
Research Article
Fault Detection of High-Speed Train Wheelset Bearing Based on
Impulse-Envelope Manifold

Zhe Zhuang,1 Jianming Ding,1 Andy C. Tan,2 Ying Shi,1 and Jianhui Lin1

1State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2LKC Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia

Correspondence should be addressed to Jianming Ding; fdingjianming@126.com

Received 26 May 2017; Accepted 12 October 2017; Published 3 December 2017

Academic Editor: Sara Muggiasca

Copyright © 2017 Zhe Zhuang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A novel fault detection method employing the impulse-envelope manifold is proposed in this paper which is based on the
combination of convolution sparse representation (CSR) and Hilbert transform manifold learning. The impulses with different
sparse characteristics are extracted by the CSR with different penalty parameters. The impulse-envelope space is constructed
throughHilbert transform on the extracted impulses.Themanifold based on impulse-envelope space (impulse-envelopemanifold)
is executed to learn the low-dimensionality intrinsic envelope of vibration signals for fault detection. The analyzed results based
on simulations, experimental tests, and practical applications show that (1) the impulse-envelope manifold with both isometric
mapping (Isomap) and locally linear coordination (LLC) can be successfully used to extract the intrinsic envelope of the impulses
where local tangent space analysis (LTSA) fails to perform and (2) the impulse-envelope manifold with Isomap outperforms those
with LLC in terms of strengthening envelopes and the number of extracted harmonics. The proposed impulse-envelope manifold
with Isomap is superior in extracting the intrinsic envelope, strengthening the amplitude of intrinsic envelope spectra, and enlarging
the harmonic number of fault-characteristic frequency.The proposed technique is highly suitable for extracting intrinsic envelopes
for bearing fault detection.

1. Introduction

Train bogie is one of the crucial subsystems of high-speed
train and consists of many critical mechanical components,
one of which is wheelset bearing. Due to the demanding
working conditions surrounding the wheelset bearing (such
as alternating contact stresses, heavy loads, and wheel-rail
shock), the faults on the component surface of wheelset
bearing are easily generated. The vibration and shock excited
by the bearing faults could endanger the running safety of the
high-speed train. Thus, it is important to detect symptom of
its faults at an early stage to ensure safe operation of the train.

The traditional detection of bearing faultsmainly involves
grease or oil monitoring, acoustic emission techniques,
hotbox detection, and vibration signal monitoring [1]. The
standards require a level-threemaintenance approval of high-
speed train certification before the wheelset bearing can be
disassembled.Thismakes grease or oil monitoring unsuitable
for wheelset bearing fault detection. The attenuation of

transient elastic waves generated by a bearing fault restricts
wide application of acoustic emission techniques in bearing
fault detection [2]. Hotbox detection is commonly used in
practice. When the temperature of bearing housing exceeds a
preset threshold the hotbox detector sets an alarm. However,
hotbox detector is only sensitive to severe faults, for example,
bearing burn-off [1]. Not only can the axle-box acceleration
signals be conveniently and reliablymeasured at relatively low
cost, but also they carry vital information about the health
state of the bearing faults [3, 4]. Consequently, vibration
signal monitoring has become an effective and feasible
detection technique for wheelset bearing faults, especially at
the incipient stage.

The impulse series or periodic impulses embedded in the
bearing vibration signals carry essential information of the
bearing condition.The amplitudes of these impulses induced
by bearing faults are modulated by the variances of the
position and direction of forces applied on rollers [5, 6]. The
fault-characteristic frequencies of the bearing are modulated

Hindawi
Shock and Vibration
Volume 2017, Article ID 2104720, 17 pages
https://doi.org/10.1155/2017/2104720

https://doi.org/10.1155/2017/2104720


2 Shock and Vibration

by the slippage of rolling elements and the fluctuation of
wheelset rotational speeds [7, 8]. The impulses generated
by bearing faults are transient impulses containing a wide
range of frequencies with very short time duration. This can
easily excite multimodel resonance responses of the structure
and sensor [9]. The impulses generated by bearing faults
are usually masked by background noises and structural
vibration [10, 11]. In addition, the impulses generated by
bearing faults are mixed with those caused by the wheel-
rail interaction when the wheel tread has defects or is out of
roundness. These nonlinear and nonstationary modulation
characteristics, multimodel effects, noise, interferences, and
impulse-mixture make it difficult and complex to extract
these impulses from the measured vibration signals. Extract-
ing impulses has long been a challenge in the field of fault
detection and diagnosis.

To effectively tackle this problem, many advanced signal
processing techniques have been proposed, including empir-
ical model decomposition (EMD) [12, 13], wavelet transform
(WT) [14, 15], and compressive sensing (CS) [16, 17]. Among
them, EMD is suitable for analyzing nonlinear and nonsta-
tionary signals and models the analyzed signal as the sum
over a set of intrinsic model functions (IMFs) and a residual
[12]. EMD has been successfully applied in the field of fault
diagnosis, failure detection, damage identification, and health
monitoring [18, 19]. The shortcomings of EMD are the lack
of theoretical foundation [20], sensitivity to noises, sampling
errors [21], and model mixtures [10]. These have adverse
effects on the performance for fault detection. To alleviate
these problems, the variants of EMD, such as EEMD, bivariate
empirical mode decomposition (BEMD), and multivariate
empirical mode decomposition (MEMD) [22–24], have been
developed. Moreover, there is a lack of theory to clarify these
problems.Wavelet analysis is conducted by the inner product
of the measured vibration signals and wavelet basis provides
the time-scale information of the impulses. Both continuous
wavelet transform (CWT) and discrete wavelet transform
(DWT) have been successfully applied for fault detection of
rotational machines with multiresolution [25, 26]. The huge
computational costs and redundant coefficients of CWT limit
its wide application as compared to DWT which has a faster
algorithm [27].Wavelet packet transform (WPT) is proposed
to improve the decomposition performance of WT on high-
frequency band which contains useful information for fault
detection [28]. However, the decomposition quality of the
DWT and WPT is influenced by the selection of mother
wavelet [29]. The shift-variance [30] and the low oscillation
[31] of DWT and WPT result in distortion and contain
nonsparse representation of the impulses.

CS consists of sparse representation and dictionary con-
struction. With sparse representation models, the signals
are the linear combinations of basis elements or atoms in a
redundant dictionary. Dictionary design is adapted to self-
feature the vibration signals to match well with the high-level
structures of the impulses. As far as sparse representation
is concerned, the exact resolution of sparse representation
proves to be an NP-hard problem [32], and the approxi-
mate solutions based on greedy-based matching pursuit [33]

and convex optimal-based basis pursuit [34] are consid-
ered instead. Dictionary construction includes manually
predefined dictionary and dictionary learning. Dictionary
learning includes regular dictionary learning [35] and shift-
invariant dictionary learning (SIDL) [36, 37]. For excellent
performances of CS on representing signals (such as self-
adaption, sparsity, and super-resolution), the CS based on
the predefined dictionaries and sparse representation is used
to detect faults on bearings and gear boxes and outperforms
EMD and WT [38, 39]. Compared to predefined dictionary
and regular dictionary learning, SIDL has shift-invariance
[36, 37].

The convolution sparse representation (CSR) based on
alternating direction method of multipliers (ADMM) was
first proposed in 2016 and is a novel research on CS
based on pursuit and SIDL [38]. CSR provides an excellent
framework for extracting impulses induced by bearing faults
and wheel-rail interactions. However, the performances of
CSR on extracting impulses are heavily influenced by its
penalty parameter which determines the sparsity of the
extracted impulses. When the penalty parameter is very
large, the extracted impulse is very sparse and the number
of the extracted impulses is far less than the true number
of impulses [39]. Thus, this can easily lead to the loss of
impulses containing fruitful fault-information. Conversely,
the extracted impulses could be far more than the true num-
ber of impulses. As such, this results in impulse corruptions.
To completely extract impulses with the least corruptions
is very difficult under the condition of a single penalty
parameter. Hence, in this paper, the CSRs with different
penalty parameters are jointly used to extract impulses in the
framework of manifold learning.

Manifold learning projects the high-dimensional data
into a lower-dimensional feature space by preserving the
local neighborhood structures. Manifold learning mainly
involves convex and nonconvex techniques. Convex tech-
nique involves full spectrum methods, such as isometric
mapping (Isomap) [40], diffusion maps [41], and sparse
spectral methods (which include local tangent space analysis
(LTSA) [42] and local linear embedding (LLE) [43]). Non-
convex technique mainly includes locally linear coordination
(LLC) [44] and Sammon mapping [45]. Recently, manifold
learning has been successfully applied in fault diagnosis. The
manifolds based on different spaces, such as scale space of
WT and WPT [46, 47], IMF space of EMD [48], and time-
frequency space [49], are used to extract impulses. These
manifold methods have successfully discovered the intrinsic
structures of impulses embedded in the measured vibration
signals.

Hence, this paper aims to fully exploit the framework
for extracting impulses with CSR which provides lower or
minimum adverse influences that the inappropriate selection
of penalty parameter of CSR brings.This novel fault detection
method known as impulse-envelope manifold is proposed
based on the combination of CSR, Hilbert transform, and
manifold learning. The impulses with different sparsity char-
acteristic are extracted by the CSR with different penalty
parameters. The impulse-envelope spaces are spanned by the
Hilbert transform on the extracted impulses. The manifold
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based of the impulse-envelope spaces is used to discover
the low-dimensionality intrinsic envelope of bearing faults
impulses embedded in vibration signals for fault detection.
The results show that the proposed method is capable of
detecting bearing faults through simulations, experimental
tests, and a practical test. This paper is organized as follows.
The basic theory of impulse-envelope manifold is introduced
in Section 2. Simulation validation is executed in Section 3.
Experiment verifications are demonstrated in Section 4.
Section 5 illustrates the practical application of the proposed
method. Section 6 provides the conclusion of the paper.

2. Basic Theory of Impulse-Envelope Manifold

2.1. Impulse Extraction by CSR. CSR models a signal as
the sum of a set of convolutions of atoms with the sparse
coefficients defined as

{d𝑚, x𝑘,𝑚} = argmin
{d𝑚 ,x𝑘,𝑚}

1
2
𝐾∑
𝑘=1

s𝑘 −
𝑀∑
𝑚=1

d𝑚 ∗ x𝑘,𝑚

2

𝐹

+ 𝜆 𝐾∑
𝑘=1

𝑀∑
𝑚=1

x𝑘,𝑚1 ,
(1)

where s𝑘 ∈ R𝑛 are 𝑘th analyzed vibration signals, 𝑛 is length of
analyzed signal, d𝑚 ∈ R𝑝 is a set of atoms, 𝑝 is length of atom,
x𝑘,𝑚 ∈ R𝑛−𝑝+1 are sparse coefficients related to a given signal
s𝑘 and atom d𝑚, 𝜆 ∈ R+ is penalty parameter,𝐾 is number of
interval signals s𝑘, and𝑀 is number of atoms d𝑚.

The sparse coefficients x𝑘,𝑚 are resolved by the shift-
invariance sparse coding (SISC) of (1), when the signals s𝑘 and
atoms d𝑚 are given. The SISC can be expressed as

x𝑘,𝑚 = argmin12
𝐾∑
𝑘=1

s𝑘 −∑𝑘 d𝑚 ∗ x𝑘,𝑚

2

𝐹

+ 𝜆 𝐾∑
𝑘=1

𝑀∑
𝑚=1

x𝑘,𝑚1 .
(2)

In (2), the different sparse coefficients x𝑘,𝑚 are decoupled
with respect to different analyzed signals s𝑘; the sparse
coefficients x𝑚 corresponding to signals s can be individually
solved by

x𝑚 = argmin
x𝑚

1
2
s −∑𝑘 d𝑚 ∗ x𝑚


2

𝐹

+ 𝜆 𝑀∑
𝑚=1

x𝑚1 . (3)

The atoms d𝑚 are obtained by SIDL using (1), when the
signal s𝑘 and sparse coefficients x𝑘,𝑚 are known. The SIDL is
described as

d𝑚 = argmin
d𝑚

1
2
𝐾∑
𝑘=1

s −∑𝑘 d𝑚 ∗ x𝑘,𝑚

2

𝐹

, (4)

such that ‖d𝑚‖ = 1∀𝑚.
The details on SISC and SIDL of CSR based on alter-

nating direction method of multipliers (ADMM) can be

found in [38]. The atoms d𝜆𝑚 are learned from the interval
signals s𝑘 ∈ R𝑛 (𝑘 = 1, 2, . . . , 𝐾) through interleaved
iterations of SISC and SIDL of CSR with different penalty
parameters 𝜆. The sparse coefficients x𝜆𝑚 associated with the
signals s = [s1𝑇, . . . , s𝐾𝑇]𝑇 ∈ R𝑛𝐾 are obtained through
SISC based on the learned atoms d𝜆𝑚. Hence, the impulses
I𝜆𝑚 with different sparsity characteristic are extracted by the
convolution of atoms d𝜆𝑚 and associated sparse coefficients x𝜆𝑚
and are expressed as

I𝜆𝑚 =
𝑀∑
𝑚=1

d𝜆𝑚 ∗ x𝜆𝑚. (5)

2.2. Impulse-Envelope Space Construction. The characteristic
information on bearing faults is contained in the envelope
of the extracted impulses. The Hilbert transform h𝜆𝑚 of the
extracted impulses I𝜆𝑚 is defined as [50]

h𝜆𝑚 = 2
𝜋 ∫
∞

−∞

I𝜆𝑚 (𝑡)𝑡 − 𝜏 𝑑𝜏 =
1
𝜋𝑡 I𝜆𝑚 (𝑡) . (6)

The Hilbert transform can be viewed as a filter of unity
amplitude and phase ±90∘ depending on the sign of the
frequency of input signal spectrum.The real signal I𝜆𝑚 and its
Hilbert transform h𝜆𝑚 can form a complex signal, called the
analytical signal:

z𝜆𝑚 = I𝜆𝑚 + jh𝜆𝑚. (7)

The envelope E𝜆𝑚 of the complex signal z𝜆𝑚 is defined as

E𝜆𝑚 = I𝜆𝑚 + jh𝜆𝑚
 = √(I𝜆𝑚)2 + (h𝜆𝑚)2. (8)

Suppose 𝜆𝑖 = 𝜆1 + 0.5(𝑖 − 1) (𝑖 = 1, 2, . . . , 𝑁) and 𝜆1 =1 in this paper; 𝑁 is determined when the number of
the nonzero elements of sparse coefficients x𝜆𝑁+0.5𝑚 equals
zero. The impulse-envelope space IES is spanned by all the
envelopes, z𝜆𝑖𝑚 , and expressed as

IES𝑚 = [E𝜆1𝑚 E𝜆2𝑚 ⋅ ⋅ ⋅ E𝜆𝑁𝑚 ] ∈ R
𝑛𝐾×𝑁. (9)

2.3.Manifold Learning Based on Impulse-Envelope Space. The
impulse-envelopemanifold transforms the impulse-envelope
space IES𝑚 with high-dimensionality 𝑁 in (9) into a new
intrinsic impulse-envelope space I𝑚 with dimension 𝑑, while
retaining the geometry structure of the impulse-envelope
space IES𝑚 as much as possible. In this paper, 𝑑 is equal to
1 because there is only one-type impulse in every impulse-
envelope space. Manifold learning involves convex and non-
convex techniques. Convex technique includes full spectrum
and sparse spectral methods. All manifold leaning has its
advantages and shortcomings. In this paper the manifold
learning based on impulse-envelope space is conducted for
the first time, and no references are available. Hence, the
Isomap with full spectrum methods, the LTSA in sparse
spectral methods, and the LLC in nonconvex techniques are
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Figure 1: Fault detection flowchart of the impulse-envelope manifold.

selected to learn the low-dimensionality intrinsic structures
of the impulse-envelope embedded in high-dimensionality
impulse-envelope space. The detailed algorithms of Isomap,
LTSA, and LLC can be found in [40], [42], and [44],
respectively. In addition, the nearest neighbors 𝜅 in manifold
learning are set as the length of atom 𝑝.
2.4. Estimation of the Number of the Atom Type (ENA).
The number of atoms 𝑀 is not determined in (1); instead
it is based on prior vibration mechanism of the impulses
generated by bearing faults [5]. An impulse can be com-
pletely described by two parameters, namely, the resonance
frequency and damping coefficient.The resonance frequency
can identify different atoms. So the dominant frequencies
of the atoms are used to estimate the number of atoms 𝑀.
Considering the defects of outer race, inner race, roller, and
wheel tread, generally, the number𝑀 is preset as 4 inwheelset
bearing fault detection. The true value of 𝑀 is obtained
via iteratively executing the CSR. The dominant frequencies𝑓𝑚 (𝑚 = 1, 2, . . . ,𝑀) of each atom are extracted by Fourier
transform. If the difference of any two dominant frequencies
is more than the frequency resolution 𝑓𝑠𝑝−1 (𝑓𝑠 denotes the
sampling frequency), this illustrates that there are𝑀 atoms.
Otherwise, 𝑀 = 𝑀 − 1 and the operation is repeated to
execute CSR and calculate the dominant frequencies until the
difference of any two dominant frequencies is more than the
frequency resolution. The final value of 𝑀 is output as the
estimated value of the number of atoms.

2.5. Fault Detection Based on Impulse-Envelope Manifold.
The schematic of fault detection based on impulse-envelope
manifold is summarized and shown in Figure 1.

The proposed impulse-envelope manifold method
includes the following.

Step 1. Input the analyzed signals.

Step 2. Estimate the number of atom types using dominant
frequency analysis.

Step 3. Extract the impulses with different sparsity character-
istic using (1) to (5).

Step 4. Construct the impulse-envelope space using (9).

Step 5. Execute the manifold learning based on impulse-
envelope space to learn the low-dimensionality intrinsic
envelope.

Step 6. Use envelope spectra of the intrinsic envelope to judge
the bearing fault.

3. Simulation Validation

To illustrate the effectiveness of the proposed method, the
acceleration responses 𝑎(𝑡) induced by a bearing fault are sim-
ulated using the impulse function of a mass–spring–damper
system [5] and are expressed as

𝑎 (𝑡) = 𝐿∑
𝑙=1

𝐴 𝑙𝑒−𝛽(𝑡−𝑙𝑇𝑝) cos [𝜔 (𝑡 − 𝑙𝑇𝑝)] 𝑢 (𝑡 − 𝑚𝑙𝑇𝑝) , (10)

where 𝐴 𝑙 represents the amplitude of the 𝑙th fault impulse,
which is set as 0.000000005, 𝑇𝑝 represents the reciprocal
of fault-character frequency 𝑓𝑝, which is set as 49.1 Hz, 𝛽
is the structural damping coefficient, set as 1200Ns/m, 𝜔 is
the nature frequency, which is 2000Hz, and 𝐿 represents the
number of the simulated impulses, which is 39.

The fault simulation signal with −7 dB signal-to-noise
ratio (SNR) is shown in Figure 2, which are generated by
mixing the fault response in (10) with white noises. The
low-dimensionality intrinsic impulse-envelopes are extracted
from the noise signals as shown in Figure 3(b) and by
using the proposed impulse-envelopemanifold shown in Fig-
ure 3(d). Through comparisons, the manifolds with Isomap
and LLC can successfully extract the impulse-envelope of
the noise signals based on the impulse-envelope space; the
number of the extracted impulse-envelopes is 39 which are
shown in Figures 3(a) and 3(c) and is equal to the preset
value 𝐿 of simulation impulses. However, LTSA fails to
learn the impulse-envelope from the impulse-envelope space.
Meanwhile, the fault-characteristic frequency 𝑓𝑝 and its 20-
order harmonics are extracted by the spectra of the intrinsic
impulse-envelope as shown in Figures 3(b) and 3(d). The
amplitudes of the extracted intrinsic envelope by Isomap
are larger than the ones by LLC; as a result, the amplitudes
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Figure 2: Simulation signals: (a) the original signals with periodic impulses and (b) the signals with added white noise (SNR = −7 dB).
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Figure 3:The intrinsic impulse-envelopes extracted by the impulse-envelopemanifold and their envelope spectra: (a) impulse-envelope with
Isomap and (b) the envelope spectra of (a), (c) impulse-envelope with LLC and (d) the envelope spectra of (c), (e) impulse-envelope with
LTSA, and (f) the envelope spectra of (e).

of the envelope spectra by Isomap are also larger than the
ones obtained by LLC. This shows that the impulse-envelope
manifold with Isomap has a better performance in extracting
the envelopes than the LLC.

To compare the manifolds with Isomap based on two
other envelope spaces spanned by the Hilbert transform of

IMFs in EEMD and multiscale decomposition signals in
WPT, the decomposition results obtained by EEMD and
WPT from processing the signals in Figure 2(b) are shown in
Figures 4 and 5, respectively. The number of ensembles and
the amplitude of the added white noise are two parameters
needed to be set when the EEMDmethod is used. Generally,
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Figure 4: IMFs obtained by EEMD.

when the signal is dominated by high-frequency components,
the noise amplitude needs to be smaller. And when the signal
is dominated by low-frequency components, the noise ampli-
tude should be increased. In this paper, the amplitude of the
added white noise is 0.2 times the standard deviation of the
signal, and the number of ensembles is set as 400 according
to 𝑁 = (𝑎/𝑒)2, where 𝑁 is the ensemble number, a is the
amplitude of the added white noise, and 𝑒 is the standard
deviation of error, which is defined as 0.01 [51]. Daubechies
wavelet (Db8) is selected as themotherwavelet ofWPTdue to
its wide application in engineering signal processing [52, 53].
The intrinsic impulse-envelopes are extracted by themanifold
with Isomap based on both IMF-envelope and multiscale
envelope spaces, and the results are shown in Figure 6. The
IMF-envelope space extracted 12 harmonics of the fault-
characteristic frequency while multiscale envelope space has
5-order harmonics (the number of harmonics is lower than
20 in the impulse-envelope space). The amplitudes of the
envelope and envelope spectra obtained by the manifold
with Isomap based on IMF-envelope andmultiscale envelope
space are less than the impulse-envelope space with Isomap
and are almost the same as the impulse-envelope space with
LLC. These results show that the impulse-envelope space
outperforms the IMF-envelope andmultiscale envelope space
in extracting the intrinsic impulse-envelope.

4. Experimental Verification

Figure 7 shows the wheelset bearing test bench used for the
practical tests. The test bench consists of a motor, driving

Table 1: The parameters of the test rolling bearing.

Roller
number

Roller diameter
(mm)

Pitch diameter
(mm)

Contact angle
(rad)

19 26.9 180 0.1571

wheel, loading device, wheelset, and axle box. The motor
delivers the driving power with different motor speeds. The
driving power is conveyed to the driving wheel through
rubber belts. The traction power of the driving wheel is
then transmitted to the wheelset. The artificial faults are
introduced on the bearing outer race and on a roller as shown
in Figure 8.The artificially faulted roller bearing is installed in
the axle box and an accelerometer ismounted on the housing.
The parameters of the faulty bearing are listed in Table 1.

4.1. Result and Discussion: Fault Detection with an Outer
Race Fault. Thevibration signalsmeasured from thewheelset
bearing test bench are shown in Figure 9 and those with an
artificially simulated fault on the bearing outer race are shown
in Figure 8(a).

The intrinsic impulse-envelopes learned by the impulse-
envelopemanifold with Isomap, LLC, and LTSA are shown in
Figure 10. The impulse-envelope manifold with Isomap and
LLC successfully detects the fault-characteristic frequency of
an outer race defect and with 7 harmonics. However, the
impulse-envelope manifold with LTSA fails to extract the
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Figure 5: Multiscale signals obtained by WPT.
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Figure 8: Photos of the artificial faults on outer race (a) and roller (b).
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Figure 9: Measured vibration signals of bearing outer race fault.

fault-characteristic frequency or its harmonics. The ampli-
tudes of the intrinsic envelope with Isomap are larger than
the ones obtained by LLC. Furthermore, the amplitudes of
the envelope spectra with Isomap are larger than the ones
obtained with LLC. These show that the impulse-envelope
manifold with Isomap is superior to the one with LLC in
extracting the intrinsic envelopes with weak impulses. The
fault-characteristic frequency of an outer race defect 𝑓BPFO is
expressed as

𝑓BPFO = 𝑁𝑏2 (1 − 𝐵𝑑𝑃𝑑 cos (𝜙))𝑓𝑤, (11)

where 𝑁𝑏 is the number of rollers, 𝐵𝑑 is the roller diameter,𝑃𝑑 is the pitch diameter, 𝜙 is the contact angle, and 𝑓𝑤 is the
bearing rotation speed.

For comparison with the two other spaces spanned by
Hilbert transform of the IMFs in EEMD and multiscale
decomposition signals in WPT, the results obtained by the
manifold with Isomap based on the IMFs-envelope space

and multiscale envelope space are shown in Figure 11. The
manifold with Isomap based on envelope of IMFs extracts
the fault-characteristic frequency of the outer race fault and
has 7 harmonics (the number of the extracted harmonics is
the same as the impulse-envelope with Isomap and LLC).
However, the manifold with Isomap based on the multiscale
envelope space extracts the fault-characteristic frequency
of outer race with only 2 harmonics. The amplitudes of
the intrinsic envelope obtained by the manifold based on
the IMF-envelope space and multiscale envelope space are
less than the ones obtained by the impulse-envelope man-
ifold with Isomap. These results illustrate that the impulse-
envelope space outperforms the spaces spanned by the
envelopes of IMFs and multiscale decomposition signals on
extracting the impulses generated by faults on the outer race.

4.2. Results and Discussion: Fault Detection with a Fault on
the Roller. The vibration signals collected from the wheelset
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Figure 10: The intrinsic envelopes learned by the impulse-envelope manifold and their envelope spectra: (a) impulse-envelope with Isomap,
(b) the envelope spectra of (a), (c) impulse-envelope with LLC, (d) the envelope spectra of (c), (e) impulse-envelope with LTSA, and (f) the
envelope spectra of (e).
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Figure 13: The intrinsic envelopes extracted by the impulse-envelope manifold and their envelope spectra: (a) the impulse-envelope with
Isomap, (b) the envelope spectra of (a), (c) the impulse-envelope with LLC, (d) the envelope spectra of (c), (e) the impulse-envelope with
LTSA, and (f) the envelope spectra of (e).

bearing test bench with a fault on the roller of the wheelset
bearing (Figure 8(b)) are shown in Figure 12.

The intrinsic envelopes learned from the vibration signal
are shown in Figure 12 and the impulse-envelope manifold
is shown in Figure 13. The impulse-envelope manifold with
both Isomap and LLC can well learn the low-dimensionality
intrinsic envelopes from the measured vibration signals.
According to the motion relationship of rollers and races
shown in Figure 14, they will generate 7 impulses from

B1 to H1 in the load zone (LZ) of the wheelset bearing.
In Figures 13(a) and 13(b), there are seven (7) impulses in
the load zone of the wheelset bearing. For the wheelset
bearing, the forces applied on the faulty roller are too small
to excite the impulses due to the lack of contant forces
in no-bearing case. In Figures 13(a) and 13(c), when the
defective roller enters the LZ, there are 7 impulses. On the
other hand when the defective roller leaves the LZ, there
are no visible impulses. Among the seven impulses from B1
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Figure 14:The relativemotion between the rollers and races and the
load zone (LZ).

to H1, impulse B1 and impulse H1 appear to lie at the edge
of LZ of the wheelset bearing. There is a gap between the
races and defective roller when the roller lies in impulse E1.
The gap is caused by the symmetrical structure of the two
normal rollers corresponding to impulse F1 and impulse D1.
Consequently, the envelope amplitudes of impulses B1, H1,
and E1 are less than those of impulses C1, D1, F1, and G1.
The envelope spectra of the intrinsic envelopes obtained by
impulse-envelope manifold with both Isomap and LLC can
capture the fault-characteristic frequency of roller 𝑓BPFO and
its 2-order harmonics. The fault-characteristic frequency of
roller 𝑓BPFO is expressed as

𝑓BPFO = 𝑝𝑏𝐵𝑑 (1 −
𝐵2𝑑𝑃2𝑑 cos

2 (𝜙))𝑓𝑤. (12)

On the contrary, the impulse-envelope manifold with
LTSA is unable to extract the intrinsic envelopes of the vibra-
tion signals or capture the fault-characteristic frequency of
roller and its harmonics. For comparison, the results obtained
by the manifold with Isomap based on the IMFs-envelope
space and multiscale envelope space are shown in Figure 15.
However, the manifold based on the two spaces is unable
to extract the intrinsic envelope of the vibration signals.
The results show that the impulse-envelope manifold has
excellent performance in extracting the intrinsic envelopes of
the impulses induced by bearing faults.

5. Practical Application in High-Speed Train
Wheelset Bearing

To test the capability of the proposed impulse-envelope
manifold for fault detection, the technique was tested on
the data obtained from an operating high-speed train. An

accelerometer installed on axle box was used to gather the
axle vibrations as shown in Figure 16.

5.1. Results and Discussion. Figure 17 shows the vibration
signals collected from the axle box of an operating high-speed
train running at a speed of 200Km/h with a defective roller
in wheelset bearing.

There are two kinds of atoms obtained by ENT. Consider-
ing atom 1, the intrinsic envelopes learned from the vibration
signals are shown in Figure 17 and after processing by the
proposed impulse-envelopemanifold the results are shown in
Figure 18. The impulse-envelope manifold with both Isomap
and LLC can successfully extract the intrinsic envelopes of the
impulses induced by a roller fault. When the defective roller
enters the LZ of the wheelset bearing, there are 7 impulses
from impulse-envelope 𝐵𝑖 to impulse-envelope 𝐻𝑖 (𝑖 =2, 3, . . . , 8). When the defective roller leaves the LZ of the
bearing, there are no impulses due to the lack of contact force
between the defective roller and races and hence no resulting
envelopes appear. From the configurations of the bearing
and relative motion of the rollers and the races, the intrinsic
envelopes vary alternatively when the defective roller enters
and leaves the LZ of the wheelset bearing as shown in
Figure 14. Figure 18(e) shows that the impulse-envelope
manifold with LTSA cannot extract the intrinsic envelopes
of the signals. On the contrary, the intrinsic envelope spectra
shown in Figures 18(b) and 18(d) can well extract the fault-
characteristic frequency 𝑓BSF and its 3 harmonics. Figure 19
is an enlarged view from 0.12 to 0.28 sec of Figures 18(a) and
18(b). Among the seven envelopes (B3 to H3) in Figure 19(b),
the amplitude of envelope E3 is less than other envelopes.
The amplitude of the envelope B3 is larger than envelope C3
and envelope D3 and is different from the previous analysis
discussed in Section 4.2.The reason is the LZ variance caused
by the wheel-rail longitudinal forces to strengthen the shock
effects on the defective roller at the positions of envelopes
B3 and H3 during actual operation of the high-speed train.
The impulse-envelope manifold with both Isomap and LLC
clearly shows the novel vibration phenomenon with double
envelopes of the waveform as shown in Figure 19.

Referring to atom 2, the intrinsic impulse-envelopes
learned by the proposed impulse-envelope manifold are
shown in Figure 20. The impulse-envelope manifolds with
both Isomap and LLC can efficiently extract the envelopes of
the impulses induced by the unevenness of wheelset tread.
The envelope spectra in Figures 20(b) and 20(d) capture 4,
6, and 7.5 times the rotational frequency of wheelset bearing.
These show that the impulse-envelope technique provides
an excellent capability of isolating the impulses generated by
bearing faults and the defects of wheel tread.

For comparison, the 2-dimensionality outputs of the
manifold with Isomap based on the envelope space of IMFs
in EEMD are shown in Figure 21. According to prior descrip-
tion, two types of atoms are embedded in vibration signals
shown in Figure 17 with the resulting dimensionality of the
manifold set as 2 for the 2-dimensionality outputs of theman-
ifold with Isomap based on the envelope space of multiscale
decomposition signals inWPTwhich are shown in Figure 22.
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Figure 15: The intrinsic envelopes extracted by the manifold with Isomap and their envelope spectra: (a) IMFs-envelope space of EEMD, (b)
the envelope spectra of (a), (c) multiscale envelope space of WPT, and (d) the envelope spectra of (c).
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Figure 17: Real vibration signal obtained from the axle box.

The impulse-envelope manifold based on the two-envelope
space can extract the fault-characteristic frequency𝑓BSF and
its 2-order harmonics (less than 3-order harmonics in the
impulse-envelope space) but is unable to isolate the impulses
generated by wheel tread unevenness. Through comparison
of Figure 21 and Figure 22, Figure 22(c) clearly exhibits the
appearance of impulses. The locally zoomed figure from 0.18
to 0.26 sec of Figure 22(c) is shown in Figure 23. The double

envelopes in an envelope waveform are weakened by wavelet
transform as compared to Figure 19.

6. Conclusion

The novelty of combining the outstanding properties of
CSR and impulse-envelope manifold through Hilbert trans-
form to extract impulses of defective roller bearings is
demonstrated in this paper. Through a series of simulation
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Figure 18:The intrinsic envelope extracted by the impulse-envelopemanifold corresponding to atom 1: (a) the impulse-envelopewith Isomap,
(b) the Hilbert envelope spectra of (a), (c) the impulse-envelope with LLC, (d) the Hilbert envelope spectra of (c), (e) the impulse-envelope
with LTSA, and (f) the Hilbert envelope spectra of (e).
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Figure 19: Enlarged view of intrinsic envelope from 0.18 to 0.26 sec: (a) corresponding to Figure 18(a); (b) corresponding to Figure 18(b).

studies, experimental tests, and real case data of a defective
wheelset bearing of a high-speed train, the results confirm
the capability of the proposed technique. The results clearly
show that while both impulse-envelope manifolds with both
isometric mapping (Isomap) and locally linear coordination
(LLC) can successfully extract the intrinsic envelope of the
impulses caused by bearing fault and unevenness wheel
tread, the Isomap outperforms LCC in terms of strength
and number of extracted harmonics. When comparing with
EEMD and WPT, the proposed technique shows superiority

in extracting the intrinsic envelope and enlarging the number
of harmonics of fault-characteristic frequency.

The proposed impulse-envelope manifold also discovers
a novel phenomenon for the first time of double envelope
which is caused by a roller defect in an envelope waveform.
This discovery is beneficial to estimate the size of the fault.
However, a point to note is that the computational cost of
Isomap is much higher than LLC and consequently is a topic
for future research to resolve the computational cost problem.
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Figure 20:The intrinsic envelope of wheelset bearing vibration extracted by the impulse-envelope manifold corresponding to atom 2: (a) the
impulse-envelope with Isomap, (b) the Hilbert envelope spectra of (a), (c) the impulse-envelope with LLC, (d) the Hilbert envelope spectra
of (c), (e) the impulse-envelope with LTSA, and (f) the Hilbert envelope spectra of (e).
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Figure 21: The intrinsic envelope extracted from the envelope space of IMFs: (a) corresponding to dimensionality 1, (b) the Fourier spectra
of (a), (c) corresponding to dimensionality 2, and (d) the Fourier spectra of (c).
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Figure 22:The intrinsic envelope extracted from the envelope space ofmultiscale decomposition signals: (a) corresponding to dimensionality
of 1, (b) the Fourier spectra of (a), (c) corresponding to dimensionality of 2, and (d) the Fourier spectra.
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Figure 23: The locally zoomed plot of Figure 22(c).
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