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This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary
boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by
laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible
function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The
exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy
and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the
literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed,
which can serve as the benchmark data for the future research technique.

1. Introduction

Rectangular plates as the common structural components
have been extensively used in various engineering fields
such as aerospace, military, and marine industries. Thus,
the knowledge of vibration characteristics of the rectangular
plates is of particular importance for the predesign of the
engineering structures. In general, the analysis for the vibra-
tion problem of the rectangular plates is based on the clas-
sical thin plate theory [1] and two-dimensional approximate
theories [2–5], that is, first-order shear deformation theory
and higher-order deformation theory. However, the present
results indicate that the two-dimensional plate theories have
shortcomings [6–8]. For the classical thin plate theory, it
neglects the effect of the transverse shear deformation by the
simplified assumption that the normal to the undeformed
mid-plane remains normal after deformation. For case of
the two-dimensional approximate theories, the shear factor
strongly relies on the boundary condition and they often
need more hardware resources to obtain proper accuracy

solution. Based on the above analysis, the three-dimensional
elastic theory is presented to overcome the weakness of the
two-dimensional plate theories, which does not rely on any
hypotheses or deserve any numerical precision and can be
used to solve the vibration problem of thick rectangular
plates.

Over the past several decades, the three-dimensional
vibration analyses of thick rectangular plates have been inves-
tigated by many researchers. Srinivas et al. [9] analyzed the
free vibration of thick rectangular plates by the direct method
based on the three-dimensional linear, small deformation
theory. In their study, the boundary condition is limited
to the all simply supported case on four edges. Cheung
and Chakrabarti [10] used the finite layer method which is
an extension of the well-known finite element method to
study the free vibration of rectangular plates with various
classical boundary conditions on the basis of the three-
dimensional linear, small deformation theory. Hutchinson
and Zillmer [11] used the series solution method to analyze
the free vibration of a completely free parallelepiped. Fromme
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and Leissa [12] extended the Fourier method to investigate
the free vibration of the rectangular parallelepiped with
simple classical boundary conditions based on the three-
dimensional elasticity theory. On the basis of the three-
dimensional elasticity theory and differential quadrature
method (DQM), Malik and Bert [13], Liew and Teo [14], and
Liew et al. [15] investigated the free vibration characteristics
of rectangular plates with some selected classical boundary
conditions. Leissa and Zhang [16] employed the Ritz method
to study the three-dimensional problem of determining the
free vibration frequencies and mode shapes for a rectangular
parallelepiped which is completely fixed on one face and
free on other five faces. In this research, the displacements
of the rectangular parallelepiped are assumed in the form
of algebraic polynomials. Also, Liew et al. [17–19] applied
the Ritz method and the three-dimensional elastic theory to
establish the continuum three-dimensional Ritz formulation
to study the vibration characteristic of the thick rectangular
plates with classical boundary conditions. The orthogonally
generated polynomial functions are used as admissible func-
tions to make analysis in such plates. Itakura [20] adopted
the three-dimensional theory to study the free vibration of
rectangular thick plate with classical boundary conditions.
Lim et al. [21, 22] presented a concise formulation and
an efficient method of solution to study the free vibration
of thick, shear deformable plates with classical boundary
conditions. Zhou et al. [23] used the Chebyshev polynomials
as admissible functions and applied Ritz method to study
the three-dimensional vibration of rectangular plates with
classical boundary conditions.

By means of the review of the above references, most of
the studies for the vibration problem of the thick rectangular
plates do not consider the elastic foundations. However,
a lot of engineering problems boil down to a rectangular
plate on elastic foundations, such as footing of buildings,
pavement of roads, and base of heavy machines. In the
practical application, the Pasternakmodel (also referred to as
the two-parameter model) [24–26] is widely used to describe
themechanical behavior of the foundation, in which the well-
known Winkler model [27] is a special case. In addition,
the boundary condition may not always be classical case
in reality, and a variety of possible boundary conditions
including classical boundary conditions, elastic boundary
restraints, and the combinations of two or more conditions
may be encountered [6–8, 28–47]. Based on the open pub-
lished paper, we can know that merely Zhou et al. [48,
49] extended the Chebyshev-Ritz method to study the free
vibration characteristics of rectangular thick plates and thick
circular plates resting on elastic foundations, respectively.
However, it should be noted that the boundary conditions
are limited to the FFFF, SSSS, and CCCC classical boundary
conditions. There is no work reported on the free vibration
behavior of rectangular thick plates on Pasternak foundation
with general boundary conditions. Thus, to present a new
three-dimensional exact solution for the free vibrations of
rectangular thick plates with arbitrary boundary conditions
is of crucial importance.

In this paper, the first known three-dimensional vibra-
tion characteristic of rectangular thick plates on Pasternak

foundation with arbitrary boundary conditions is stud-
ied. The theoretical formulations are based on the three-
dimensional linear, small-strain elasticity theory. The mod-
ified Fourier series are chosen as the basis functions of the
admissible function of the thick plates in the Ritz method.
The arbitrary boundary conditions are obtained by laying
out three types of liner springs on all edges. The excellent
accuracy and reliability of current solutions are demonstrated
by numerical examples and comparisons with the results
available in the literature. In addition, the influence of the
foundation coefficients as well as the boundary restraint
parameters are also analyzed, which can serve as the bench-
mark data for the future research technique.

2. Theoretical Formulations

Consider a rectangular thick plate on Pasternak foundation
with arbitrary boundary conditions as shown in Figure 1. A
Cartesian coordinate (𝑥, 𝑦, 𝑧) is also shown in the Figure 1,
which will be used in the analysis. 𝑈, 𝑉, and 𝑊 denote
the displacement components in 𝑥, 𝑦, and 𝑧 directions.
Length, width, and thickness of the rectangular thick plates
are assumed as 𝑎, 𝑏, and ℎ, respectively. As shown in Figure 1,
three groups of linear restraint springs are arranged at all
sides of the rectangular thick plates to separately simulate the
arbitrary boundary conditions. The undersurface of the plate
is continuously rested on an elastic foundation represented
by the Winkler/Pasternak model, in which the Winkler and
shear stiffness are denoted by 𝐾𝑤 and 𝐾𝑠, respectively, seen
from Figure 1.

According to the three-dimensional elasticity theory,
the strain components of rectangular thick plates can be
expressed as

𝜀𝑥 = 𝜕𝑢𝜕𝑥 ,𝜀𝑦 = 𝜕V𝜕𝑦 ,
𝜀𝑧 = 𝜕𝑤𝜕𝑧 ,

(1a)

𝛾𝑥𝑦 = 𝜕V𝜕𝑥 + 𝜕𝑢𝜕𝑦 ,
𝛾𝑥𝑧 = 𝜕𝑤𝜕𝑥 + 𝜕𝑢𝜕𝑧 ,
𝛾𝑦𝑧 = 𝜕V𝜕𝑧 + 𝜕𝑤𝜕𝑦 .

(1b)

Based on Hooke’s law, the corresponding stress-strain
relations of the rectangular thick plates can be written as𝜎𝑥 = (Υ + 2Θ) 𝜀𝑥 + Υ𝜀𝑦 + Υ𝜀𝑧,𝜎𝑦 = Υ𝜀𝑥 + (Υ + 2Θ) 𝜀𝑦 + Υ𝜀𝑧,𝜎𝑧 = Υ𝜀𝑥 + Υ𝜀𝑦 + (Υ + 2Θ) 𝜀𝑧,𝜏𝑥𝑦 = Θ𝛾𝑥𝑦,



Shock and Vibration 3

z

x

y

a

b

ℎ

W

U V

Ground

Middle surface

KS: shearing layer
KW: Winkler layer

Figure 1: The rectangular thick plates in contact with elastic foundation with general elastic boundary conditions.

𝜏𝑥𝑧 = Θ𝛾𝑥𝑧,𝜏𝑦𝑧 = Θ𝛾𝑦𝑧,
(2)

where Υ and Θ are as follows:

Υ = 𝐸𝜇(1 + 𝜇) (1 − 2𝜇) ,
Θ = 𝐸2 (1 + 𝜇) (3)

in which 𝐸 and 𝜇 are Young’s modulus and Poisson’s ratio
of the rectangular thick plates. The strain energy 𝑈 for
rectangular thick plates is given in integral form by

𝑈 = 12 ∫∫∫𝑉 {𝜀𝑥𝜎𝑥 + 𝜀𝑦𝜎𝑦 + 𝜀𝑧𝜎𝑧 + 𝛾𝑥𝑦𝜏𝑥𝑦 + 𝛾𝑥𝑧𝜏𝑥𝑧+ 𝛾𝑦𝑧𝜏𝑦𝑧} 𝑑𝑥 𝑑𝑦 𝑑𝑧
= 12 ∫𝑎0 ∫𝑏0 ∫ℎ0 {(Υ + 2Θ) [(𝜕𝑢𝜕𝑥)2 + (𝜕V𝜕𝑦)2 + (𝜕𝑤𝜕𝑧 )2]
+ 2Υ[𝜕𝑢𝜕𝑥 𝜕V𝜕𝑦 + 𝜕V𝜕𝑦 𝜕𝑤𝜕𝑧 + 𝜕𝑤𝜕𝑧 𝜕𝑢𝜕𝑥]
+ 2Θ[𝜕𝑢𝜕𝑦 𝜕V𝜕𝑥 + 𝜕V𝜕𝑧 𝜕𝑤𝜕𝑦 + 𝜕𝑤𝜕𝑥 𝜕𝑢𝜕𝑧]
+ Θ[(𝜕𝑢𝜕𝑦)2 + ( 𝜕V𝜕𝑥)2 + (𝜕𝑤𝜕𝑥 )2
+(𝜕𝑢𝜕𝑧)2 + (𝜕V𝜕𝑧)2 + (𝜕𝑤𝜕𝑦 )2]}𝑑𝑥𝑑𝑦𝑑𝑧.

(4)

The kinetic energy 𝑇 of the rectangular thick plates is
depicted as

𝑇 = 12
⋅ 𝜌∫𝑎
0
∫𝑏
0
∫ℎ
0
[(𝜕𝑢𝜕𝑡 )2 + (𝜕V𝜕𝑡 )2 + (𝜕𝑤𝜕𝑡 )2]𝑑𝑥𝑑𝑦𝑑𝑧. (5)

As mentioned before, in this paper, the boundary con-
ditions of the rectangular thick plates are the arbitrary

boundary condition and obtained by laying out three types
of linear springs on all the edges. Thus, the corresponding
boundary conditions can be described as𝜎𝑥 + 𝑘𝑢𝑥0𝑢 = 0,𝜏𝑥𝑦 + 𝑘V𝑥0V = 0,𝜏𝑥𝑧 + 𝑘𝑤𝑥0𝑤 = 0 𝑥 = 0𝜎𝑥 − 𝑘𝑢𝑥1𝑢 = 0,𝜏𝑥𝑦 − 𝑘V𝑥1V = 0,𝜏𝑥𝑧 − 𝑘𝑤𝑥1𝑤 = 0 𝑥 = 𝑎𝜏𝑥𝑦 + 𝑘𝑢𝑦0𝑢 = 0,𝜎𝑦 + 𝑘V𝑦0V = 0,𝜏𝑦𝑧 + 𝑘𝑤𝜃0𝑤 = 0 𝑦 = 0𝜏𝑥𝑦 − 𝑘𝑢𝑦𝑏𝑢 = 0,𝜎𝑦 − 𝑘V𝑦𝑏V = 0,𝜏𝑦𝑧 − 𝑘𝑤𝑦𝑏𝑤 = 0 𝑦 = 𝑏

(6)

and the potential energy P stored in the boundary springs can
be expressed as

𝑃 = 12 ∫𝑏0 ∫ℎ0 {[𝑘𝑢𝑥0𝑢2 + 𝑘V𝑥0V2 + 𝑘𝑤𝑥0𝑤2]𝑥=0+ [𝑘𝑢𝑥𝑎𝑢2 + 𝑘V𝑥𝑎V2 + 𝑘𝑤𝑥𝑎𝑤2]𝑥=𝑎} 𝑑𝑦 𝑑𝑧
+ 12 ∫𝑎0 ∫ℎ0 {[𝑘𝑢𝑦0𝑢2 + 𝑘V𝑦0V2 + 𝑘𝑤𝑦0𝑤2]𝑦=0+ [𝑘𝑢𝑦1𝑢2 + 𝑘V𝑦1V2 + 𝑘𝑤𝑦1𝑤2]𝑦=𝑏} 𝑑𝑥 𝑑𝑧.

(7)
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The potential energy of the elastic foundation (𝑈𝑝𝑓) is
given as

𝑈𝑝𝑓 = 12
⋅ ∫𝑎
0
∫𝑏
0
(𝐾𝑤𝑤2 + 𝐾𝑠 (𝜕𝑤𝜕𝑥 )2 + 𝐾𝑠 (𝜕𝑤𝜕𝑦 )2)𝑑𝑥𝑑𝑦, (8)

where Kw and Ks are the stiffness of the Winkler layer and
shear layer, respectively.

The total energy functional for the rectangular thick
plates can be expressed as

∏ = 𝑇 − 𝑈 − 𝑃 − 𝑈𝑝𝑓. (9)

For the free vibration of the plate, the displacement
components can be expressed in terms of the displacement
amplitude functions:

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑈 (𝑥, 𝑦, 𝑧) 𝑒𝑖𝜔𝑡, (10a)

V (𝑥, 𝑦, 𝑧, 𝑡) = 𝑉 (𝑥, 𝑦, 𝑧) 𝑒𝑖𝜔𝑡, (10b)𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑊 (𝑥, 𝑦, 𝑧) 𝑒𝑖𝜔𝑡, (10c)

where𝜔 denotes the eigenfrequency of the plate and 𝑖 = √−1.
Each of the displacement amplitude functions 𝑈(𝑥, 𝑦, 𝑧),𝑉(𝑥, 𝑦, 𝑧), and 𝑊(𝑥, 𝑦, 𝑧) is expressed, respectively, in the

form of a three-dimensional (3D) Fourier cosine series
supplemented with closed-form auxiliary functions intro-
duced to eliminate all the relevant discontinuities of the
displacement function and its derivatives at the edges; that
is, 𝑈 (𝑥, 𝑦, 𝑧)

= ∞∑
𝑚=0

∞∑
𝑛=0

∞∑
𝑞=0

𝐴𝑚𝑛𝑞 cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑛𝑦𝑦 cos 𝜆𝑞𝑧𝑧
+ ∞∑
𝑚=0

∞∑
𝑛=0

(𝑎1𝑚𝑛𝜁1𝑧 (𝑧) + 𝑎2𝑚𝑛𝜁2𝑧 (𝑧)) cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑛𝑦𝑦
+ ∞∑
𝑚=0

∞∑
𝑞=0

(𝑎3𝑚𝑞𝜁1𝑦 (𝑦) + 𝑎4𝑚𝑞𝜁2𝑦 (𝑦)) cos 𝜆𝑚𝑥𝑥
⋅ cos 𝜆𝑞𝑧𝑧 + ∞∑

𝑛=0

∞∑
𝑞=0

(𝑎5𝑛𝑞𝜁1𝑥 (𝑥) + 𝑎6𝑛𝑞𝜁2𝑥 (𝑥)) cos 𝜆𝑛𝑦𝑦
⋅ cos 𝜆𝑞𝑧𝑧,𝑉 (𝑥, 𝑦, 𝑧)
= ∞∑
𝑚=0

∞∑
𝑛=0

∞∑
𝑞=0

𝐵𝑚𝑛𝑞 cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑛𝑦𝑦 cos 𝜆𝑞𝑧𝑧
+ ∞∑
𝑚=0

∞∑
𝑛=0

(𝑏1𝑚𝑛𝜁1𝑧 (𝑧) + 𝑏2𝑚𝑛𝜁2𝑧 (𝑧)) cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑛𝑦𝑦

+ ∞∑
𝑚=0

∞∑
𝑞=0

(𝑏3𝑚𝑞𝜁1𝑦 (𝑦) + 𝑏4𝑚𝑞𝜁2𝑦 (𝑦)) cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑞𝑧𝑧
+ ∞∑
𝑛=0

∞∑
𝑞=0

(𝑏5𝑛𝑞𝜁1𝑥 (𝑥) + 𝑏6𝑛𝑞𝜁2𝑥 (𝑥)) cos 𝜆𝑛𝑦𝑦 cos 𝜆𝑞𝑧𝑧,
𝑊 (𝑥, 𝑦, 𝑧)

= ∞∑
𝑚=0

∞∑
𝑛=0

∞∑
𝑞=0

𝐶𝑚𝑛𝑞 cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑛𝑦𝑦 cos 𝜆𝑞𝑧𝑧
+ ∞∑
𝑚=0

∞∑
𝑛=0

(𝑐1𝑚𝑛𝜁1𝑧 (𝑧) + 𝑐2𝑚𝑛𝜁2𝑧 (𝑧)) cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑛𝑦𝑦
+ ∞∑
𝑚=0

∞∑
𝑞=0

(𝑐3𝑚𝑞𝜁1𝑦 (𝑦) + 𝑐4𝑚𝑞𝜁2𝑦 (𝑦)) cos 𝜆𝑚𝑥𝑥 cos 𝜆𝑞𝑧𝑧
+ ∞∑
𝑛=0

∞∑
𝑞=0

(𝑐5𝑛𝑞𝜁1𝑥 (𝑥) + 𝑐6𝑛𝑞𝜁2𝑥 (𝑥)) cos 𝜆𝑛𝑦𝑦 cos 𝜆𝑞𝑧𝑧,
(11)

where 𝜆𝑚𝑥 = 𝑚𝜋/𝑎, 𝜆𝑛𝑦 = 𝑛𝜋/𝑏, 𝜆𝑞𝑧 = 𝑞𝜋/ℎ, and𝐴𝑚𝑛𝑞, 𝐵𝑚𝑛𝑞, and 𝐶𝑚𝑛𝑞 are the Fourier coefficients of three-
dimensional Fourier series expansions for the displacements
functions, respectively. a1mn, a

2
mn, a

3
mq, a

4
mq, a

5
nq, a

6
nq, b

1
mn, b

2
mn,

b3mq, b
4
mq, b

5
nq, b

6
nq, c

1
mn, c

2
mn, c

3
mq, c

4
mq, c

5
nq, and c6nq are the

supplemented coefficients of the auxiliary functions. The
closed-form auxiliary functions are given as follows:

𝜁1𝑥 (𝑥) = 𝑎2𝜋 sin(𝜋𝑥2𝑎 ) + 𝑎2𝜋 sin(3𝜋𝑥2𝑎 ) ,
𝜁2𝑥 (𝑥) = − 𝑎2𝜋 cos(𝜋𝑥2𝑎 ) + 𝑎2𝜋 cos(3𝜋𝑥2𝑎 ) , (12a)

𝜁1𝑦 (𝑦) = 𝑏2𝜋 sin(𝜋𝑦2𝑏 ) + 𝑏2𝜋 sin(3𝜋𝑦2𝑏 ) ,
𝜁2𝑦 (𝑦) = − 𝑏2𝜋 cos(𝜋𝑦2𝑏 ) + 𝑏2𝜋 cos(3𝜋𝑦2𝑏 ) , (12b)

𝜁1𝑧 (𝑧) = ℎ2𝜋 sin(𝜋𝑧2ℎ ) + 𝜙2𝜋 sin(3𝜋𝑧2ℎ ) ,
𝜁2𝑧 (𝑧) = − ℎ2𝜋 cos(𝜋𝑧2ℎ ) + ℎ2𝜋 cos(3𝜋𝑧2ℎ ) . (12c)

It is easy to verify that

𝜁1𝑥 (0) = 𝜁1𝑥 (𝑎) = 𝜁1𝑥󸀠 (𝑎) = 0, 𝜁1𝑥󸀠 (0) = 1, (13a)

𝜁2𝑥 (0) = 𝜁2𝑥 (𝑎) = 𝜁2𝑥󸀠 (0) = 0, 𝜁2𝑥󸀠 (𝑎) = 1, (13b)

𝜁1𝑦 (0) = 𝜁1𝑦 (𝑏) = 𝜁1𝑦󸀠 (𝑏) = 0, 𝜁1𝑦󸀠 (0) = 1, (13c)

𝜁2𝑦 (0) = 𝜁2𝑦 (𝑏) = 𝜁2𝑦󸀠 (0) = 0, 𝜁2𝑦󸀠 (𝑏) = 1, (13d)

𝜁1𝑧 (0) = 𝜁1𝑧 (ℎ) = 𝜁1𝑧󸀠 (ℎ) = 0, 𝜁1𝑧󸀠 (0) = 1, (13e)
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Figure 2: Convergence of frequency parametersΩ for a thick rectangular plate with different boundary conditions: (a) CCCC; (b) SSSS; (c)
FFFF.

𝜁2𝑧 (0) = 𝜁2𝑧 (ℎ) = 𝜁2𝑧󸀠 (0) = 0, 𝜁2𝑧󸀠 (ℎ) = 1. (13f)

Substituting (11) into (9) and then minimizing the func-
tional ∏ with respect to the coefficients of the admissible
functions, that is𝜕∏𝜕𝜄 = 0,

𝜄 = 𝐴𝑢𝑚𝑛, 𝑎𝑙𝑚, 𝑏𝑙𝑛, 𝐵V
𝑚𝑛, 𝑐𝑙𝑚, 𝑑𝑙𝑛, . . . , 𝐸𝑦𝑚𝑛, 𝑔𝑙𝑚, ℎ𝑙𝑛, (14)

the equations of motion for the rectangular plates can be
yielded and are given in the matrix form:

([[[[
[Κ𝑢𝑢] [Κ𝑢V] [Κ𝑢𝑤][Κ𝑢V]𝑇 [ΚVV] [ΚV𝑤][Κ𝑢𝑤]𝑇 [ΚV𝑤]𝑇 [Κ𝑤𝑤]

]]]]
− 𝜔2 [[[[

[M𝑢𝑢] 0 0
0 [MVV] 0
0 0 [M𝑤𝑤]

]]]])
{{{{{
{A}{B}{C}

}}}}} = 0,
(15)

where [K𝑖𝑗] and [M𝑖𝑗] (𝑖, 𝑗 = 𝑢, V, 𝑤), respectively, represent
the stiffness submatrix and mass submatrix. The column
vectors of the unknown coefficients {A}, {B}, and {C} are
shown as follows:

A = {𝐴000, . . . , 𝐴𝑚𝑛𝑞, . . . , 𝐴𝑀𝑁𝑄, . . . , 𝑎100, . . . , 𝑎1𝑀𝑁, 𝑎200,. . . , 𝑎2𝑀𝑁, 𝑎300, . . . , 𝑎3𝑀𝑄, 𝑎400, . . . , 𝑎4𝑀𝑄, 𝑎500, . . . , 𝑎5𝑁𝑄, 𝑎600,. . . , 𝑎6𝑁𝑄} ,
(16a)

B = {𝐵000, . . . , 𝐵𝑚𝑛𝑞, . . . , 𝐵𝑀𝑁𝑄, . . . , 𝑏100, . . . , 𝑏1𝑀𝑁, 𝑏200, . . . ,𝑏2𝑀𝑁, 𝑏300, . . . , 𝑏3𝑀𝑄, 𝑏400, . . . , 𝑏4𝑀𝑄, 𝑏500, . . . , 𝑏5𝑁𝑄, 𝑏600, . . . ,𝑏6𝑁𝑄} ,
(16b)

C = {𝐶000, . . . , 𝐶𝑚𝑛𝑞, . . . , 𝐶𝑀𝑁𝑄, . . . , 𝑐100, . . . , 𝑐1𝑀𝑁, 𝑐200, . . . ,𝑐2𝑀𝑁, 𝑐300, . . . , 𝑐3𝑀𝑄, 𝑐400, . . . , 𝑐4𝑀𝑄, 𝑐500, . . . , 𝑐5𝑁𝑄, 𝑐600, . . . , 𝑐6𝑁𝑄} . (16c)
The exact natural frequencies and mode shapes of the

rectangular plates can be easily obtained by solving (15).

3. Numerical Results and Discussion

Since the natural frequencies and mode shapes are obtained
from the Ritz method and the number of terms of the
admissible functions being chosen as infinity is unrealistic in
the actual calculations, thus, it is very important to make the
convergence study of the present method to understand the
convergence rate and the accuracy of the method. For gen-
eral purposes in the future, the nondimensional foundation
parameters and frequency parameters are used for numerical
results as follows:𝐾𝑊 = 𝐾𝑤×𝑎4/𝐷,𝐾𝑆 = 𝐾𝑠×𝑎2/𝐷, andΩ =𝜔𝑏2(𝜌ℎ/𝐷)1/2, where 𝐷 = 𝐸ℎ3/12/(1 − 𝜇2). Figure 2 shows
the convergence studies of the first four frequency parameters
for a rectangular plate with CFCF boundary condition and
different truncated numbers 𝑀, 𝑁, and 𝑄. The geometrical
dimensions of the plates are used: 𝑎 = 1m, 𝑏 = 2m,
and ℎ = 0.5m. The foundation coefficients are 𝐾𝑊 = 10
and 𝐾𝑆 = 10. It is observed that the proposed method has
fast convergence and good stability. In view of the excellent
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Table 1: Comparison of the frequency parameters Ω for square thick plate with different boundary conditions.

BC ℎ/𝑎 Method Mode number
1 2 3 4 5 6 7

SSSS
0.2

Reference [20] 17.528 32.192 32.192 38.502 38.502 45.526 55.843
Reference [17] 17.526 32.192 32.192 38.483 38.483 45.526 55.787

Present 17.525 32.184 32.184 38.480 38.480 45.526 55.781

0.5 Reference [17] 12.426 12.877 12.877 18.210 23.007 23.007 25.753
Present 12.424 12.874 12.874 18.210 23.005 23.005 25.747

CCCC
0.2

Reference [20] 26.974 47.253 47.253 61.944 61.944 63.570 72.568
Reference [17] 26.906 47.103 47.103 61.917 61.917 63.348 72.286

Present 26.966 47.192 47.192 61.949 61.949 63.453 72.404

0.5 Reference [17] 15.294 24.078 24.078 24.823 24.823 29.377 31.210
Present 15.305 24.088 24.088 24.826 24.826 29.373 31.522

FFFF
0.2 Reference [18] 11.710 17.433 21.252 27.647 27.647 40.191 42.776

Present 11.719 17.436 21.254 27.659 27.659 40.192 42.776

0.5 Reference [18] 8.780 12.515 14.962 16.073 17.030 17.030 17.631
Present 8.781 12.515 14.962 16.073 17.030 17.030 17.633

Table 2: Comparison of the frequency parameters Ω for thick rectangular plate with different foundation coefficients.

BC ℎ/𝑎 𝐾𝑊 𝐾𝑆 Method Mode number
1 2 3 4

SSSS

0.01

100 10
Reference [48] 2.6551 5.5717 5.5717 8.5406
Reference [50] 2.6551 5.5718 5.5718 8.5405

Present 2.6551 5.5717 5.5717 8.5404

500 10
Reference [48] 3.3398 5.9285 5.9285 8.7775
Reference [50] 3.3400 5.9287 5.9287 8.7775

Present 3.3400 5.9287 5.9287 8.7774

0.1

200 10
Reference [48] 2.7756 5.2954 5.2954 7.7279
Reference [50] 2.7842 5.3043 5.3043 7.7287

Present 2.7837 5.3013 5.3013 7.7215

1000 10
Reference [48] 3.9566 5.9757 5.9757 8.1954
Reference [50] 3.9805 6.0078 6.0078 8.2214

Present 3.9802 6.0052 6.0052 8.2148

CCCC 0.015 1390.2 166.83
Reference [48] 8.1675 12.8230 12.8230 16.8330
Reference [50] 8.1375 12.8980 12.8980 16.9320

Present 8.1397 12.8995 12.8995 13.9349

numerical behavior of the current solution, the truncation
numbers will be simply set as 𝑀 = 𝑁 = 𝑄 = 12 in
Figure 2.

Next, the comparison study will be carried out by
the present method and other methods presented in the
existing publications. Table 1 shows the comparison of the
first seven frequency parameters Ω for a square thick plate
with SSSS, CCCC, and FFFF boundary conditions. In this
example, the thick plate is without considering the foun-
dation parameters. In order to check the present method,
the results are compared with other published solutions by
using the 3D Ritz method with general orthogonal poly-
nomials [17], the 3D Ritz method with general orthogonal
polynomials using the Gram–Schmidt process [18], and the
3D Ritz method with simple algebraic polynomials [20].
From the comparison, we can see a consistent agreement of

the results taken from the current method and referential
data.

Furthermore, the rectangular thick plate with various
boundary conditions and elastic foundations is examined.
Comparison is presented in Table 2. In this table, first four
frequency parameters Ω are obtained for various boundary
conditions and foundation coefficients according to the
present formulation and compared with those given by
Zhou et al. [48] and Omurtag et al. [50] based on different
numericalmethods and elastic theories. It is observed that the
frequencies are in excellent agreement with those obtained
from FEM, which verifies the accuracy and efficiency of the
proposed model.

From Figure 2 and Tables 1 and 2, we can draw the
conclusion that the present approach has good convergence
and excellent accuracy and reliability to study the vibration
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Figure 3: The corresponding fundamental mode shapes of Table 3.

analysis of rectangular thick plates on Pasternak foundation
with arbitrary boundary conditions.Thus, based on the com-
parison studies, the first known results of rectangular thick
plates rested on Pasternak foundation with various elastic
boundary conditions as well as foundation coefficients are
presented inTable 3.The geometrical dimensions of the plates
are the same as those in Figure 1. The boundary condition is
clamped at 𝑦 = constants and 𝑥 = 0; and the elastic restraints
on the 𝑥 = 𝑎 are uniformly (𝑘𝑢 = 𝑘V = 𝑘𝑤) changed from
104 to 1020. From the table, first we can see that the frequency
parameters gradually increase as the elastic restraints increase
and then they almost keep unchanged while the stiffness is
larger than 1018. In order to enhance the understanding of the

phenomenon, the corresponding fundamental mode shapes
of Table 3 are depicted in Figure 3. From Figure 3, it is directly
seen that the boundary elastic restraints have a significant
effect on the vibration behavior of the rectangular thick
plate.

Lastly, the influence of the foundation coefficients of
the Pasternak foundation on the rectangular thick plates
subjected to various boundary conditions is reported for
the first time, as shown in Figure 4. The elastic boundary
condition is defined as 𝑘𝑤 = 𝑘V = 𝑘𝑤 = 1010. The
geometric parameters are the same as Figure 2. It can be easily
obtained that, regardless of the boundary conditions of the
rectangular thick plates, there exists a certain range of the
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Table 3: The first frequency parameters Ω for rectangular thick plate with different elastic boundary condition and foundation coefficient.

𝑘𝑢 = 𝑘V = 𝑘𝑤 (𝐾𝑊, 𝐾𝑆) = (10, 10) (𝐾𝑊, 𝐾𝑆) = (100, 10)
1 2 3 4 1 2 3 4

104 3.0361 4.8053 4.9183 5.1693 3.3626 4.9027 4.9199 5.1746
106 3.0361 4.8053 4.9183 5.1693 3.3627 4.9027 4.9200 5.1746
108 3.0381 4.8064 4.9191 5.1701 3.3645 4.9038 4.9208 5.1754
1010 3.2188 4.9129 5.0023 5.2473 3.5330 5.0040 5.0084 5.2530
1012 4.9669 6.2598 6.8032 7.8515 5.1577 6.3305 6.8046 7.8518
1014 5.4078 6.5994 7.1711 8.3654 5.5706 6.6627 7.1724 8.3907
1016 5.4959 6.6322 7.1760 8.3794 5.6004 6.6785 7.1770 8.3992
1018 5.5041 6.6356 7.1761 8.3808 5.6037 6.6801 7.1771 8.4000
1020 5.5041 6.6356 7.1761 8.3808 5.6037 6.6801 7.1771 8.4000
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Figure 4: Variation of the frequency parameters Ω versus the elastic foundation coefficients for rectangular thick plates with different
boundary conditions.

elastic foundation coefficients during which the frequency
parameter Ω increases and out of which the influence on
frequency parameterΩ is negligible.

4. Conclusions

In this paper, a unified method is developed for the vibra-
tion analysis of the rectangular thick plates on Pasternak
foundation with arbitrary boundary conditions based on

the linear, small-strain 3D elasticity theory. The method
combines the advantages of the Ritzmethod and themodified
Fourier expansion. Under the current framework, regardless
of boundary conditions, each displacement function of the
plate is expanded as the superposition of a standard three-
dimensional cosine Fourier series and several auxiliary func-
tions are introduced to remove any potential discontinu-
ousness of the original rectangular plates unknown and its
derivatives at the edges. The good convergence and excellent
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accuracy and reliability are checked and validated by the
comparison with the results presented by other contributors.
New results for free vibration of rectangular thick plates with
elastic boundary conditions are presented,whichmay be used
for benchmarking of researchers in the field. In addition, by
means of the influences of elastic restrain parameters and
foundation coefficients on free vibration characteristic of the
rectangular thick plates, we can know that the frequency
parameters increase rapidly as the restraint parameters and
foundation coefficients increase in the certain range.
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vibration analysis of Kirchhoff plates resting on elastic foun-
dation by mixed finite element formulation based on Gâteaux
differential,” International Journal for Numerical Methods in
Engineering, vol. 40, no. 2, pp. 295–317, 1997.



Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


