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Using experimental data and numerical simulations, a new combined technique is presented for characterization of thin and thick
orthotropic composite laminates. Four or five elastic constants, as well as ply orientation angles, are considered as the unknown
parameters. The material characterization is first examined for isotropic plates under different boundary conditions to evaluate
the method’s accuracy. The proposed algorithm, so-called CPAM (Combined Programs of ABAQUS and MATLAB), utilizes an
optimization procedure and makes simultaneous use of vibration test data together with their corresponding numerical solutions.
The numerical solutions are based on a commercial finite element package for efficiently identifying the material properties. An
inverse method based on particle swarm optimization algorithm is further provided using MATLAB software. The error function
to be minimized is the sum of squared differences between experimental and simulated data of eigenfrequencies. To evaluate the
robustness of the model’s results in the presence of uncertainty and unwanted noises, a sensitivity analysis that employs Gaussian
disorder model is directly applied to the measured frequencies. The results with high accuracy confirm the validity and capability
of the present method in simultaneous determination of mechanical constants and fiber orientation angles of composite laminates
as compared to prior methods.

1. Introduction

In many engineering applications, such as design or quality
control of advanced composite structural systems, it is partic-
ularly important to have correct understanding ofmechanical
constants of composites [1]. It is more complicated to deter-
mine the mechanical constants of fiber-reinforced polymer
composites than to determine those of homogenous and
isotropic materials, because, in such materials, which may
include a variety of constituent materials mixed together, the
number of elastic constants is increased and also some addi-
tional complexity due to their nonhomogenous nature may
occur.When static test methods such as simple tensile test are
used for composites, they will be faced with some problems.
Special problems such as effects of supports, dependence on
samples size, and nonuniform fields of stress-strain in the
experiments usually cause a wide scatter and unwanted errors
in the test results. In addition, the destructive nature of these
tests and inability to repeat the test for a specific sample are

other disadvantages of conventional experimental methods
for determining thematerial properties.Thus, a powerful and
useful technique that is able to be utilized for characterizing
the real structures needs to be introduced. To resolve afore-
mentioned problems, among previously proposed methods,
the nondestructive evaluations of material parameters based
on inverse computational techniques look promising for
composite materials [2].

In the inverse computational methods, there are complex
relationships between material properties and structural
behavior which allow us to characterize the material proper-
ties of composites.These relationships are usually represented
by a typical computational and mathematical model known
as direct simulated solution. In the direct problem, measure-
able data are determined frommodel parameters. So, if there
is a certain set of measured experimental data for evolution
of structural behavior, the composite plates’ properties can be
determined by solving an inverse problem [3]. But, in general,
it cannot bemeasured exactly and themeasured data are often
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diverted from real measurable quantities. This deviation can
be as small as rounding error that is created by computer
estimations. In fact, the deviation can be completely innate in
measuring process, which means it is due to existing errors
in the measurement process. So, data frommodel parameters
are obtained without any errors in the direct process but, in
general, data are in the deviated form.

Extraction of natural frequencies through modal analysis
has been considered as experimental data in the inverse
methods. Literature reveals that, in order to investigate
the stability of solution to small changes imported to the
experimental data, a sensitivity analysis needs to be applied
accompanied with the various inverse methods proposed
for determination of parameters of composite plates. When
laminated composites are designed, design variables for a
specific kind of material are fibers directions, number of
layers, and thickness of each layer. Because of restrictions on
the manufacture and use of these composite plates, choosing
of fibers direction is usually limited to a set of definite discrete
values and also layers’ thickness is specific [4]. Moreover,
among the various factors, stacking sequence of layers is one
of the most important parameters that can increase struc-
tures’ resistance to the damage caused by different loads. The
orientation of the fibers in layers highly affects themechanical
strength of laminated composites, so identification of the
stacking sequence of layers for theoretical research and prac-
tical applications seems worthy [5]. Sepahvand and Marburg
[6] attempted to determine elastic constants of orthotropic
plates by expansion of Polynomial Chaos theory and also
experimental data resulting frommodal analysis. Parameters
of their model are obtained by expansion of generalized Poly-
nomial Chaos and the corresponding unknown constants
are calculated using inverse stochastic problem. Ip et al. [7]
determined elastic constants of cylindrical orthotropic shells
by using Bayesian estimation based on natural frequencies
obtained from a model with free boundary conditions. Their
model is formulated by using Rayleigh-Ritz method that is
based on the characteristic functions of the beam. Then they
succeeded to realize the high dependence of circumferential
wave pattern of vibrationalmode and in-plane shearmodulus
on the natural frequencies of cylindrical shells. To simplify
themodeling process and reduce the complexity of numerical
modeling, Hwang and Chang [8] used an FEM model with
an optimization process to determine just elastic constants
of thin and thick composite laminates and also aluminum
plates. Deobald andGibson [9] determined four independent
elastic constants of thin orthotropic plates. The Classical
Lamination Theory and three-mode Rayleigh formulation
optimizedwith objective function of sum of square difference
of experimental and numerical frequencies are used in
their work. Liu et al. [10] used an advanced neural net-
work algorithm as optimization algorithm in their proposed
inverse method to determine nonhomogenous properties
of composite laminates. They used displacement response
of surfaces due to linear loading as experimental data and
Hybrid Numerical Method (HNM) as direct solution for
evaluating the dynamic response of surfaces. Finally, by
applying three disorder levels of 1, 3, and 10 percent to the
measured experimental data, they could use these simulated

data to evaluate the amount of solution stability. Mohan Rao
and Arvind [11], in their first case study, determined stacking
sequence of the layers of hybrid laminated composite panels
in order to maximize critical buckling load under thermal
loading using ametaheuristic optimization algorithm known
as scatter search. They used a same algorithm in order to
determine stacking sequence of the multilayer plates in their
second case study and minimize the weight and manufac-
turing cost of these plates by considering constraints on the
buckling load and the first natural frequency.

As it is evident from the literature, simultaneous iden-
tification of mechanical constants and stacking sequence of
composite plates has not been reported and the presented
study tries to perform this task. In the present study, natural
frequencies extracted from vibration analysis of structure are
considered as experimental results. Accuracy of the obtained
results by inversemethod depends commonly on some issues
like sufficient accuracy of the method used in vibration
analysis and solution of eigenproblem. In this study, the
commercial FEM code of ABAQUS is used for vibration
modeling and calculation of natural frequencies of thin
and thick homogenous and orthotropic plates. In order to
determine four elastic constants and stacking sequence of
such composite plates by inverse method, the PSO algorithm
in MATLAB software is employed. The sum of squared
difference of experimental and numerical frequencies is used
as the objective function. By linking MATLAB software and
ABAQUS software, it is possible to perform this alternating
optimization process. In order to apply sensitivity analysis,
the Gaussian noise is added directly to the (simulated)
measured frequencies and then robustness of the proposed
inverse method to the unwanted disorders is evaluated. Out-
comes show that the proposed inversemethod is properly sta-
ble towards adding noise. Results obtained from the present
method are validated by comparing those obtained from
other previously proposed methods.

2. Vibration Analysis of the Composite Plates
(Direct Solution)

Amodeling method which assumes that the structural prop-
erties of the material are known and consequently predicts
the physical behavior of the structure through them is usually
referred to as direct modeling or forward solution [3]. As an
example, for a transversely isotropic composite plate, direct
modeling of a vibration problem can consist of amodel which
is able to provide natural frequencies and mode shapes of a
two-dimensional thin composite plate with four independent
elastic constants and also arbitrary fiber orientation angle
for each layer. For this purpose, an available commercial
finite element code can be used for undamped free vibration
modeling of the plate.

In the present study, natural frequencies and modes
shapes of the considered composite plates have been
extracted usingmodal analysis in ABAQUS software (version
6.12-1). All models are meshed by eight-node plate element
(S8R element) with six degrees of freedom for each node.This
element can be used for both thin and thick composite plates
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and also can be utilized for homogenous and orthotropic
materials [13].

3. Optimization Design Based on
PSO Algorithm

The problem of determining the parameters of composite
plates by inverse method can be discussed as an optimization
problem. One of the most powerful algorithms that get
noticed by researchers is PSO algorithm [14, 15]. In this algo-
rithm, each design variable of the population that is known as
particle possesses a velocity that enables it to move through
the problem space and is replaced instead of crossover
and mutation of other population-based algorithms (which
search more than one initial solution of the search space for
design variables) like genetic algorithms [14]. Velocity can be
defined by a vector in the problem space. So, each particle is
characterized by a location (solution) and velocity. Relocation
of a particle is done by means of the present location of the
particle and its velocity. It means that resultant of the current
location (solution) and velocity vector denotes the location of
each particle in the next iteration. Each particle maintains its
current location, velocity, and a memory of its previous best
location, as well as the global best location of the entire swarm
that all particles have achieved so far at each iteration. The
velocity vector and displacement of each particle in the next
iteration can be estimated, respectively, through the following
relations:

V𝑛+1𝑖 = 𝑤V𝑛𝑖 + 𝑐1𝑟1 (𝑝𝑛𝑖 − 𝑥𝑛𝑖 ) + 𝑐2𝑟2 (𝑝𝑛𝑔 − 𝑥𝑛𝑖 ) (1)

𝑥𝑛+1𝑖 = 𝑥𝑛𝑖 + V𝑛+1𝑖 , (2)

where 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are positive con-
stants whose names are social and self-cognitive parameters,
respectively, and 𝑖 = 1, 2, . . . , 𝑚 in which m is the population
size. 𝑟1 and 𝑟2 are uniformly distributed random values
within [0, 1], and 𝑛 = 1, 2, . . . , 𝑁 indicates the repetition
number and𝑁 is the maximum allowable iteration. The first
right-hand term in (1) is previous velocity of the particle
which enables it to move through the problem space. The
second and third terms show the velocity difference based
on the best solution of each particle and the best solution
of all particles, respectively [15]. Obviously, the greater social
parameter value of the particle is, the more velocity vector
approaches the best answer of all particles and also the
greater self-cognitive parameter is, the more velocity vector
approaches the best answer that the particle has experienced.
In general, PSO algorithm can be summarized in three
phases: evaluation, comparison, and imitation. Evaluation
phase measures desirability of each particle error. Compar-
ison phase determines the best particle among all particles
and, in the imitation phase, the new location of the particles
based on knowledge that has been obtained until now is
determined. These three phases are allowed to continue until
the end-up condition is satisfied. The ultimate goal is to
find the particle that has the best answer for investigation
problem.

FPSO (Fuzzy-Particle Swarm Optimization) is another
type of PSO algorithm for identification of discrete param-
eters. In this case, the set of location vectors can be
expressed in a fuzzy matrix where its elements represent
fuzzy logic membership functions. How to use this algorithm
for job scheduling problem is briefly explained here. 𝐽 ={𝐽1, 𝐽2, . . . , 𝐽𝑛} is assumed to be a set of jobs that must be
processed on a set of machines𝑀 = {𝑀1,𝑀2, . . . ,𝑀𝑚}. All
jobs of set 𝐽 must be carried out and so the total cost of jobs
is minimized.

In FPSO algorithm, the relations between jobs and
machines can be defined in a matrix form as

𝑋 =
[[[[[[
[

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑛𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑛... ... d
...

𝑥𝑚1 𝑥𝑚2 ⋅ ⋅ ⋅ 𝑥𝑚𝑛

]]]]]]
]𝑚×𝑛

, (3)

where 𝑥𝑖𝑗 is fuzzy logic and represents dependency of 𝐽𝑗 on𝑀𝑖. So, amount of elements of matrix 𝑋 must be in range[0, 1]. In another view,𝑥𝑖𝑗 shows the possibility that𝑀𝑖 carries
out job 𝐽𝑗. In other words, sum of each column’s elements of
the matrix must be equal to 1. In a similar way, the velocity
matrix can be defined as

𝑉 =
[[[[[[
[

V11 V12 ⋅ ⋅ ⋅ V1𝑛
V21 V22 ⋅ ⋅ ⋅ V2𝑛... ... d

...
V𝑚1 V𝑚2 ⋅ ⋅ ⋅ V𝑚𝑛

]]]]]]
]𝑚×𝑛

. (4)

Equations (1) and (2) can be rewritten for FPSO algorithm
as

𝑉𝑛+1𝑖 = 𝑤𝑉𝑛𝑖 + 𝑐1𝑅1 ⊗ (𝑃𝑛𝑖 − 𝑋𝑛𝑖 ) + 𝑐2𝑅2 ⊗ (𝑃𝑛𝑔 − 𝑋𝑛𝑖 )
𝑋𝑛+1𝑖 = 𝑋𝑛𝑖 + 𝑉𝑛+1𝑖 , (5)

where 𝑅1 and 𝑅2 are of 𝑚 × 𝑛 order matrix and their
elements are uniformly distributed randomvariables in range[0, 1]. Operator ⊗ multiplies the corresponding elements of
matrixes together.There is not any changes in other variables.
According to the constraints on the elements of matrix𝑋, the
illegal values of 𝑋 that may be generated after updating the
fuzzy matrix must be modified. To this end, first, all elements
of matrix 𝑋 must be positive. So, the negative elements
generated in matrix 𝑋 are intentionally set to zero. Second,
sum of each column’s elements must be equal to 1. So each
element of this matrix must be divided to the sum of its
column elements.

4. Definition of the Optimization Problem

Design variables considered in this study are four inde-
pendent elastic constants of thin transversely isotropic
plates and also fiber orientation angles. These constants are𝐸1, 𝐸2, 𝜐12, 𝐺12 which represent Young’s modulus parallel and
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perpendicular to the fiber orientation, in-plane Poisson’s
ratio, and the shear modulus, respectively. Constants𝐺13, 𝐺23
are required for FE modeling in ABAQUS, which can be
defined by the following equations for transversely isotropic
material system [15]:

𝐺12 = 𝐺13,
𝐺23 = 𝐸22 (1 + 𝜐23) ;
𝜐23 = 𝜐12 (1 − 𝜐12𝐸2/𝐸1)1 − 𝜐12 .

(6)

For thick plates, 𝐺23 is conceded as fifth independent
constant and (6) should not be used to evaluate this constant.
The objective function that must be minimized by the
optimization algorithm is defined as

𝐹 = 6∑
𝑖=1

(𝜔𝑖 − 𝜔𝑖)2 , (7)

where 𝜔𝑖 represent the measured experimental frequencies
and 𝜔𝑖 are the corresponding frequencies calculated from
the numerical solution.The search space that stands between
upper and lower bounds of elastic constants is represented as

10 < 𝐸1 (GPa) < 200
5 < 𝐸2 (GPa) < 40
5 < 𝐺12 (GPa) < 30

0.15 < 𝜐12 < 0.4
2 < 𝐺23 (GPa) < 30 (for thick plates) .

(8)

It is to be noted that the stiffness matrix (constitutive
relationships between stress and strain components) must be
positive definite. Therefore, there are some relations between
elastic constants of the compositematerial.These relations are
defined as the following constraints for the algorithm [12]:

[1 − (𝜐23)2] [1 − 𝜐122𝐸2𝐸1 ]

− [𝜐12𝐸2𝐸1√
𝐸1𝐸2 + 𝜐12𝜐23√

𝐸2𝐸1]
2

> 0,

𝜐12 (1 − 𝜐12 (𝐸2/𝐸1))1 − 𝜐12

 < 1,
𝜐12 < √𝐸1𝐸2 ,
𝐸1𝐸2 > 1.

(9)

As it is mentioned, fibers’ orientation is limited to some
definite values; so they are considered as discrete parameters

in this study. The fiber orientation angles between which the
algorithm is allowed to search are given in the following
equation:

[0, ±5, ±10, ±15, . . . , ±75, ±80, ±85, 90] . (10)

5. Settings for Optimization Algorithm

5.1. Initial Population. For generating the initial starting par-
ticles, the first value of 𝐸2 is randomly generated within the
specified constraints. Since range of 𝐸1 is wider than 𝐸2 and
according to the fourth constraint of (9), 𝐸1 should be larger
than 𝐸2; its value is randomly generated between 𝐸2 and
the upper limit of 𝐸1. In order to determine the reasonable
amount of 𝜐12, according to the third constraint, it is also
randomly determined within interval [−√𝐸1/𝐸2, √𝐸1/𝐸2].
Because there is not any constraint for orientation of fibers’
angles, the initial population of them is created randomly.

5.2. Evaluation of Solution and Error Analysis. According to
initial solution of particles which has been generated within
the feasible region of the third and fourth constraints, it is
not necessary to check satisfaction of these two constraints in
the initial evaluation. But because there is no guarantee that
they remain valid in the next iterations, feasibility of them
must be also checked alongside the two other constraints
in the evaluation process. Then if any constraint is violated,
error of solutions will accept a great value and thus the
corresponding particle will be penalized. But if the solution is
reasonable, it will be sent to ABAQUS solver for proceeding
the calculations. Sum of squared deviation of outputs from
the target values is shown as error of the desired solution.

6. Employing the Inverse Method for
Determination of Parameters

For determination of parameters, it is essential that the direct
modeling explained in the previous sections be linked with
code written in MATLAB for optimization algorithm. In
other words, there must be an ability tomake a linking bridge
between ABAQUS and MATLAB software in order to call
both frequencies provided by ABAQUS in MATLAB and
also parameters provided by MATLAB in ABAQUS. This
alternating process is therefore repeated between ABAQUS
andMATLAB software until the error function defined in (7)
is minimized. In the following, how ABAQUS andMATLAB
software work is explained. To have better perception of the
optimization procedure, the inverse solution algorithm is
explained here step by step, and its corresponding flowchart
is represented in Figure 1; it does not necessarily mean the
time priority of these steps’ operation during performing the
algorithm.

In Step 1, parameters are generated by code written in
MATLAB software. In Step 2, a text file is created by this
code and these generated parameters are saved in this file
according to commands written in this code. In Step 3,
ABAQUS software is run (without GUI) by python language
that is explained in the next step (Step 4). Commands
required for operating of this step are also utilized in code
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Interface text �le 1:
consists of material properties generated in

MATLAB

Interface text �le 2:
consists of eigenfrequencies generated in

ABAQUS

Model created by ABAQUS to calculate numerical eigenfrequencies

Written codes by Python language
(intelligible for ABAQUS)

Written code in MATLAB

No

Display the last
elastic constants

Yes

Minimization of the objective
function

Figure 1: Flowchart of the CPAM inverse solver algorithm.

written byMATLAB software. In Step 4, a python code that is
intelligible for ABAQUS is written beforehand for ABAQUS
software. The required commands for calling parameters
in the text file of Step 2, importing them into ABAQUS,
getting the natural frequencies generated by the model in
ABAQUS, creating another text file, and finally saving these
frequencies in this file, are written in this code. In Step 5, the
model that is previously created in ABAQUS to determine
the natural frequencies of plates is run. In Step 6, the code
that is written by python language calls natural frequencies
that are obtained by the model created in ABAQUS in the
previous step. In Step 7, the code that is written by python
programming language saves frequencies called by ABAQUS
(previous stage) in a second interface text file. In Step 8, the
code that is written in MATLAB calls frequencies saved in
the second interface text file and then the error function in
(7) is checked. Whenever this error function is minimized
in every iteration of this alternating process, the process will
be stopped and the corresponding parameters that generate
these frequencies and make the error function be minimized
are chosen as the set of optimal solutions; otherwise, this
process will continue unless the error function is minimized.
So, this algorithm that is capable of linking PSO algorithm in
MATLAB to the model in ABAQUS is briefly called CPAM.

7. Result and Discussion

7.1. Validation of FEM Modeling. Due to use of natural
frequencies calculated from numerical solution in objective
function and the importance of their accuracy in determi-
nation of the parameters, first it is necessary to be sure of
accuracy of direct solution for providing desired natural fre-
quencies that are obtained bymodeling inABAQUS software.
In order to validate the FEM modeling, an aluminum plate
has been considered and its first six natural frequencies have
been comparedwith those obtained by Rayleigh-Ritzmethod
presented by Deobald and Gibson [9]. Hwang and Chang [8]
have extracted them again to validate their FEM modeling
in ANSYS software. Dimensions of the considered square
aluminum plate are 25.4 cm × 25.4 cm × 0.316 cm, density is
2.77 gr/cm3, Young’s modulus is 72.4GPa, shear modulus is
28GPa, and Poisson’s ratio is 0.33. In order to match mesh
size of this plate with the mesh size reported in [8, 9], the
10 × 10 in-plane mesh sizes that totally give 100 elements are
considered for the plate. Natural frequencies obtained from
modal analysis and impact technique [9] are shown in Table 1.
In addition, natural frequencies obtained by Rayleigh-Ritz
method [9] are also displayed in this table in comparison
with those extracted by ANSYS [8] and ABAQUS solvers,
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Table 1: Natural frequencies (Hz) of the aluminum plate.

Frequencies 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6
Experimental [9] 156.7 232.5 300.4 411.7 411.7 744.9
ABAQUS soft 160.0 233.1 297.3 412.6 412.6 741.8
ANSYS soft [8] 161.2 231.9 294.6 413.7 413.7 728.6
Rayleigh-Ritz [9] 163.2 237.6 299.9 424.3 424.3 749.4

Table 2: Dimensions and density of the aluminum and carbon/epoxy plates [8].

Length (cm) Width (cm) Thickness (cm) Density (gr/cm3) Arrangement
Aluminum

A1 (F-F-F-F) 30.00 28.00 0.30 2.70
A2 (C-F-F-F) 28.00 25.00 0.30 2.70

Carbon/epoxy
B1 28.15 24.55 0.20 1.54 [020]
B2 24.50 15.30 0.20 1.54 [020]
C1 26.00 26.00 0.32 1.59 [(0/90)8]𝑆
C2 24.30 15.30 0.32 1.59 [(0/90)8]𝑆
D1 10.10 5.30 0.35 1.55 [020]
D2 10.00 5.20 0.32 1.59 [(0/90)8]𝑆

Glass/epoxy
C3 (F-F-F-F) 20 16 0.20 1.59 [(0/90)8]𝑆
C4 (F-F-F-F) 20 16 0.20 1.59 [(45/−45)8]S
D3 (C-F-F-F) 12 6 0.35 1.59 [(0/90)8]𝑆
D4 (C-F-F-F) 12 6 0.35 1.59 [(45/−45)8]S

Table 3: Elastic constants obtained by the tensile test and handbook.

Mechanical properties 𝐸1 (GPa) 𝐸2 (GPa) 𝜐12 𝐺12 (GPa) 𝐺23 (GPa)
Aluminum [12] 69 69 0.33 25.94
Glass/epoxy 40.1 8.9 0.23 4.23
Carbon/epoxy [8] 121.2 9.34 0.23 6.25 3.0

respectively. The actual elastic constants are used in all of
these three methods.

As can be seen, the natural frequencies obtained from
these three methods are very close together in average.
However, there is still natural frequencies that are not
matched well together and it can lead to creation of inherent
errors for determination of parameters of plates inversely.
Nevertheless, as it is obvious fromTable 1, natural frequencies
obtained by modeling in ABAQUS software are closer to the
experimental frequencies resulting frommodal analysis than
those obtained by modeling by ANSYS solver and Rayleigh-
Ritz method; this means more accuracy for the present
method in modeling and direct solution and finally leads to
providing a higher accuracy in identifying the parameters.

For more complete validation of the present method, sev-
eral examples were examined here, referring to the research
work of Hwang and Chang [8] to determine the natural fre-
quencies of homogenous and orthotropic plates with various
boundary conditions and stacking sequence. Dimensions,
density, and stacking sequence of these plates are available
in Table 2 and their mechanical properties are in Table 3.

Presented values for the mechanical properties of aluminum
plates are obtained from metals handbook [12] and those for
composite panels from static tests available in the literature
[8]. Natural frequencies obtained from vibration test are
shown in Table 4 and those obtained from modeling in
ABAQUS software are shown in Table 5.The composite plates
chosen from Hwang and Chang’s paper have free boundary
condition at all edges. In aluminum plate A1, boundary
conditions of all edges are also free but, in aluminumplateA2,
boundary conditions of bigger edge are clamped and other
ones are free.

Moreover, in order to include experiment in the presented
study, 4 thick and thin glass/epoxy plates are investigated
in modal laboratory (Figure 2). To reduce the errors of
production process, these plates are placed in a vacuum
condition. Dimensions, density, and stacking sequence of
these plates are shown in Table 2. Plates C3 and C4 are
laid on the foam devices (Figure 3) and because natural
frequencies are independent of position and rigidities of these
devices, boundary conditions of these plates are considered
completely free [9, 16]. For thick plates D3 and D4, one edge
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Table 4: Natural frequencies (Hz) of the aluminum, carbon/epoxy [8], and glass/epoxy plates obtained by modal test.

Frequencies 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10
Aluminum

A1 114 167 218 289 300 497
A2 39 91 237 261 337 545

Carbon/epoxy
B1 60 82 143 218 232 257
B2 111 202 290 310 370 555
C1 102 311 342 364 390 612
C2 183 370 535 870 944 1050
D1 1670 3480 3860 4400 5100 6300 8800 9900 10500 11000
D2 1240 2170 3310 5350 6880 7030 7530 8910 11340 11710

Glass/epoxy
C3 188 385 555 594 669 1076
C4 261 279 573 635 682 1002
D3 154 471 968 1626 2025 2743 3439 4658 5394 5819
D4 136 654 833 1792 2112 2410 3968 4025 5175 5824

Table 5: Natural frequencies of the aluminum and carbon/epoxy plates obtained by ABAQUS solver.

Frequencies 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10
Aluminum

A1 115 166 218 292 307 500
A2 40 91 240 266 340 556

Carbon/epoxy
B1 61 84 150 230 231 261
B2 113 216 304 314 378 560
C1 100 306 338 360 381 600
C2 181 370 529 865 938 1033
D1 1661 3478 3855 4368 5059 6243 8769 9830 1029 10959
D2 1238 2169 3315 5320 6844 7015 7561 8910 10986 11650

Figure 2: Glass/epoxy specimens for modal and tensile tests.
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Figure 3: Modal test for thin glass/epoxy plates (F-F-F-F).

Figure 4: Modal test for thick glass/epoxy plates (C-F-F-F).

is clamped and other ones are free (Figure 4). Because, for this
kind of boundary condition, frequencies of all modes shift
down, frequencies of higher mode can be investigated more
accurately. As can be seen from Figures 3 and 4, laser test is
used in this experiment to reduce experimental errors. Plates
in this study are excited by an impulse hammer equipped
with force transducer. By using a signal analyzer, frequency
response can be calculated. Natural frequencies obtained by
modal test for these plates are listed in Table 4.

In order to promote validation of the present study,
mechanical constants of these glass/epoxy plates are also
obtained by investigating tensile test specimens in laboratory

(Figure 2). Tensile test machine is attached by a force sensor
and also a strain gauge in direction of the applied force.
As it is obvious from Figure 5, two other strain gauges are
installed on the specimens in direction of 90∘ and 45∘ relative
to direction of applied force. So, by recording the amount of
strains in 3 different directions and also amount of applied
force, 4 independent constants are obtained by the tensile test
which are listed in Table 3.

7.2. Validation of CPAM Method for Determination of
Homogenous Plates (Aluminum) Constants. In order to val-
idate CPAMmethod described in the previous sections, first,
an attempt is made to determine mechanical properties of
the discussed aluminum plates in the work of Deobald and
Gibson [9]. Deobald and Gibson considered these plates
as a transversely isotropic material and tried to determine
their four elastic constants by modal analysis and Rayleigh-
Ritz method. Four elastic constants have been investigated in
their study, while aluminum plates are homogenous and it is
enough to determine their two constants; therefore, Hwang
and Chang [8] determined these two constants beside deter-
mining the four ones and compared their results with those
reported by Deobald and Gibson. Results for determination
of four elastic constants by using the presented approach
and also comparison of them with the average results of
Deobald and Gibson and Hwang and Chang’s study are
shown in Table 6. Table 7 represents comparison between the
results provided in this study for investigation of two elastic
constants and the average of corresponding ones, obtained by
Hwang and Chang.

It is obvious that considering just two elastic constants
results in a more accurate estimation and is less time-
consuming than considering four ones. So, if it is guaranteed
that experimented material is homogenous, just two elastic
constants should be determined and even if four elastic con-
stants are investigated, the results will be reliable. If two con-
stants are investigated, the following restrictions must be also
applied to the optimization algorithm; however, the CPAM
inverse method with four elastic constants can be usable for
both homogenous and orthotropic materials.

𝐸1 = 𝐸2
𝐺12 = 𝐸12 (1 + 𝜐12) .

(11)

In order to assure the accuracy of the CPAM inverse
method for determination of parameters of isotropic and
orthotropic plates with various boundary conditions and
stacking sequence, more cases are investigated by Huang
and Chang. Dimensions, density, and layout of considered
plates, their mechanical properties, and obtained natural
frequencies are presented in Tables 2, 3, and 4, respectively.
Using the frequencies given in Table 4, two and four elastic
constants are obtained by the present approach for plates A1
and A2; Table 8 shows these results in comparison with the
corresponding ones reported by Huang and Chang.

Although four constants determined for both specimens
A1 and A2 have a high accuracy like aluminum plates
investigated by Deobald and Gibson [9], characterization of
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(a) Tensile test after failure (b) Tensile test before failure

Figure 5: Tensile test done for glass/epoxy specimens.

Table 6: Four determined elastic constants for the aluminum plate.

Elastic constants 𝐸1 (GPa) 𝐸2 (GPa) 𝜐12 𝐺12 (GPa)
Reference value [12] 72.4 72.4 0.33 28.0
Deobald and Gibson’s paper [9] 69.5 (−4.0%) 69.9 (−3.5%) 0.361 (9.4%) 25.6 (−8.6%)
Hwang and Chang’s paper [8] 73.5 (1.5%) 69.1 (−4.5%) 0.34 (3%) 26 (−7.1%)
Present method 74.2 (2.5%) 73.8 (1.9%) 0.338 (2.6%) 29.6 (5.6%)

Table 7: Two determined elastic constants for the aluminum plate.

Elastic constants 𝐸1 (GPa) 𝜐12
Reference value [12] 72.4 0.33
Hwang and Chang’s paper [8] 72.2 (−0.3%) 0.356 (7.3%)
CPAMmethod 72.6 (0.35%) 0.34 (3%)

two constants is done faster and more accurately than char-
acterization of four constants. Elastic constants of specimen
A1 are obtained with higher accuracy than the ones obtained
for specimen A2. This is mainly because, for the case of free
boundary condition at all edges in comparison with other
considered boundary conditions, the natural frequencies pre-
dicted from numerical solution are closer to the experiment
frequencies.This viewpoint is exactly evident in Table 5. It can
also be because implementation of free boundary conditions
in practice (experiment) is definitely closer to the theoretical
case (finite element modeling in ABAQUS) in comparison
with the other conditions such as clamped or supported
conditions.

Elastic constants obtained from inverse solution pre-
sented in this study have higher accuracy than elastic con-
stants obtained by Huang and Chang [8] and Deobald and
Gibson [9]. As it is clear from Table 1, natural frequencies
obtained from ABAQUS are closer to the experimental
frequencies than those obtained from Rayleigh-Ritz method
and ANSYS. Also the physical constraints given in (9) cause
the optimization algorithm to generate parameters closer to

reality and therefore lead to more accurate elastic constants
determined in this study.

7.3. Validation of CPAM Method for Determination of
Orthotropic Plates (Composite) Parameters. As it has been
alreadymentioned, carbon/epoxy composite plates studied in
Hwang and Chang’s paper [8] with free boundary conditions
on their all edges as well as glass/epoxy plates tested in the
modal laboratory are considered here for characterization
of composite plates. Parameters of these plates are elastic
constants and fiber orientation angles. As mentioned before,
these parameters are obtained simultaneously and the results
of this simultaneous investigation for mechanical constants
are presented in Table 9(a) and those for stacking sequence in
Table 9(b). Specimen B1 has approximately square shape and
B2 is a rectangular plate.These plates are approximately simi-
lar to plates C1, C2, C3, and C4 in terms of dimensions.These
six specimens, as their length/thickness ratio is about more
than 50, are considered as thin plates. Dimensions of D-type
specimens are different; so, they are considered as thick plates
[8]. As can be seen from Table 9(a), elastic constants deter-
mined by the presented method for carbon/epoxy plates are
compared with those investigated by Hwang and Chang [8].
These constants are compared with results of static tensile test
(Table 3) for glass/epoxy plates and amount of error percent-
age is also calculated for them.

As seen from Table 9(a) for carbon/epoxy plates, elastic
constants obtained for square and rectangular B-type and C-
type plates are not so different from each other. So, using such
square or rectangular plates does not make much difference
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Table 8: Elastic constants determined for the aluminum specimens.

Elastic constants 𝐸1 (GPa) 𝐸2 (GPa) 𝜐12 𝐺12 (GPa)
Reference value [12] 69 69 0.33 25.94
Hwang and Chang [8]

A1 71.4 (3.5%) 64.9 (−5.9%) 0.28 (−15%) 24.67 (−4.9%)
68.8 (−0.3%) 0.32 (−3%)

A2 63.2 (−8.5%) 70.5 (2.2%) 0.365 (10.6%) 25.1 (−3.2%)
67 (−2.9%) 0.32 (−3%)

CPAMmethod
A1 70.8 (2.6%) 70.7 (2.5%) 0.36 (9%) 26.9 (3.7%)

69.14 (0.2%) 0.34 (3%)
A2 73.6 (6.7%) 71.1 (3%) 0.36 (9.1%) 26.7 (3%)

70.4 (2.1%) 0.34 (3%)

Table 9: Simultaneous determination of material constants and stacking sequence for composite specimens.
(a)

Specimens 𝐸1 (GPa) 𝐸2 (GPa) 𝜐12 𝐺12 (GPa) 𝐺23 (GPa)
Reference [12] 121.2 9.34 0.23 6.25 3.6
Hwang and Chang [8]

B1 125.5 (4%) 8.55 (−8.4%) 0.34 (47.8%) 5.4 (−13.6%)
B2 128.7 (6.2%) 8.10 (−13.2%) 0.33 (43.4%) 6.05 (−3.2%)
C1 123.7 (2%) 9.96 (6.6%) 0.35 (52.2%) 6.85 (9.6%)
C2 120.2 (−1%) 9.96 (6.6%) 0.35 (52.2%) 6.85 (9.6%)
D1 120.0 (−1%) 9.60 (2.8%) 0.21 (−8.6%) 5.70 (−8.8%) 2.9 (−19.4%)
D2 120.0 (−1%) 9.00 (−3.6%) 0.30 (30.4%) 7.10 (13.6%) 2.5 (−3.5%)

Present method
Carbon/epoxy

B1 122.3 (1%) 9.12 (−2.3%) 0.25 (8.6%) 6.43 (2.8%)
B2 123.8 (2.1%) 9.63 (3.1%) 0.26 (13.4%) 6.48 (3.7%)
C1 126.5 (4.3%) 9.47 (1.3%) 0.24 (4.3%) 6.58 (5.3%)
C2 125.7 (3.7%) 9.44 (1%) 0.25 (8.6%) 6.57 (5.1%)
D1 120.6 (−1%) 9.86 (5.5%) 0.22 (−4.3%) 5.87 (9.9%) 3.3 (−8.3%)
D2 120.2 (−1%) 9.01 (−3.5%) 0.25 (8.6%) 6.36 (1.7%) 3.4 (−5.55%)

Glass/epoxy
C3 41.7 (4%) 8.71 (−2.1%) 0.25 (8.7%) 4.41 (4.3%)
C4 41.3 (2.9%) 8.53 (−4.1%) 0.24 (4.3%) 4.38 (3.5%)
D3 39.4 (−1.7%) 9.14 (2.7%) 0.25 (8.7%) 4.18 (−1.1%) 3.3
D4 39.6 (−1.2%) 9.26 (4%) 0.26 (13%) 4.12 (−2.6%) 3.2

(b)

Thin plates Stacking sequence Thick plates Stacking sequence
B1 [0, 0, 0, 0, 0] D1 [0, 0, 0, 0, 0]
B2 [0, 0, 0, 0, 0] D2 [0, 90, 0, 90]
C1 [0, 90, 0, 90] D3 [0, 90, 0, 90]
C2 [0, 90, 0, 90] D4 [45, −45, 45, −45]
C3 [0, 90, 0, 90] G1 [0, 90, 0, 90, 0, 90]
C4 [45, −45, 45, −45] G2 [45, −45, 45, −45, 45, −45]
F1 [0, 90, 0, 90, 0, 85]
F2 [45, −45, 45, −45, 50, −45]
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in outcomes for determination of these constants. Results for
elastic constants obtained from CPAM inverse method show
a good agreement with corresponding ones obtained from
static tests available in the literature for B1, B2, C1, and C2 [8].
The differences between estimated constants from presented
inversemethod and thosemeasured from experiment cannot
necessarily just be due to error associated with vibration
modeling in ABAQUS software or PSO algorithm. Hwang
and Chang [8] also showed that such differences can be
caused by the sources of noises created by test and measure-
ment equipment. As it is explicitly evident from Table 9(a),
results obtained from the presented method are relatively
more accurate than those reported by Hwang and Chang
[8]. As it is noted previously, this fact is because the natural
frequencies predicted by ABAQUS solver are closer to the
values measured experimentally than frequencies obtained
by ANSYS. Moreover, the appropriate constraints for elastic
constants given in (9) make optimization algorithm generate
parameters that are closer to reality. For glass/epoxy plates,
amount of errors of these constants obtained for C3 and C4
(in comparison with tensile test) shows high accuracy of this
method and also experiment. There is no difference between
results of C3 and C4 whichmeans thta differences in stacking
sequence of plates do not affect accuracy of the present
method.

As it was also mentioned in previous sections, four
independent elastic constants must be predicted for thin
plates, but constant𝐺23 is considered as another independent
constant that must be investigated for thick plates D1, D2, D3,
and D4 and, therefore, the second part of (6) should be omit-
ted from algorithm code. Because high-frequency modes
affect more transverse shear deformation of plates than low
modes, the first ten frequencies presented in Table 4 are used
in error function in order to determine the elastic constants
of specimens D1, D2, D3, and D4.

Stacking sequence identification of plates B1 and B2 is
done by considering just five unknown angles. It means
that stacking sequence is assumed as [(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5)4]𝑠
in which 𝜃𝑖 (𝑖 = 1, 2, 3, 4, 5) must be determined and due
to the presence of the repetition pattern of sublaminates in
this lay-up configuration, it is enough to identify just these
five unknown angles instead of twenty ones. In order to
evaluate ability of CPAM method for identification of five
angles, these five angles are considered unknown. Similarly,
for plates C1, C2, C3, and C4, stacking sequence is considered
as [(𝜃1, 𝜃2, 𝜃3, 𝜃4)4]𝑠 such that four angles must be evaluated.
In another case of plates C2 and C4, all angles are consid-
ered to be known for identification system except 6 angles[(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6)]. Results obtained from this identifica-
tion for C2 and C4 are indicated by F1 and F2, respectively.
Results obtained from this stacking sequence identification
for plates B1, B2, C1, C2, C3, C4, F1, and F2 are presented in
Table 9(b). It can be seen from Table 9(b) that CPAMmethod
can identify accurately fibers’ angle of the plates with eight
and ten layers and provide acceptable results. However, for
cases F1 and F2, all angles are identified accurately except one
of them. This can be because of difference between experi-
mental and theoretical frequencies. It is clearly noted that,
according to the results of Tables 4 and 5, natural frequencies

obtained from experiment deviated a little from numerical
solution and there is a difference between these two types of
frequencies. As it ismentioned previously, it can cause inborn
error in the inverse solution system.

Here, five angles are considered unknown for thick plates
D1 in addition to four ones for plates D2, D3, and D4 to
investigate parameters of them and their results for stacking
sequence identification for them are presented in Table 9(b).
The way that the number of angles is chosen for both of these
plates is similar to the way explained for B-type and C-type
plates previously. In addition, symbols G1 and G2 are also
used for calculation of six angles for plates D2 and D4 (like
symbols F1 and F2 for thin plates C2 and C4). As it is clear
from Table 9(b), CPAM method can identify angles of these
eight-layer, ten-layer, and six-layer plates with high accuracy.

For thin plates, four independent elastic constants have
been considered in the identification process. But, for thick
plates D1, D2, D3, and D4, the constant𝐺23 is also considered
as fifth independent variable in the identification algorithm.
So, the second part of (6) is not used for thick plates. For
thin plates, first six natural frequencies are used in the error
function (see (7)). Since the frequencies of highermodes have
more effects on the transverse shear deformation of plates in
comparison with lower modes and also due to being more
sensitive to this effect in thicker plates, instead of considering
the first six frequencies, the first ten frequencies that are pre-
sented in Table 4 are used in construction of the error func-
tion; it can be another important reason for high accuracy
of G-type cases in comparison with F-type ones.

7.4. Sensitivity Analysis. Study of stability of an inverse
problemwhich results in smoothmovement of all parameters
to the real response of the problem is an especially important
issue that must be considered in inverse methods. The
inverse solution may diverge by moving from initial chosen
points in the solution space. It means that the difference
between measured experimental data (real responses) and
those evaluated from direct solution (simulated model) is
increased. It is essential that all parameters generated in
solution space move towards the real responses when the
process continues; under such circumstances, inversion of
solution is stable [17]. As it is defined by Hadamard [17], an
inverse problem will be termed well-posed if

(1) there is a solution for data in solution space,
(2) solution in model space (model parameters) is

unique,
(3) solution remains stable to the small changes in the

input data.

If these three tests are not satisfied, the problem will
be called ill-posed. If data are sufficient, in other words,
data space is larger than model space, the first test will be
satisfied. The proposed inverse method has used six and
ten experimental natural frequencies for determination of
the four and five elastic constants (along with fibers angles),
respectively. Also, due to capability of the inverse solution
for correct identification of the model space, the first two
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Table 10: Elastic constants determined for specimen A2 for different levels of disorder.

Material constants Free disorder 1% disorder 5% disorder 10% disorder
CPAMmethod Amount Percentage error Amount Percentage error Amount Percentage error𝐸1 (GPa) 70.4 69.2 −1.7% 68.2 −3.1% 65.9 −6.4%𝜐12 0.34 0.348 2.3% 0.364 7.2% 0.38 11.9%

Table 11: Elastic constants determined for specimen C1 for different levels of disorder.

Material parameters Free disorder 1% disorder 5% disorder 10% disorder
CPAMmethod Amount Percentage error Amount Percentage error Amount Percentage error𝐸1 (GPa) 126.5 127.6 0.88% 129.5 2.37% 132.65 4.86%𝐸2 (GPa) 9.47 9.61 1.48% 9.9 4.45% 10.35 9.3%𝜐12 0.24 0.25 4.1% 0.26 8.33% 0.28 16.66%𝐺12 (GPa) 6.58 6.69 1.62% 6.17 −6.17% 5.88 −10.63%

Stacking sequence [0, 90, 0, 90] [5, 90, 0, 90] [−10, 85, 0, 90] [−10, 80, 5, 90]

Table 12: Elastic constants determined for specimen C3 for different levels of disorder.

Material parameters Free disorder 1% disorder 5% disorder 10% disorder
CPAMmethod Amount Percentage error Amount Percentage error Amount Percentage error𝐸1 (GPa) 41.7 42 0.81% 42.6 2.23% 43.5 4.34%𝐸2 (GPa) 8.71 8.88 2.02% 9.11 4.65% 9.41 8.12%𝜐12 0.25 0.26 4% 0.27 8% 0.29 16%𝐺12 (GPa) 4.41 4.45 1.12% 4.16 −5.64% 3.85 −12.53%

Stacking sequence [0, 90, 0, 90] [−5, 85, 0, 90] [5, 80, 0, 90] [−15, 80, −10, 90]

tests are passed well and the problem is expected to be well-
posed for determination of parameters. But the third test of
Hadamard is about the stability of inverse solution. In a well-
posed problem, a small disturbance (disorder) in the model
parameters causes small disturbance in the data space and
vice versa. In other words, if a small disturbance in data
space creates a large disturbance in model space, an ill-posed
problem will be faced. One way to evaluate the stability of
inverse solution system is to directly import some disorders
to the measured experimental data and recalculate the model
parameters (elastic constants and fibers’ angles) by using
these noisy data comprising disorders (simulated data) [18].

One of the artificial disorders that may be used by inverse
problems is creating Gaussian disorder. In order to create this
disorder, a vector of some quasi-random numbers (using a
Gaussian distribution with average 𝑎 and standard deviation𝑏) is generated by Box-Muller method. For applying this
disorder to the data, the average 𝑎 is set to zero and the
standard deviation 𝑏 is obtained from following relation [18]:

𝑏 = 𝑝𝑒 × [[
1

(𝑛𝑠 (∑𝑛𝑠𝑖=1 𝜔𝑚𝑖 )2)
]
]
1/2

, (12)

where 𝜔𝑚𝑖 is 𝑖th natural frequency, 𝑛𝑠 is total number of
measured frequencies for 𝑖thmode, and𝑝𝑒 quantifies the level
of disorder; as an example, 𝑝𝑒 = 0.5 means disorder level is0.5%.Using a test by different levels of simulated disorder can
provide an appropriate criterion for the stability of the inverse
method against being polluted with disturbances.

Thus, frequencies polluted with disturbances and
obtained by adding Gaussian disorder to the measured
experimental values are utilized for simulating experimental
data that are measured with noise. If Hadamard tests for
simulating data with an appropriate level of disorder are
passed well by an inverse method, then this method can be
employed everywhere for scientific and practical usage. So,
effect of different levels of disorder (1, 5, and 10 percent)
is investigated for specimens A2, C1, C3, D1, and D3 and
consequently the obtained results are presented in Tables 10,
11, 12, 13, and 14, respectively. Ten groups of frequencies are
simulated for each level of disorder and the presented results
in these tables are the average of this ten-time operation
of inverse solution (solution must run once for each group
of simulated frequency to obtain material properties).
Percentage errors presented in these tables for different
levels of disorder are calculated in comparison with the free
disorder values obtained from the presented method (it is
not calculated in comparison with reference values for elastic
constants).

The results of Tables 10, 11, 12, 13, and 14 show that Young’s
modulus𝐸1 has the least sensitivity to disturbances and disor-
ders in the system and relatively remains with good accuracy,
even in high levels of the disorder. Young’s modulus 𝐸2 is
a little sensitive to disorders in the system; however, results
obtained for this modulus are again stable and satisfactory.
Poisson’s ratio is more sensitive than the other constants to
disorders appearing in the system because it has a smaller
value than others; so a small change and disorder in the
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Table 13: Elastic constants determined for specimen D1 for different levels of disorder.

Material parameters Free disorder 1% disorder 5% disorder 10% disorder
CPAMmethod Amount Percentage error Amount Percentage error Amount Percentage error𝐸1 (GPa) 120.6 121.5 0.76% 124.9 3.53% 127.4 5.63%𝐸2 (GPa) 9.86 9.97 1.16% 10.3 4.85% 10.4 7.41%𝜐12 0.22 0.23 4.54% 0.24 9.09% 0.26 18.18%𝐺12 (GPa) 5.87 5.78 −1.53% 5.5 −6.25% 5.39 −8.23𝐺23 (GPa) 3.3 3.45 4.68% 3.57 8.18% 3.88 17.57%

Stacking sequence [0, 0, 0, 0, 0] [5, 5, 0, 0, 0] [10, −5, 5, 0, 0] [−10, −10, 10, −5, 0]
Table 14: Elastic constants determined for specimen D3 for different levels of disorder.

Material parameters Free disorder 1% disorder 5% disorder 10% disorder
CPAMmethod Amount Percentage error Amount Percentage error Amount Percentage error𝐸1 (GPa) 39.4 39.6 0.74% 40.5 2.89% 41.7 5.94%𝐸2 (GPa) 9.14 9.25 1.28% 9.60 5.12% 9.88 8.14%𝜐12 .25 0.24 −4 % 0.27 8% 0.29 16%𝐺12 (GPa) 4.18 4.11 −1.64% 3.91 −6.34% 3.83 −8.26𝐺23 (GPa) 3.3 3.44 4.31% 3.54 7.27% 3.92 18.79%

Stacking sequence [0, 90, 0, 90] [5, 85, 0, 90] [5, 80, −5, 90] [10, 80, −10, 90]

system cause it to be changed with high percentage due to
its small amount. This factor is well evident in the results of
other constants. As it is mentioned above,𝐸2 which is smaller
than 𝐸1 has higher percentage of error (and so does modulus𝐺12 in comparison with 𝐸1). High percentage of error for
out-of-plane shear modulus 𝐺23 in thick plates D1 and D3
indicates that this material constant shows more sensitivity
than other constants to changes in natural frequencies in
transverse vibration. As it is mentioned previously, since
high-mode frequencies influence more the transverse shear
deformation than low-mode frequencies, this sensitivity in
thick plates seems reasonable. The fibers’ angles of both thin
and thick plates show acceptable resistance against disorders
and the obtained results are reasonable. As can be seen from
Tables 11, 12, 13, and 14, angles that are closer to the mid-
planes (inner stacking sequence) are more sensitive than
angles further away from them (outer stacking sequence).The
reason is that outer stacking sequence changes more stiffness
matrix (and, consequently, natural frequencies) of the plates
in comparison with inner stacking sequence. According to
the results presented in Tables 10, 11, 12, 13, and 14, because
the deviations for the estimated parameters (that are obtained
with disorders in the system) are in an acceptable domain
and also in the same range of disorders, the proposed inverse
method passes the third test of Hadamard successfully and is
appropriate to use in practical applications.

8. Conclusion

In this paper, a new combined FEM optimization method
is presented to determine the elastic constants and stacking
sequence of composite plates concurrently by using natu-
ral frequencies measured experimentally. To determine the
parameters of aluminum, carbon/epoxy, and glass/epoxy

composite plates, this rapid, convergent, and accuratemethod
is employed with applying proper constraints and choos-
ing appropriate parameters. It is shown that the proposed
method can predict well the parameters of such materials.
Furthermore, implementation of free boundary condition at
all edges of the plates in vibrational experiment leads to better
results. Although four elastic constants can be investigated
for homogenous materials, determination of two elastic
constants increases the accuracy and quickness of results. No
obvious dependence on the laminate dimensions has been
observed for determination of parameters of carbon/epoxy
and glass/epoxy composite laminates. By comparing the
results obtained through this method with those obtained by
similar methods available in the literature, the high accuracy
of the proposed method is properly confirmed. This method
can predict out-of-plane shear modulus with agreeable accu-
racy for thick orthotropic plates. Finally, by applying sensitiv-
ity analysis with three levels of disorder (1, 5, and 10 percent),
the stability of the method is evaluated and, as a result, the
proposed inverse solution shows high and good resistance
against unwanted disorders.
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