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The nonlinear dynamic equations of the drive system for movable tooth piezoelectric motor are established. Using these equations,
the chaotic vibrations of the system are investigated. The results show that chaotic vibrations occur in the movable tooth drive
system under some parameters. The average mesh stiffness, theoretical radius, and wave generator offset significantly influence the
nonlinear chaotic vibrations of the drive system of the movable tooth piezoelectric motor. The ranges for the system parameters
that lead to a motor with bad dynamics are shown.The results can be used to predict the dynamic load and optimize power density
of the proposed piezoelectric motor.

1. Introduction

Piezoelectric motors have been widely utilized in fields such
as electromechanical actuating, mechanical energy harvest-
ing, aeronautics, and astronautics [1–3]. In 1988, Kurosawa et
al. proposed a cylinder-shaped piezoelectric motor in which
the bending modes were used to increase its mechanical
output [4]. In 2002, Koc et al. proposed a piezoelectric motor
with two orthogonal bending modes of a hollow cylinder;
later the motor was used in camera of phones by Samsung
Corp [5]. What is more, in 2014, Mashimo designed a
micropiezoelectric motor in which the size of stator was only
one cubic millimeter [6].

Meanwhile, inchworm piezoelectric actuator is the spe-
cial friction type piezoelectric motor. In 2003, Mrad et al.
developed a motor that was designed based on the classical
inchworm principle, and a hybrid control method was used
for the motor [7]. In 2010, A ultracompact, zero-power mag-
netic latching piezoelectric inchworm motor was proposed.
With a 50 kHz driving frequency, precision of 5 𝜇m at a
scalable full stroke of 5mm and a speed of 10mm/s were
achieved [8]. Besides, Li et al. designed an inchworm type
rotary actuator in 2014. In the motor, six piezostacks and

flexure hinges were used to realize large rotation ranges with
high accuracy both in the forward and in backward motions.
The test results indicate that the maximum output torque was
19.6Nmm [9]. What is more, Gu and Xing proposed a rotary
inchworm piezoelectric motor. The motor has advantages
such as high positioning accuracy, large output torque, and
large travel [10].

Although the piezoelectric motors have been widely used
in modern life. However, the friction between the stator and
the rotor in piezoelectric motors limits its output torque and
operating life.

Hence, a noncontact piezoelectric motor in which the
fluid between the stator and rotorwas proposed byYamayoshi
and Hirose in 1992 [11]. In 2009, a noncontact piezoelectric
motor with two flexural standing wave vibration disks was
proposed by Yamayoshi et al., and the rotating speed of
which is up to 2000 rpm at a very low driving voltage of
3V [12]. In 2012, a noncontact piezoelectric actuator with
spherical rotors was designed by Chen et al., and a maximum
rotational speed of 521 r/min was obtained under excitation
voltage of 300V [13]. Two years later, Qiu et al. proposed a
noncontact piezoelectric rotarymotor that wasmodulated by
giant electrorheological fluid [14]. In short, the noncontact
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Figure 1: Movable tooth piezoelectric motor. (1) Piezoelectric actuator; (2) z-shaped rod; (3) swaying rod; (4)movable tooth; (5) rigid cog;(6) rotor; (7) wave generator; (8) spring.
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Figure 2: Working principle of movable tooth piezoelectric motor.

piezoelectric motors eliminated the friction between the
stator and rotor and increased the efficiency and lifetime.
However, the output torque of which is too small to satisfy
the practical need.

Therefore, the authors proposed a movable tooth piezo-
electric motor, and, hence, a larger transmission ratio and a
larger output torque of which can be obtained [15].The struc-
ture and working principle of the proposed motor are shown
in Figures 1 and 2. The motor consists of driving system
and transmission system.The driving system includes piezo-
electric actuator (1), z-shaped rod (2), swaying rod (3) and
adjusting spring (8), the transmission system contains mov-
able tooth (4), rigid cog (5), rotor (6), and wave generator (7).

The driving source of the motor consists of two piezo-
electric actuators with a phase difference of 90 degrees.When
the piezoelectric actuators are subject to cosine signals with
a positive bias and 90 degrees phase difference, they generate
an axial elongation. With z-shaped rod, the swaying rod is

pushed toward the side of the springs. When the voltage of
the exciting signals returns to zero, the swaying rod returns
to the initial position under the elastic force of the springs.
Then, the swaying rod swings back and forth in two directions
performing a continuous harmonic wave on wave generator.
Here, 30 movable teeth and 29 rigid cog teeth are used. With
the effect of movable tooth drive, the rotation can achieve
a transmission ratio of 30. Here, the movable teeth are steel
balls and its diameter is 1mm. When working, the movable
teeth locate in the groove of the rotor.The rigid cog is formed
by tooth profile equation, and the equation can be expressed
by

𝑋 = 𝑏 cos(𝜃 − arcsin[𝑎 sin ((𝑖𝑐𝑝 − 1) 𝜃)
𝑏 ])

+ 𝑎 cos (𝑖𝑐𝑝𝜃) ± 𝑟𝑝 cos𝜓,
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Figure 3: Dynamic model of drive system of movable tooth piezoelectric motor.

𝑌 = 𝑏 sin(𝜃 − arcsin[𝑎 sin ((𝑖𝑐𝑝 − 1) 𝜃)
𝑏 ])

+ 𝑎 sin (𝑖𝑐𝑝𝜃) ± 𝑟𝑝 sin𝜓,
(1)

where 𝜃 is rotational angle of the rotor;𝜓 is the angle between𝑥-axis and tangent of central trajectory of movable tooth; 𝑏 is
coefficient, 𝑏 = 𝑟𝑠 + 𝑟𝑝; 𝑟𝑠 and 𝑟𝑝 are radius of wave generator
and movable tooth.

The proposed movable tooth piezoelectric motor is a
nonlinear coupled system, and the nonlinear coupled dynam-
ics have an important influence on operating behavior of
the motor. In [16], the nonlinear free vibration of driving
system of the movable tooth piezoelectric motor was studied.
The chaotic vibrations of the drive system influence the
dynamics of the motor, which will decrease the load carrying
capacity. In [17], the chaotic vibrations of driving system for
the piezoelectric motor were investigated. The results show
that the chaotic vibrations of the driving system for the
motor occur under some parameters. However, the chaotic
vibrations characteristics of the transmission system for the
piezoelectric motor are unknown.

So, the purpose of this paper is to reveal the influence of
chaotic vibrations of the transmission system on dynamics of
the proposed motor. Using Runge-Kutta numerical method,
the nonlinear dynamic performance and the effect of average
mesh stiffness, theoretical radius, and wave generator offset
on chaotic vibrations characteristics are investigated. The
results can be used to predict the dynamic load and optimize
power density of the motor.

2. Nonlinear Dynamic Equations

Dynamic model of drive system of movable tooth piezo-
electric motor is shown in Figure 3. Figures 3(a) and 3(b)
are the relative displacement between movable teeth and
central elements (rotor, rigid cog, and wave generator) and
forces of movable tooth system, respectively. In Figure 3, the
coordinate system 𝑂𝑋𝑌 is attached to the foundation, 𝑜𝑥𝑦

to rotor 6, and 𝑜𝑖𝑥𝑖𝑦𝑖 to the 𝑖th movable tooth. Subscripts𝑠, 𝑐, 𝑟, 𝑝 represent, respectively, wave generator, rigid cog,
rotor, and movable tooth. Besides, 𝑥𝑗, 𝑦𝑗, 𝑢𝑗 represent 𝑥, 𝑦
direction and circumferential direction linear displacement
(𝑗 = 𝑠, 𝑐, 𝑟, 𝑝1, . . . , 𝑝𝑧). Wave generator offset 𝑎 is the distance
between rotor center 𝑂 and wave generator center 𝑂󸀠.

From Figure 3(a), the projection of relative displacement
from central elements to movable teeth along meshing line
can be written as

𝛿𝑠𝑖 = (𝑥𝑠 − 𝑥𝑝𝑖) cos𝜙1𝑖 + (𝑦𝑠 − 𝑦𝑝𝑖) sin𝜙1𝑖 + 𝑢𝑠 sin𝜙3𝑖,
𝛿𝑐𝑖 = (𝑥𝑐 − 𝑥𝑝𝑖) cos 𝜃𝑖 + (𝑦𝑐 − 𝑦𝑝𝑖) sin 𝜃𝑖 − 𝑢𝑐 sin𝜙𝜃𝑖,
𝛿𝑟𝑖 = (𝑥𝑝𝑖 − 𝑥𝑟) sin𝜙𝑖 + (𝑦𝑟 − 𝑦𝑝𝑖) cos𝜙𝑖 − 𝑢𝑟,

(2)

where 𝜙1𝑖 = 𝜙𝑖 + 𝜙3𝑖, 𝜙𝜃𝑖 = 𝜙𝑖 − 𝜃𝑖. 𝜃𝑖 is angular displacement
of elements, 𝜙𝑖 is the angle between line 𝑜𝑜𝑖 and coordinate
axis 𝑥 direction, 𝑜𝑜𝑛 is the line from center of the 𝑛thmovable
tooth and rotor center, 𝜙3𝑖 is the angle between line 𝑜𝑜3𝑖 and
coordinate axis 𝑥 direction, and 𝑜𝑜3𝑖 is the line from center of
the 𝑛th movable tooth and vibrator center.

From Figure 3(b), the linear dynamic equations of
drive system for movable tooth piezoelectric motor can be
expressed by

𝑚𝑠𝑥̈𝑠 + 𝑍∑
𝑖=1

𝑘𝑠𝛿𝑠𝑖 cos𝜙1𝑖 + 𝑘𝑠𝑧𝑥𝑠 = 0,

𝑚𝑠 ̈𝑦𝑠 + 𝑍∑
𝑖=1

𝑘𝑠𝛿𝑠𝑖 sin𝜙1𝑖 + 𝑘𝑠𝑧𝑦𝑠 = 0,

( 𝐼𝑠𝑟2𝑠 ) 𝑢̈𝑠 − 𝑍∑
𝑖=1

𝑘𝑠𝛿𝑠𝑖 sin𝜙3𝑖 + 𝑘𝑠𝑡𝑢𝑠 = 𝑇𝑠𝑟𝑠 ,

𝑚𝑐𝑥̈𝑐 + 𝑍∑
𝑖=1

𝑘𝑐𝛿𝑐𝑖 cos 𝜃𝑖 + 𝑘𝑐𝑧𝑥𝑐 = 0,

𝑚𝑐 ̈𝑦𝑐 + 𝑍∑
𝑖=1

𝑘𝑐𝛿𝑐𝑖 sin 𝜃𝑖 + 𝑘𝑐𝑧𝑦𝑐 = 0,
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Figure 4: Output torque changes with rotational corner of rotor.

( 𝐼𝑐𝑟2𝑐 ) 𝑢̈𝑐 − 𝑍∑
𝑖=1

𝑘𝑐𝛿𝑐𝑖 sin𝜙𝜃𝑖 + 𝑘𝑐𝑡𝑢𝑐 = 0,

𝑚𝑟𝑥̈𝑟 − 𝑍∑
𝑖=1

𝑘𝑟𝛿𝑟𝑖 sin𝜙𝑖 + 𝑘𝑟𝑧𝑥𝑟 = 0,

𝑚𝑟 ̈𝑦𝑟 + 𝑍∑
𝑖=1

𝑘𝑟𝛿𝑟𝑖 cos𝜙𝑖 + 𝑘𝑟𝑧𝑦𝑟 = 0,

( 𝐼𝑟𝑟2𝑟 ) 𝑢̈𝑟 − 𝑍∑
𝑖=1

𝑘𝑟𝛿𝑟𝑖 + 𝑘𝑟𝑡𝑢𝑟 = 0,
𝑚𝑝𝑥̈𝑝𝑖 − 𝑘𝑐𝛿𝑐𝑖 cos 𝜃𝑖 + 𝑘𝑟𝛿𝑟𝑖 sin𝜙𝑖 − 𝑘𝑠𝛿𝑠𝑖 cos𝜙1𝑖 = 0,
𝑚𝑝 ̈𝑦𝑝𝑖 − 𝑘𝑐𝛿𝑐𝑖 sin 𝜃𝑖 − 𝑘𝑟𝛿𝑟𝑖 cos𝜙𝑖 − 𝑘𝑠𝛿𝑠𝑖 sin𝜙1𝑖 = 0,

(𝐼𝑝𝑟2𝑝)(𝑢̈𝑖 + 𝑢̈𝑗) = 0,
(3)

where 𝑚𝑗, 𝐼𝑗 are mass and relative mass of each element, 𝑘𝑗,𝑘𝑗𝑧, 𝑘𝑗𝑡 represent the mesh stiffness and radial and tangent
supporting stiffness between the movable teeth and central
elements, 𝑟𝑖 is theoretical radius of elements, and 𝑇𝑠 is output
torque of wave generator.

The output torque of movable tooth piezoelectric motor
changes with rotational corner of rotor is shown in Figure 4.
In Figure 4(a), the output torque jump at 𝜃 = 𝑛 ⋅ 𝜋/435. And
in Figure 4(b), the output torque equation in single-period is
complex, applying polynomial curves to fit torque equation,
and yields

𝑇1 = 𝜏1𝜃2 + 𝜏2𝜃 + 𝜏3 (0 ≤ 𝜃 < 𝜋435) , (4)

where 𝜏1, 𝜏2, 𝜏3 are fitting coefficients.

Applying Fourier transform, (3) can be written as

𝑇 (𝜃) = 𝑎02 + 𝑛∑
𝑖=1

(𝑎𝑛 cos 2𝑛𝜋𝜃𝜏 + 𝑏𝑛 sin 2𝑛𝜋𝜃𝜏 )

= 𝑎02 + 𝑛∑
𝑖=1

(√𝑎2𝑛 + 𝑏2𝑛 sin(2𝑛𝜋𝜃𝜏 + 𝜙𝑇)) ,
(5)

where 𝑎𝑛 and 𝑏𝑛 are Fourier coefficients,

𝜙𝑇 = arctan
𝑎𝑛𝑏𝑛 ,

𝑎0 = 23𝜏2𝜏1 + 𝜏𝜏2 + 2𝜏3,
𝑎𝑛 = 2𝜏 ∫𝜏

0
𝑇1 (𝜃) cos 2𝑛𝜋𝜃𝜏 d𝜃 = 𝜏2𝜏1𝜋2𝑛2 ,

𝑏𝑛 = 2𝜏 ∫𝜏
0
𝑇1 (𝜃) sin 2𝑛𝜋𝜃𝜏 d𝜃 = −𝜏2𝜏1 + 𝜏𝜏2𝜋𝑛 .

(6)

Assume that rotational angle increment and output
torque increment of rotor are 𝛿𝜃 and 𝛿𝑇𝑟, respectively. So, the
Taylor series of 𝑇𝑟 at 𝜃 = 𝜃0 can be expressed by

𝑇𝑟 = 𝑇𝑟0 + 𝛿𝑇𝑟
= 𝑇 (𝜃0) + 𝑇󸀠 (𝜃0) 𝛿𝜃 + 12𝑇󸀠󸀠 (𝜃0) (𝛿𝜃)2 + ⋅ ⋅ ⋅
= 𝑎02 + 𝑛∑

𝑖=1

(√𝑎2𝑛 + 𝑏2𝑛 sin(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇))

+ 𝑛∑
𝑖=1

(2𝑛𝜋𝜏 √𝑎2𝑛 + 𝑏2𝑛 cos(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇))𝛿𝜃
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− 𝑛∑
𝑖=1

(4𝑛2𝜋2𝜏2 √𝑎2𝑛 + 𝑏2𝑛 sin(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)) (𝛿𝜃)2
+ ⋅ ⋅ ⋅ .

(7)

Output torque increment of rotor is

𝛿𝑇𝑟
= 𝑛∑
𝑖=1

(2𝑛𝜋𝜏 √𝑎2𝑛 + 𝑏2𝑛 cos(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇))𝛿𝜃

− 𝑛∑
𝑖=1

(4𝑛2𝜋2𝜏2 √𝑎2𝑛 + 𝑏2𝑛 sin(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)) (𝛿𝜃)2
+ ⋅ ⋅ ⋅ .

(8)

Hence, the relationship between output torque 𝑇 and
meshing force between movable tooth and rotor 𝐹𝑟𝑗 can be
written as

𝑇 = 𝑛∑
𝑗=1

𝐹𝑟𝑗𝑆𝑗 = 𝑛∑
𝑗=1

𝑘𝑟𝑆2𝑗𝛿𝜃. (9)

From (9), the nonlinear meshing stiffness between mov-
able tooth and rotor can be expressed by

𝑘𝑟 = √𝑎2𝑛 + 𝑏2𝑛
𝑆2𝑗

𝑛∑
𝑖=1

[2𝑛𝜋𝜏 cos(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)

− 4𝑛2𝜋2𝜏2 sin(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)𝛿𝜃 + ⋅ ⋅ ⋅] = √𝑎2𝑛 + 𝑏2𝑛𝑆2𝑗
⋅ 𝑛∑
𝑖=1

[𝐴𝑘 − 2𝑛𝜋𝐴𝑘𝜏 tan(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)𝛿𝜃 + ⋅ ⋅ ⋅]
= 𝑘𝑟 + Δ𝑘𝑟,

(10)

where

Δ𝑘𝑟 = −2𝑛𝜋𝐴𝑘√𝑎2𝑛 + 𝑏2𝑛
𝜏𝑆2𝑗

𝑛∑
𝑖=1

tan(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)𝛿𝜃,

𝑘𝑟 = √𝑎2𝑛 + 𝑏2𝑛𝑆2𝑗
𝑛∑
𝑖=1

𝐴𝑘,
𝐴𝑘 = 2𝑛𝜋𝜏 cos(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇) .

(11)

Following the same approach, the nonlinear meshing
stiffness betweenmovable tooth andwave generator, rigid cog
can be written as

𝑘𝑠 = 𝑘𝑠 − 2𝑛𝜋𝜏 tan(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)𝛿𝜃𝑘𝑠 = 𝑘𝑠 + Δ𝑘𝑠,
𝑘𝑐 = 𝑘𝑐 − 2𝑛𝜋𝜏 tan(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇)𝛿𝜃𝑘𝑐 = 𝑘𝑐 + Δ𝑘𝑐.

(12)

Further, substituting (10) and (12) into (3), the nonlinear
dynamic equations of movable tooth drive system can be
expressed by

Mq̈ + Kq = F + ΔF, (13)

where M, K, q are mass matrix, stiffness matrix, and gener-
alized coordinates array of the system; F and ΔF are outer
forces array and nonlinear meshing forces increment array,ΔF = 𝐵𝑘𝑢𝑖𝜀Λ; and Λ is array that contains only sine and
cosine element.

𝐵𝑘 = 2𝑛𝜋𝐴𝑘√𝑎2𝑛 + 𝑏2𝑛
𝜏𝑆2𝑗

𝑛∑
𝑖=1

tan(2𝑛𝜋𝜃0𝜏 + 𝜙𝑇) . (14)

3. Results and Discussion

Equation (13) can be resolved by using a Matlab software
tool that involves the fourth-order Runge-Kutta method.The
time step is 𝑇/100, and the total time is 400𝑇. Because the
beginning of the calculation yields unstable responses, we
discard the response of the first 300 periods and use only the
response of the final 100𝑇, where𝑇 is the period of the system
vibration. Torsional vibration behaves obviously in movable
tooth drive system, so the torsional vibration response of
central elements is selected to discuss. The parameters of the
numerical example are given in Table 1.

3.1. Influence of Average Mesh Stiffness on Chaotic Vibration.
Figure 5 gives bifurcation diagrams of torsional vibration
of movable tooth drive system for average mesh stiffness
(𝑘𝑠-av, 𝑘𝑐-av, 𝑘𝑝-av) varying from (0, 0, 0) to (1 × 108, 3 ×108, 1 × 108). Here, the bifurcation diagrams can show
sudden changes of the vibration stage when some parameters
changes. Moreover, the Poincare sectionmethod is utilized to
obtain the bifurcation diagrams. From Figure 5, the following
are known.

(1) When 𝑘𝑠-av = 1 × 107N/m, 1.7 × 107N/m, 3.8 ×
107N/m, 9.2 × 107N/m, the bifurcation diagram of wave
generator shows sudden changes of vibration state. When𝑘𝑠-av < 1 × 107N/m, the response amplitude is at stable state
and the system tends to do quasiperiodic motion.

(2) Similarly, when 𝑘𝑐-av = 6 × 103N/m, 3.3 × 107N/m,
6.7 × 107N/m, 8 × 107N/m and 𝑘𝑝-av = 2 × 103N/m, 1.2 ×
107N/m, 4 × 107N/m, 7 × 107N/m, the bifurcation diagrams
of rigid cog and rotor behave in sudden changes of vibration
state.

(3) Changes of bifurcation diagram with average mesh
stiffness of elements are similar. However, the starting point
of sudden changes is different for each central element. It is
because the dimension and natural frequency of each element
are different, and the vibration intensity varies from one
element to another. So this is the reasonwhy the starting point
of sudden changes is different.

Figure 6 shows Poincare map of torsional vibration
response for different average mesh stiffness. Poincare map
uses simple discrete mapping points to show continuous
motions. Taking one mapping point each exciting period,
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Table 1: Parameters of example system.

Parameters Rotor Rigid cog Wave generator Movable tooth
Mass (kg) 1.31 × 10−2 5.64 × 10−2 2.59 × 10−2 3.30 × 10−2

Equivalent mass (kg) 9.34 × 10−2 8.41 × 10−2 1.30 × 10−2 1.32 × 10−2

Diameter (mm) 10∼50 10∼50 10∼50 2
Radial support stiffness (N/m) 5 × 108 5 × 108 5 × 108 0
Tangent support stiffness (N/m) 0 1 × 109 0 0
Mesh stiffness (N/m) 0∼1 × 108 0∼3 × 108 0∼1 × 108 0
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Figure 5: Bifurcation with average mesh stiffness.
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Figure 6: Poincare map of torsional vibration response for different average mesh stiffness.

Poincare map of the torsional vibration of movable tooth
drive system can be obtained. Figure 7 shows power spectrum
of torsional vibration response for different average mesh
stiffness. Power spectrum shows changes of the signal power
along with exciting frequency from which chaotic motion
can be determined. Here, periodogram method is used to
calculate power spectrum of the vibration. From Figures 6
and 7, the following are known.

(1) As the average mesh stiffness changes, the vibration
displacements of central elements change. At 𝑘𝑠-av = 1 ×

107N/m, 3.8 × 107N/m, 𝑘𝑐-av = 6 × 103N/m, 6.7 × 107N/m,
and 𝑘𝑝-av = 2×103N/m, 4×107N/m, jumping of the vibration
displacement of central elements occurs. Here, a small change
of the average mesh stiffness can cause significant change of
the vibration displacements. It causes unstable vibration of
the movable tooth drive system.

(2) At 𝑘𝑠-av = 1 × 107N/m, 3.8 × 107N/m, 𝑘𝑐-av = 6 ×103N/m, 6.7×107N/m, and 𝑘𝑝-av = 2×103N/m, 4×107N/m,
a distributed point set with a certain geometry appears on
the Poincare map, the power spectra become continuous. It
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Figure 7: Power spectrum of torsional vibration response for different average mesh stiffness.

shows that chaotic vibration occurs in piezoelectric actuator.
Meanwhile, At above average mesh stiffness points, the
vibration displacements of the central elements are larger
than those for other averagemesh stiffness. Among them, the
vibration displacement of the movable tooth drive system is
the larger at 𝑘𝑠-av = 3.8 × 107N/m and 𝑘𝑝-av = 2 × 103N/m.

(3) The chaotic vibration of movable tooth drive system
occurs when average mesh stiffness 𝑘𝑗-av exceeds a specific
value. Moreover, the starting point of chaotic vibration is

different for each central element. When 𝑘𝑝-av is very small,
the chaotic vibration of rotor occurs, but the chaotic vibration
of wave generator occurs only when 𝑘𝑝-av increases larger.

In general, from chaotic vibration theory, it is known that
break of quasiperiodic torus is the main reason leading to the
chaotic vibration of the drive system. In addition, the chaotic
vibration is sensitive for the small change ofmain parameters.
Sometimes, the chaotic vibration only occurs in a moment.
Hence, the average mesh stiffness is the primary parameter
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Figure 8: Bifurcation with theoretical radius.

that affects the chaotic vibration of the piezoelectric motor.
To obtain a good dynamic performance, the average mesh
stiffness should be selected properly.

3.2. Influence of Theoretical Radius on Chaotic Vibration.
Figure 8 gives bifurcation diagrams of torsional vibration of
movable tooth drive system for theoretical radius 𝑟𝑗 varying
from 10mm to 50mm. Here, the Poincare section method is
utilized to obtain the bifurcation diagrams. Changing radius𝑟𝑗 from 10mm to 50mm, one Poincare map is calculated for
each theoretical radius. Based on it, the bifurcation diagram
of torsional vibration for theoretical radius is given. From
Figure 8, the following are known.

(1) In bifurcation diagram of wave generator, sudden
change of vibration displacement occurs at 𝑟𝑠 = 3.8mm, and

intermittent sudden changes happen during 𝑟𝑠 = 3.8∼10mm.
However, the maximum vibration displacement increases
steadily when 𝑟𝑠 > 10mm.

(2) In bifurcation diagram of rigid cog, when 𝑟𝑐 = 14mm,
major jump change of vibration displacement appears, and
small jump change occurs at 𝑟𝑐 = 6mm. Besides, the vibra-
tion displacement increases stability when 𝑟𝑐 > 14mm.

(3) In bifurcation diagram of rotor, it is similar to rigid
cog. The difference is that the major sudden change of
vibration displacement of rotor occurs at 𝑟𝑟 = 8mm, earlier
than 𝑟𝑐 = 14mm; moreover, the number of small jump
changes increases when 𝑟𝑟 < 8mm.

(4) Compared with rigid cog and rotor, the displacement
sudden change of wave generator happens when theoretical
radius is quite small. Hence, the chaotic vibration of wave
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Figure 9: Poincare map of vibration response of wave generator for different theoretical radius.

generator tends to take place earlier than rigid cog and rotor.
The reason is that the external forces apply on the wave
generator. The wave generator is easier to generate vibration.
So, in order to obtain a good performance of the piezoelectric
motor, the vibration of wave generator should be suppressed.

Figures 9 and 10, Figures 11 and 12, and Figures 13 and
14 show Poincare map and power spectrum of vibration
response of wave generator, rigid cog, and rotor for different
theoretical radius. From Figures 9–14, the following are
known.

(1) At 𝑟𝑠 = 3.7mm, a distributed point set with a ring
structure appears on the Poincare map of wave generator,
and the power spectra becomes discrete. This shows that the
wave generator exhibits a quasiperiod vibration. However, at𝑟𝑠 = 3.8mm, the power spectra become continuous. It is
shown that chaotic vibration occurs in wave generator, and𝑟𝑠 = 3.8mm becomes a demarcation point from quasiperiod
vibration to chaotic vibration. Similarly, at 𝑟𝑠 = 9mm or
20mm, the wave generator shows quasiperiod vibrations.

(2) At 𝑟𝑐 = 5.5mm, a distributed point set with a certain
geometry appears on the Poincaremap of rigid cog; the power
spectra appear to be continuous. It is shown that chaotic
vibration occurs in rigid cog. However, at 𝑟𝑐 = 6mm, the
power spectra turn into continuous, so the rigid cog changes
into quasiperiod vibration. By the same token, at 𝑟𝑐 = 13mm
and 14mm, the rigid cog appears to be chaotic vibration
and quasiperiod vibration, respectively. Besides, the power

spectra at 𝑟𝑐 > 14mm and 𝑟𝑐 = 6mm and 14mm are similar.
This shows that the chaotic vibration disappears when 𝑟𝑐 >14mm.

(3)The lawof vibration response of rotor is similar to rigid
cog. At 𝑟𝑟 = 5.2mm and 7.8mm, the system exhibits chaotic
vibration. And at 𝑟𝑟 = 5.4mm and 8mm, the quasiperiod
vibration is shown in rotor. Similarly, the chaotic vibration
disappears when 𝑟𝑟 > 8mm.

In general, the chaotic vibration sudden change occurs
when theoretical radius takes some certain value. From
chaotic vibration theory, the phenomenon that chaos attrac-
tors suddenly appear or disappear is interior crisis or bound-
ary crisis. The reason for generating of the two-type crisis
is that the collision between chaos attractors and unstable
period occurs at interior and boundary of attraction basin.
Therefore, when theoretical radius changes, the way to
chaotic vibration is paroxysmal.

3.3. Influence of Wave Generator Offset on Chaotic Vibration.
Figure 15 gives bifurcation diagrams of torsional vibration
of movable tooth drive system for wave generator offset 𝑎
varying from 0 to 1mm. Figures 16–18 show power spectrum
and time response of wave generator, rigid cog, and rotor
for different wave generator offset. From Figures 15–18, the
following are known.

(1) At 𝑎 = 0, the vibration displacement of wave generator
is very small from bifurcation diagram and time response
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Figure 10: Power spectrum of vibration response of wave generator for different theoretical radius.
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Figure 11: Poincare map of vibration response of rigid cog for different theoretical radius.
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Figure 12: Power spectrum of vibration response of rigid cog for different theoretical radius.
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Figure 13: Poincare map of vibration response of rotor for different theoretical radius.
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Figure 14: Power spectrum of vibration response of rotor for different theoretical radius.
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Figure 16: Power spectrum and time response of wave generator for different wave generator offset.

graph, and a single discrete peak appears in power spectrum.
This shows that wave generator exhibits a period-one vibra-
tion. At 𝑎 = 0.04mm, a sudden change appears in bifurcation
diagram, aperiodic amplitude jumping vibrations occur on
the time response of wave generator, and power spectrum
becomes continuous. It is shown that the chaotic vibration
takes place on wave generator. However, displacement of
chaotic vibration behaves invariably when 𝑎 > 0.3mm.

(2) At 𝑎 = 0, 0.06mm and 0.16mm, sudden changes
occur in bifurcation diagram of rigid cog. The power spec-
trum behaves continuously, and the time response appears
aperiodic. It shows that initial stage chaotic vibration occurs
on rigid cog. For the length ranges of [(0, 0.06), (0.06, 0.16)],
the stable quasiperiod vibration of rigid cog occurs.

(3) From Figure 15(d), vibration displacement of rotor
does not change with 𝑎. At 𝑎 = 0 and 0.1mm, the rotor
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Figure 17: Power spectrum and time response of rigid cog for different wave generator offset.

exhibits quasiperiod vibration accompanied with chaotic
vibration.

In short, from chaotic vibration theory, the main way
to chaotic vibration is paroxysmal. But for the rotor, break
of quasiperiodic torus is another reason for the chaotic
vibration.Hence, wave generator offset 𝑎 has also a significant
influence on the chaotic vibration of the movable tooth drive
system. To obtain a good performance of the piezoelectric
motor, the wave generator offset should be chosen properly
as well.

4. Conclusions

In this paper, the nonlinear dynamic performance and
chaotic vibration of transmission system for movable tooth
piezoelectric motor are investigated. The results show the
following.

(1)The average mesh stiffness has an significant influence
on the chaotic vibration of the transmission system. At 𝑘𝑠-av =1 × 107N/m, 3.8 × 107N/m, 𝑘𝑐-av = 6 × 103N/m, 6.7 ×107N/m, and 𝑘𝑝-av = 2 × 103N/m, 4 × 107N/m, the chaotic
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Figure 18: Power spectrum and time response of rotor for different wave generator offset.

vibration occurs in the transmission system of the mo-
tor.

(2) As theoretical radius changes, the wave generator
exhibits chaotic vibration when 𝑟𝑠 is quite small.

(3) The influence of wave generator offset 𝑎 on chaotic
vibration of wave generator is most obvious.
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