

𝑈𝑒𝑝 = 𝐷2 ∫∫
𝑆𝑒

[(𝜕2𝑤𝑒𝜕𝑥2 )2 + (𝜕2𝑤𝑒𝜕𝑦2 )2 + 2𝜐𝜕2𝑤𝑒𝜕𝑥2 𝜕2𝑤𝑒𝜕𝑦2
+ 2 (1 − 𝜐) ( 𝜕2𝑤𝑒𝜕𝑥𝜕𝑦)2]𝑑𝑥𝑑𝑦

𝑇𝑒 = 12 ∫∫
𝑆𝑒

𝜌ℎ (�̇�𝑒)2 𝑑𝑥 𝑑𝑦,
(9)

where𝐷 is the flexural rigidity, 𝜐 is Poisson’s ratio, 𝜌 is density,
and ℎ is the thickness of the plate; for thin plate ℎ/𝑎 = 0.001,
where 𝑎 is the side length of the plate. The total potential
energy of the translational element springs and the two types
of rotational springs is given as

𝑉𝑒𝑠 = 12 4∑
𝑖=1

∫𝑙𝑒𝑖
0

𝑘𝑒𝑡𝑖 (𝑤𝑒𝑖 )2 𝑑𝑙𝑒𝑖 + 12 2∑
𝑖=1

∫𝑙𝑒𝑖
0

𝑘𝑒𝑟𝑥𝑖 (𝜕𝑤𝑒𝑖𝜕𝑥 )2 𝑑𝑥𝑒𝑖
+ 12 2∑
𝑖=1

∫𝑙𝑒𝑖
0

𝑘𝑒𝑟𝑦𝑖 (𝜕𝑤𝑒𝑖𝜕𝑦 )2 𝑑𝑦𝑒𝑖 .
(10)

The total potential energy in the coupling springs is given
as

𝑉𝑒,𝑒𝑖𝑐 = 12 4∑
𝑖=1

∫𝑙𝑒𝑖
0

𝑘𝑒,𝑒𝑖𝑐𝑡𝑖 (𝑤𝑒𝑖𝑖 − 𝑤𝑒𝑖 )2 𝑑𝑙𝑒𝑖
+ 12 2∑
𝑖=1

∫𝑙𝑒𝑖
0

𝑘𝑒,𝑒𝑖𝑐𝑟𝑥𝑖 (𝜕𝑤𝑒𝑖𝑖𝜕𝑥 − 𝜕𝑤𝑒𝑖𝜕𝑥 )2 𝑑𝑥𝑒𝑖
+ 12 2∑
𝑖=1

∫𝑙𝑒𝑖
0

𝑘𝑒,𝑒𝑖𝑐𝑟𝑦𝑖 (𝜕𝑤𝑒𝑖𝑖𝜕𝑦 − 𝜕𝑤𝑒𝑖𝜕𝑦 )2 𝑑𝑦𝑒𝑖 ,
(11)

where the displacements 𝑤𝑒𝑖𝑖 and 𝑤𝑒𝑖 are the adjacent grid
points of two adjacent elements as shown in Figure 2(a).What
should be noted is that the potential energy in the coupling

springs belongs to the two adjacent elements; thus, for one
element the potential energy should be half of that in (11).
According to Hamilton’s principle, one has

𝑁𝑒∑
𝑒=1

(𝑈𝑒𝑝 + 𝑉𝑒𝑠 + 12𝑉𝑒,𝑒𝑖𝑐 ) = 𝑁𝑒∑
𝑒=1

𝑇𝑒, (12)

whereNe is the total numbers of the element in the structure.
According to the DQ rules, the expressions can be trans-
formed into matrix form.

The integrals in the energy expressions are calculated by
using the Gauss Lobatto quadrature [24]. The potential and
kinetic energy of the eth element is

𝑈𝑒𝑝 = 𝐷2 w𝑒𝑇 (A(2)𝑇CA(2) + B(2)𝑇CB(2)

+ 2𝜐A(2)𝑇CB(2) + 2 (1 − 𝜐) F(2)𝑇CF(2))w𝑒
𝑇𝑒 = 12𝜌ℎ𝜔2w𝑒𝑇Cw𝑒,

(13)

where F(2) = A(1)B(1) and the displacement vector is

w𝑒

= [𝑤𝑒11 ⋅ ⋅ ⋅ 𝑤𝑒𝑀1 𝑤𝑒12 ⋅ ⋅ ⋅ 𝑤𝑒𝑀2 ⋅ ⋅ ⋅ 𝑤𝑒1𝑁 ⋅ ⋅ ⋅ 𝑤𝑒𝑀𝑁]𝑇 , (14)

which can be illustrated clearly through Figure 2(b). Matrix
C = diag(𝐶1, 𝐶2, . . . , 𝐶𝑀) is a 𝑀 × 𝑀 diagonal matrix where
the diagonal elements are the weighting coefficients of Gauss
Lobatto quadrature for one-dimensional problem. Thus, the
matrix for two-dimensional problem is

C = diag (𝐶1𝐶1, . . . , 𝐶𝑀𝐶1, 𝐶1𝐶2, . . . , 𝐶𝑀𝐶2, . . . ,𝐶𝑀𝐶𝑁) . (15)
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Figure 2: (a) The relative positions of the coupling grid points on the adjacent sides of two elements and (b) the distributions of the grid
points.

The matrix form of the potential energy of element
springs is

𝑉𝑒𝑠 = 12w𝑒𝑇( 4∑
𝑖=1

CK𝑒𝑡𝑖 + 2∑
𝑖=1

A(1)𝑇CK𝑒𝑟𝑥𝑖A
(1)

+ 2∑
𝑖=1

B(1)𝑇CK𝑒𝑟𝑦𝑖B
(1))w𝑒, (16)

where the stiffness matrices of the translational springs that
belong to each side of the element are given as

K𝑒𝑡1 = diag( 𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑘𝑒𝑡1, 𝑘𝑒𝑡1, . . . , 𝑘𝑒𝑡1, (𝑁−1)𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0)
K𝑒𝑡3 = diag( (𝑁−1)𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0, 𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑘𝑒𝑡3, 𝑘𝑒𝑡3, . . . , 𝑘𝑒𝑡3)
K𝑒𝑡2 = diag( 𝑁⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

K𝑒𝑡2,K𝑒𝑡2, . . . ,K𝑒𝑡2) ,
K𝑒𝑡2 = diag( 𝑀−1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0, 𝑘𝑒𝑡2)
K𝑒𝑡4 = diag( 𝑁⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

K𝑒𝑡4,K𝑒𝑡4, . . . ,K𝑒𝑡4) ,
K𝑒𝑡4 = diag(𝑘𝑒𝑡4, 𝑀−1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0) .

(17)

The stiffness matrices of the rotational springs are given
as

K𝑒𝑟𝑥1 = diag( 𝑁⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
K𝑒𝑟𝑥1,K𝑒𝑟𝑥1, . . . ,K𝑒𝑟𝑥1) ,

K𝑒𝑟𝑥1 = diag(𝑘𝑒𝑟𝑥1, 𝑀−1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0)
K𝑒𝑟𝑥2 = diag( 𝑁⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

K𝑒𝑟𝑥2,K𝑒𝑟𝑥2, . . . ,K𝑒𝑟𝑥2) ,
K𝑒𝑟𝑥2 = diag( 𝑀−1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0, 𝑘𝑒𝑟𝑥2)
K𝑒𝑟𝑦1 = diag( 𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑘𝑒𝑟𝑦1, 𝑘𝑒𝑟𝑦1, . . . , 𝑘𝑒𝑟𝑦1, (𝑁−1)𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0)
K𝑒𝑟𝑦2 = diag( (𝑁−1)𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0, 𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑘𝑒𝑟𝑦2, 𝑘𝑒𝑟𝑦2, . . . , 𝑘𝑒𝑟𝑦2) .

(18)

The above stiffness matrices are sparse matrices and the
distributions of the matrix elements in the sparse matrix can
be understood through the above expressions. The matrix
form of the potential energy of the coupling springs is given
as

𝑉𝑒,𝑒𝑖𝑐 = 12 ( 4∑
𝑖=1

w𝑒,𝑒𝑖
𝑇

CK
𝑒,𝑒𝑖

𝑐𝑡𝑖 w
𝑒,𝑒𝑖

+ 2∑
𝑖=1

w𝑒,𝑒𝑖
𝑇

A
(1)𝑇

CK
𝑒,𝑒𝑖

𝑐𝑟𝑥𝑖A
(1)

w𝑒,𝑒𝑖

+ 2∑
𝑖=1

w𝑒,𝑒𝑖
𝑇

B
(1)𝑇

CK
𝑒,𝑒𝑖

𝑐𝑟𝑦𝑖B
(1)

w𝑒,𝑒𝑖) ,
(19)
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where the sign “=” represents that the matrix or the vector
consists of matrices or vectors of two adjacent elements,
which can be expressed as

w𝑒,𝑒𝑖 = [w𝑒 w𝑒𝑖]𝑇 ,
C = diag (C,C) ,
A = diag (A,A) ,
B = diag (B,B) .

(20)

The matrices of the stiffness of the coupling springs are given
as

K
𝑒,𝑒𝑖

𝑐𝑡𝑖 = [[
K𝑒𝑐𝑡𝑖 −K𝑒,𝑒𝑖𝑐𝑡𝑖−K𝑒𝑖,𝑒𝑐𝑡𝑖 K𝑒𝑖𝑐𝑡𝑖

]] ,
K
𝑒,𝑒𝑖

𝑐𝑟𝑥𝑖 = [[
K𝑒𝑐𝑟𝑥𝑖 −K𝑒,𝑒𝑖𝑐𝑟𝑥𝑖−K𝑒𝑖,𝑒𝑐𝑟𝑥𝑖 K𝑒𝑖𝑐𝑟𝑥𝑖

]] ,
K
𝑒,𝑒𝑖

𝑐𝑟𝑦𝑖 = [[
K𝑒𝑐𝑟𝑦𝑖 −K𝑒,𝑒𝑖𝑐𝑟𝑦𝑖−K𝑒𝑖,𝑒𝑐𝑟𝑦𝑖 K𝑒𝑖𝑐𝑟𝑦𝑖

]] .
(21)

For matrix K
𝑒,𝑒𝑖

𝑐𝑡𝑖 , the diagonal elements K𝑒𝑐𝑡𝑖 and K𝑒𝑖𝑐𝑡𝑖 are
only related to the eth and eith element, respectively.Thenon-
diagonal elements −K𝑒,𝑒𝑖𝑐𝑡𝑖 and −K𝑒𝑖,𝑒𝑐𝑡𝑖 represent the coupling
effects between two elements. The elements distributions in
the sparse matrix for diagonal elements K𝑒𝑐𝑡𝑖 and K𝑒𝑖𝑐𝑡𝑖 are the
same as that in (17). In order to illustrate thematrix −K𝑒,𝑒𝑖𝑐𝑡𝑖 , we
can assume that the 3rd side of element 𝑒 is connected to the
1st side of element ei; then the matrix −K𝑒,𝑒3𝑐𝑡3 can be expressed
as

−K𝑒,𝑒3𝑐𝑡3 = −

[[[[[[[[[[[[[[[[[[[

0 0 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 0𝑘𝑒,𝑒1𝑐𝑡1 0 ⋅ ⋅ ⋅ 00 𝑘𝑒,𝑒1𝑐𝑡1 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 𝑘𝑒,𝑒1𝑐𝑡1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

0 ⋅ ⋅ ⋅ 0... d
...0 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 0... d
...0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑁−1)𝑀

]]]]]]]]]]]]]]]]]]]

. (22)

One can observe that, in the coupling matrix K
𝑒,𝑒3

𝑐𝑡3 , the
nonzero elements in −K𝑒,𝑒3𝑐𝑡3 are in the same rows as those in
matrix K𝑒𝑐𝑡3 and in the same columns as those in matrix K𝑒3𝑐𝑡3.

Thus, the matrix −K𝑒3,𝑒𝑐𝑡3 can be easily understood which is
given as

−K𝑒3,𝑒𝑐𝑡3 = −

[[[[[[[[[[[[[[[[[[[

(𝑁−1)𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 0... d
...0 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 0... d
...0 ⋅ ⋅ ⋅ 0

𝑀⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑘𝑒,𝑒1𝑐𝑡1 0 ⋅ ⋅ ⋅ 00 𝑘𝑒,𝑒1𝑐𝑡1 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 𝑘𝑒,𝑒1𝑐𝑡10 0 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]]]]]]]]]]]

. (23)

So the nonzero elements in the coupling matrices −K𝑒,𝑒3𝑐𝑡3
and −K𝑒3,𝑒𝑐𝑡3 are symmetrically distributed about the diagonal

line of matrix K
𝑒,𝑒3

𝑐𝑡3 . For matrices K
𝑒,𝑒𝑖

𝑐𝑟𝑥𝑖 and K
𝑒,𝑒𝑖

𝑐𝑟𝑦𝑖, the nonzero
elements are distributed in the same way.

2.3. Equations of Motion of the Whole Structure. So far the
energy expressions for a single element have been given and
illustrated, the next step is to assemble the expressions of
each element together, which is similar to the operation in
FEM. According to (12), the potential and kinetic energy of
the whole structure is

𝑈𝑝 = 𝐷2 w𝑇 (A(2)𝑇CA(2) + B(2)𝑇CB(2) + 2𝜐A(2)𝑇CB(2)
+ 2 (1 − 𝜐) F(2)𝑇CF(2)) w (24)

𝑇 = 12𝜌ℎ𝜔2w𝑇Cw, (25)

where

w = [w1 w2 ⋅ ⋅ ⋅ w𝑁𝑒]𝑇
A(2) = diag( 𝑁𝑒⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

A(2),A(2), . . . ,A(2)),
B(2) = diag( 𝑁𝑒⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

B(2),B(2), . . . ,B(2)),
C = diag( 𝑁𝑒⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

C,C, . . . ,C) ,

(26)
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where 𝑁𝑒 is the total number of elements. The potential
energy of the element springs in the whole structure is given
as

𝑉𝑠 = 12w𝑇( 4∑
𝑖=1

CK𝑡𝑖 + 2∑
𝑖=1

A(1)𝑇CK𝑟𝑥𝑖A(1)
+ 2∑
𝑖=1

B(1)𝑇CK𝑟𝑦𝑖B(1)) w, (27)

where

K̂𝑡𝑖 = diag (K1𝑡𝑖,K2𝑡𝑖, . . . ,K𝑁𝑒𝑡𝑖 ) . (28)

Due to the fact that the there are no coupling effects
between element springs of two different elements, the global
matrix of the element springs is diagonal matrix. However,
the coupling effects should be considered in the assembling
process of the coupling matrices. The global matrix of the
coupling element is obviously a nondiagonalmatrix, in which
the distributions of the nondiagonal matrix are determined
by the serial numbers defined in the meshing process. The
potential energy of all the coupling springs is

𝑉𝑐𝑡 = 14w𝑇( 4∑
𝑖=1

CK𝑐𝑡𝑖 + 2∑
𝑖=1

A(1)𝑇CK𝑐𝑟𝑥𝑖A(1)
+ 2∑
𝑖=1

B(1)𝑇CK𝑐𝑟𝑦𝑖B(1)) w. (29)

Consequently, the potential energy of the whole sys-
tem including the structure and the virtual springs can be
obtained by the summation of (24), (27), and (29)

𝑈 = 12w𝑇 [𝐷(A(2)𝑇CA(2) + B(2)𝑇CB(2)
+ 2𝜐A(2)𝑇CB(2) + 2 (1 − 𝜐) F(2)𝑇CF(2)) + 4∑

𝑖=1

C(K𝑡𝑖
+ 12K𝑐𝑡𝑖) + 2∑

𝑖=1

C [A(1)𝑇 (K𝑟𝑥𝑖 + 12K𝑐𝑟𝑥𝑖) A(1)
+ B(1)𝑇 (K𝑟𝑦𝑖 + 12K𝑐𝑟𝑦𝑖) B(1)]] w.

(30)

In order to satisfy the continuity requirements between
multiple plate elements and simplify the boundary conditions
imposing procedures, the displacement vector is modified as
[24]

w𝑒 = [𝑤𝑒𝑚, 𝑤𝑒𝑚𝑦, 𝑤𝑒𝑚𝑥, 𝑤𝑒𝑚𝑥𝑦 (𝑖 = 1,𝑀; 𝑗 = 1,𝑁) , 𝑤𝑒𝑚,𝑤𝑒𝑚𝑦 (𝑖 = 3, . . . ,𝑀 − 2; 𝑗 = 1,𝑁) , 𝑤𝑒𝑚,𝑤𝑒𝑚𝑥 (𝑖 = 1,𝑀; 𝑗 = 3, . . . , 𝑁 − 2) ,
𝑤𝑒𝑚 (𝑖 = 3, . . . ,𝑀 − 2; 𝑗 = 3, . . . , 𝑁 − 2)]𝑇 ,

(31)

where 𝑤𝑚𝑥 = 𝜕𝑤/𝜕𝑥 represents the rotation in 𝑥 direction,𝑤𝑚𝑦 = 𝜕𝑤/𝜕𝑦 represents the rotation in 𝑦 direction, and𝑤𝑚𝑥𝑦 = 𝜕2𝑤/𝜕𝑥𝜕𝑦 represents the torque at the corner grid
point. Using the DQ rule, one can obtain the following
relation:

w𝑒 = Qw𝑒. (32)

For more information about matrix Q, one can refer to [24].
The global matrix of the transformation matrixQ is given as

w = Qw (33)

Q = diag( 𝑁𝑒⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Q,Q, . . . ,Q) . (34)

Substituting (33) into (30) and (25) and taking out the
displacement vector, then the stiffness matrix and mass
matrix of the whole system can be written as

K = 12Q−𝑇 [𝐷(A(2)𝑇CA(2) + B(2)𝑇CB(2)
+ 2𝜐A(2)𝑇CB(2) + 2 (1 − 𝜐) F(2)𝑇CF(2)) + 4∑

𝑖=1

C(K𝑡𝑖
+ 12K𝑐𝑡𝑖) + 2∑

𝑖=1

C [A(1)𝑇 (K𝑟𝑥𝑖 + 12K𝑐𝑟𝑥𝑖) A(1)
+ B(1)𝑇 (K𝑟𝑦𝑖 + 12K𝑐𝑟𝑦𝑖) B(1)]] Q−1

M = 12𝜌ℎQ−𝑇CQ−1.

(35)

Finally, the vibration problem became eigenvalue problem
which can be solved by solving the following equation:

K − 𝜔2M = 0. (36)

2.4. Curvilinear Quadrilateral Plate Element. Since the reg-
ular DQ method cannot be applied directly to the irregular
domain, the mapping technique should be used to deal with
problems with irregular geometries. The mapping technique
has been adopted in many literatures [24–26, 28], so the
detailed description of the mapping technique will not be
given here. The mapping process in [24] is adopted in this
paper, where the serendipity-family interpolation functions
are used in themapping of an irregular domain,which usually
contains four sides, into a regular square domain defined
in −1 ≤ 𝜉 ≤ 1, −1 ≤ 𝜂 ≤ 1. Since all the elements
considered in this research are straight-edge elements, the
3rd-order serendipity functions are used, which means on
each side of the irregular domain there are four uniformly
distributed points. According to the literature results, the
3rd-order serendipity functions are enough in the mapping
process to obtain accurate results.
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Figure 3: The first six frequency parameters of a square plate with
different numbers of grid points.

3. Numerical Examples

In this section, several numerical examples will be presented
to validate the accuracy of the method combined with
DQFEM and the virtual springs technique. First of all, a
convergence study of the numbers of grid points of a square
plate element with free boundary conditions is presented
in Figure 3, from which one can observe that the first six
frequency parameters 𝜆 = 𝜔𝑎2(𝜌ℎ/𝐷)1/2 show a good
convergence propertywhenever the numbers are even or odd.
Based on the convergence study, the numbers of the grid
points are set as 𝑀 = 𝑁 = 12 for the following researches,
which are sufficient to achieve accurate results. The material
parameters of the structures are given asYoung’smodulus𝐸 =2.1𝑒11Pa, density 𝜌 = 7800 kg/m3, Poisson’s ratio 𝜐 = 0.3,
and thickness ℎ = 0.001m.

3.1. Convergence Analysis of the Virtual Springs. Firstly, the
convergence of stiffness of the element springs is studied,
where a square plate element with virtual springs attached
to each side while the coupling springs are not concerned is
used. By changing the stiffness of the translational springs
on four sides uniformly from 0 to an infinitely large num-
ber, firstly, the changing rule of the frequency parameters𝜆 = 𝜔𝑎2(𝜌ℎ/𝐷)1/2 of the free vibration of the square
plate element can be observed in Figure 4. The frequency
parameters remain constant as the stiffness of the spring
changes into a relatively large number. This is when the
free boundary conditions turn into the simply supported
boundary conditions. Here we take 𝑘𝑡/𝐷 = 1𝑒11 as the
infinitely large number for the translational springs. Next
keep the 𝑘𝑡/𝐷 = 1𝑒11 and increasing the stiffness of the
rotational springs on four sides uniformly from 0 to an
infinitely large number, similar change rule of the frequency
parameters can also be observed in Figure 4. And this is
when the simply supported boundary conditions turn into
the clamped boundary conditions. We take 𝑘𝑟/𝐷 = 1𝑒11
as the infinitely large number for the rotational springs.
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Figure 4: The changing rules of the frequency parameters as the
stiffness of the element springs increasing.
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Figure 5: The changing rules of the frequency parameters as the
stiffness of the coupling springs increasing.

Therefore, the classical boundary conditions can be easily
achieved by setting the stiffness of the virtual springs to be
0 or an infinitely large number and the elastic boundary con-
ditions are achieved by setting the stiffness to be a required
value.

Next the convergence studies of the stiffness of the
coupling springs are carried out by the same way as those
above. The two elements are clamped at the sides parallel to
the coupling side, while the other sides are free. Increasing
the stiffness of the translational springs on the coupling
side uniformly while keeping the stiffness of rotational
springs to be zero, the frequency parameters change and
then remain constant when the stiffness changes into an
infinitely large number according to Figure 5. The coupling
condition between the two element plates now is like the
hinge connection, where the translational displacement of
one element is restricted by the other element, while the
rotational displacements are not restrained. We can take𝑘𝑐𝑡/𝐷 = 1𝑒11 as the infinitely large number for the
translational springs. Keeping 𝑘𝑐𝑡/𝐷 = 1𝑒11 and changing
the stiffness of the rotational springs on the coupling side uni-
formly, one can observe similar change rule of the frequency
parameters. We can take 𝑘𝑐𝑟/𝐷 = 1𝑒11 as the infinitely
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Table 1: Natural frequencies of rectangular plates with several classical boundary conditions and T-shaped, L-shaped, and I-shaped cracks.

Types Mode numbers
1 2 3 4 5 6 7 8 9

T-shaped
CCCC

4.6809 5.2512 6.5963 8.7289 10.3130 14.5327 17.5577 17.9553 19.8488
4.6640a 5.2355 6.5828 8.7118 10.3050 14.5200 17.5550 17.9550 19.8507

L-shaped
FCFC

0.4842 1.5996 2.4210 3.0750 3.8014 4.8670 5.8165 6.8436 7.7874
0.4892a 1.5991 2.4196 3.0661 3.7987 4.8616 5.8049 6.8421 7.7821

I-shaped
CFFF

0.2382 0.2675 1.3373 1.5138 1.8848 2.1912 3.7463 4.2576 5.7725
0.2146a 0.2930 1.3338 1.5195 1.8827 2.2125 3.7466 4.2565 5.7554

aResults from ANSYS.

a

Element 1 2 3 4

5 6 7 8

b

Side 1

2

3

4

Side 1

2

3

4

Figure 6: A rectangular thin plate divided uniformly into 8 square
elements and the serial numbers of each element and side.

large number for the rotational springs. Thus, the elastically
coupling conditions can be simulated as those for boundary
conditions.

3.2. Results of Plate with Irregular Cracks. In this section, two
examples of a rectangular plate with several kinds of cracks
are to be given. The geometry of the first example is shown
in Figure 6, where length 𝑎 = 2m and width 𝑏 = 1m.
The rectangular plate is uniformly divided into 8 elements,
which are numbered as shown in Figure 6. Three types of
cracks are presented here: T-shaped, L-shaped, and I-shaped
cracks, which are shown in Figure 7, and the boundary
conditions corresponding to each crack plate are CCCC,
FCFC, and FCFF, respectively, where C and F denote the
clamped and free boundary conditions, respectively. Take the
2nd element of the T-shaped crack plate as an example to
illustrate the process of setting the stiffness of the virtual
springs. According to the boundary conditions of the plate
and the position of the crack, one can find that the 1st side
is clamped, 2nd and 3rd sides are free because they are not
coupled with other elements and on boundary conditions
are applied, and 4th side is coupled with element 1. Thus,
the stiffness of the element and coupling springs can be set
as

𝑘2𝑡1 = 𝑘2𝑟𝑦1 = 1𝑒11𝐷,
𝑘2𝑡2 = 𝑘2𝑡3 = 𝑘2𝑡4 = 𝑘2𝑟𝑦2 = 𝑘2𝑟𝑥1 = 𝑘2𝑟𝑥2 = 0

T-shaped CCCC I-shaped FCFFL-shaped FCFC

Figure 7: Geometries of three types of cracks in a rectangular plate
and the boundary conditions.

𝑘2,24𝑐𝑡4 = 𝑘2,21𝑐𝑟𝑥1 = 1𝑒11𝐷,
𝑘2,21𝑐𝑡1 = 𝑘2,22𝑐𝑡2 = 𝑘2,23𝑐𝑡3 = 𝑘2,22𝑐𝑟𝑥2 = 𝑘2,21𝑐𝑟𝑦1 = 𝑘2,22𝑐𝑟𝑦2 = 0.

(37)

Similar operations can be applied for plate with different
crack types and boundary conditions.

Numerical results are presented in Table 1, where the
results are compared with those obtained by ANSYS with
Shell 181 element and 20000 elements. The good agreement
between the results can be observed, which validates the
accuracy and efficiency of the present method. The mode
shapes are also presented in Figures 8 and 9.

In the second example, the rectangular plate with the
same geometric parameters is divided uniformly into 8
right trapezoid elements shown in Figure 10. Three types of
cracks including T-shaped, L-shaped, and I-shaped cracks
are also considered, shown in Figure 11, where the boundary
conditions corresponding to each crack type are the same
as those in the first example. The results are presented
in Table 2 and the mode shapes are shown in Figures
12 and 13. The results match well with those obtained by
ANSYS.

Through the two examples above, the virtual springs
introduced into the DQFEM simplified the procedures of
implementation of the boundary conditions as well as the
coupling conditions in the origin DQFEM.The virtual spring
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 8: The first nine mode shapes of the CCCC plate with T-shaped crack.

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 9: The first nine mode shapes of the FCFC plate with L-shaped crack.

technique makes it convenient to set the boundary and
coupling conditions between elements. The research in this
paper may serve as basic knowledge for further studies on
complex structures with complicated boundary and coupling
conditions in engineering problems.

4. Conclusions

The virtual spring technique is introduced into the DQFEM
to simulate the elastic boundary and coupling conditions.
An element plate is restrained by two sets of virtual springs,
of which the first set is called element springs which only
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Table 2: Natural frequencies of rectangular plates with several classical boundary conditions and irregular T-shaped, irregular L-shaped, and
irregular I-shaped cracks.

Types Mode numbers
1 2 3 4 5 6 7 8 9

T-shaped
CCCC

4.2295 6.1142 6.9490 9.2834 10.5213 13.6350 17.1236 18.5392 19.1972
4.2847a 5.8950 6.7348 9.4992 10.5300 13.5580 17.2230 18.6560 19.2360

L-shaped
FCFC

0.4945 1.5181 2.2444 3.1847 3.5957 4.4550 5.2570 6.7095 7.6263
0.4871a 1.5894 2.2282 3.0957 3.5863 4.5244 5.1729 6.7097 7.5596

I-shaped
CFFF

0.2392 0.2519 1.3157 1.4969 1.7301 2.0860 3.6811 4.2399 5.1381
0.2124a 0.2889 1.3141 1.4914 1.7564 2.0674 3.6928 4.2317 5.1639

aResults from ANSYS.

a

Element 1 2 3 4

5 6 7 8

b

Side 1

2

3

4

Side 1

2

3

4

Figure 10: A rectangular thin plate divided uniformly into 8 right trapezoid elements and the serial numbers of each element and side.

T-shaped CCCC
Irregular

L-shaped FCFC
Irregular

I-shaped FCFF
Irregular

Figure 11: Geometries of three types of irregular cracks in a rectangular plate and the boundary conditions.

restrict the displacement of single element while the second
set is called coupling springs which restrict the relative
displacement between two adjacent elements. Based on the
DQFEM theory, the mass matrices and stiffness matrices
involving the spring’s stiffness of the elements are deduced.
The vibration results of two rectangular plates with different
shaped cracks are presented. Through the examples, the
procedures of setting the stiffness values of the springs of
an element according to the boundary conditions and the

crack’s positions are well illustrated. Three types of cracks
with different shapes are easily achieved just by modifying
the stiffness values of the corresponding springs. The results
are compared with those obtained by ANSYS and the good
agreement between the results can be observed, which val-
idates the accuracy and efficiency of the present method.
The research in this paper may serve as basic knowledge
for further studies on complex structures with complicated
boundary and coupling conditions in engineering problems.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 12: The first nine mode shapes of the CCCC plate with irregular T-shaped crack.

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 13: The first nine mode shapes of the FCFF plate with irregular I-shaped crack.
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