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Wemodel the fluid flowwithin the crack as one-dimensional flowand assume that the flow is laminar; the fluid is incompressible and
accounts for the time-dependent rate of crack opening.Here,we discretise the flowequation byfinite volumemethods.The extended
finite element methods are used for solving solid medium with crack under dynamic loads. Having constructed the approximation
of dynamic extended finite element methods, the derivation of governing equation for dynamic extended finite element methods is
presented. The implicit time algorithm is elaborated for the time descritisation of dominant equation. In addition, the interaction
integral method is given for evaluating stress intensity factors. Then, the coupling model for modelling hydraulic fracture can be
established by the extended finite element methods and the finite volume methods. We compare our present numerical results
with our experimental results for verifying the proposed model. Finally, we investigate the water pressure distribution along crack
surface and the effect of water pressure distribution on the fracture property.

1. Introduction

For hydraulic concrete structures, the external dynamic
loads, such as strong earthquake, may cause cracking of
these structures. The cracking of the structure causes the
fluid injecting into the solid medium. The injecting fluid
produces fluid pressures along crack surface and affects
the deformation of the solid medium and the fracture
propagation again. Many researchers [1–4] contributed to
the study of hydraulic fracturing problem and these efforts
led to a progressive recognition of the multiscale nature of
the hydraulic fracturing problem. In simulation of hydraulic
fracturing, these important aspects need to be specially
concerned, namely, the flow of viscous fracturing fluid, the
creation of fracture surfaces in the solid, the formation of
a lag between the crack edge and the fluid front, the elastic
deformation of the solid, and the leak-off of fluid from the
fracture.

Some researches (2005) [5] showed that, in hydraulic
structures, the water could penetrate an initiated crack, and

the crack opening velocity, the magnitude of the opening,
and crack mouth pressure had an important effect on the
water pressure distribution. Boone and Ingraffea (1990) [6]
proposed a finite difference approximation for modelling
fluid flow along the fracture. Wu and Wong (2014) [7] incor-
porated the cubic law into the numerical manifold method
for modelling fluid flow through fractures. Lisjak et al. (2017)
[8] assumed that the fluid flow in discontinuous, porous
rock masses was a viscous, compressible fluid, and the flow
was explicitly solved based on a cubic law approximation.
The fluid flow along a propagating crack surface satisfies
some natural flow law. Some hypotheses [9–12], such as
linear distribution of the water pressure along crack case, full
reservoir pressure case, for evaluating water pressure along a
propagating crack cannot reflect accurately the variation of
the water pressure along new developing cracks in structures.

In recent years, many numerical methods have been
developed for hydraulic fracturing modeling, such as finite
element methods [13, 14], generalized finite element methods
[15], finite-discrete element methods [8], numerical manifold
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methods [7], boundary element methods [16], discontinuous
deformation analysis methods [17], and extended finite ele-
ment methods (XFEM). The XFEM shows huge advantage
for dealing with discontinuous problems [18–20] and also
hydraulic fracture problems. The XFEMmesh does not need
to align with a discontinuity. For moving discontinuities,
such as crack propagation problem, it does not need to carry
on remeshing. Mesh refinement is also unnecessary around
a discontinuous feature. The first simulation of hydraulic
fracture in XFEM was due to Réthoré et al. [21] and they
developed a two-scale numerical model for fluid flow in
fractured, deforming porous media. In 2009, Lecampion [22]
adopted the XFEM for investigating the solution of hydraulic
fracture problems. Gordeliy and Peirce (2013) [23] proposed
coupled algorithms that used the XFEM to solve the elastic
crack component of the elastohydrodynamic equations that
governed the propagation of hydraulic fractures in an elastic
medium. Subsequently, they (2013) [24] proposed two novel
XFEM schemes for modeling fluid driven fractures both of
which exploited an implicit level set algorithm for locating
the singular free boundary that occurred when the fluid
and fracture fronts coalesce. Their excellent works provide
mathematical proof for using XFEM to solve hydraulic
fracturing problems. Khoei et al. [25] simulated the crack
growth in saturated porous media using XFEM. Taleghani
[26] also developed an XFEM code to simulate fracture
propagation, initiation, and intersection, and the presented
coupled fluid flow-fracture mechanics simulations extended
available modeling efforts and provided a unified framework
for evaluating fracture design parameters and their con-
sequences. Salimzadeh and Khalili (2015) [27] proposed a
three-phase hydromechanical model for hydraulic fracturing
and they handled discontinuity by using XFEM while cohe-
sive crack model was used as fracturing criterion. Wang et
al. (2015) [28] proposed a hybrid approach combining the
XFEM and the finite volume method to simulate hydraulic
fracturing in concrete dams. Our current study concerns
developing a model for cracking modeling of structure
under water pressure along a propagating crack surface and
dynamic loads. Additionally, we will compare our present
numerical results with our experimental results for verifying
the proposed model.

This paper is organized as follows. Section 2 introduces
some governing equations for elastic dynamic responses of
the solid medium and fluid flow pressure within the crack.
Section 3 discusses numerical approximation of extended
finite element methods and finite volume methods of the
flow along a crack. Section 4 gives a numerical example
for investigating the water pressure distribution along crack
surface and the effect of water pressure distribution on the
fracture property. We also compare our present numerical
results with our experimental results. Section 5 summarises
the major conclusions that can be drawn from this study.

2. Governing Equations

2.1. Elastic Dynamic Responses of the Solid Medium. The
boundary of a bounded domain, Ω ∈ 𝑅2, is partitioned
into three parts: the displacement boundary (Γu), the traction

boundary (Γt), and the crack boundary (Γc) that is traction-
free. The elastodynamic basic equation is expressed as∇ ⋅ 𝜎 + b = 𝜌ü in Ω,

𝜀 = ∇su in Ω,
𝜎 = D : 𝜀 in Ω (1)

with the following boundary and initial conditions:

u (x, 𝑡) = u (x, 𝑡) on Γt,
𝜎 ⋅ n = t on Γu,
𝜎 ⋅ n = 0 on Γc,

u (x, 𝑡 = 0) = u (0) ,
u̇ (x, 𝑡 = 0) = u̇ (0) ,

(2)

where 𝜎 is the Cauchy stress tensor, b is the body force
vector, 𝜀 is the strain tensor, 𝜌 is the material density, ü is
the acceleration field vector, ∇s is the symmetric part of the
gradient operator, u is the displacement field vector, D is
the constitutive matrix, n is the unit outward normal vector
to the crack surface, u is the prescribed displacement, t is
the external traction vector, u(0) is the initial displacement
vector, and u̇(0) is the initial velocity vector.
2.2. Fluid Flow Pressure within the Crack. In this paper, we
model the fluid flow within the crack as one-dimensional
flow. Assume that the flow is laminar and the fluid is
incompressible. But here we account for the time-dependent
rate of crack opening.

The conservation of the incompressible fluid in the
fracture can be expressed as [6]∇ ⋅ q + 𝑤̇ + 𝑔 = 0, (3)

where∇ is the divergence operator defined in x direction; q is
the fluid flux; 𝑤̇ is the time-dependent rate of crack opening,
and 𝑤̇ = 𝜕𝑤/𝜕𝑡; and 𝑔 is the fluid loss into the solid media,
and here we ignore the fluid loss; that is, 𝑔 = 0.

Additionally, Poiseuille’s law [29] gives the following
expression:

q = − 𝑤312𝜇∇𝑝, (4)

where𝑤 is the crack opening; 𝜇 is the fluid viscosity; and 𝑝 is
the fluid pressure.

The pressure boundary conditions at the fluid injection
point in the crack are 𝑝 (𝑥 = 0, 𝑡) = 𝑝0, (5)

where 𝑝0 is the pressure of the fluid injection point.
In the fluid lag zone [30],𝑝 (𝑥, 𝑡) < 0 (𝑙t ≤ 𝑥 ≤ 𝑙) . (6)

According to the fluid pressure continuity, lag condition (6)
provides the net-pressure boundary condition at the fluid
front 𝑥 = 𝑙t for the fluid flow equations (3).
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Figure 1: A strategy for enriched elements and nodes.

3. Numerical Approximation

3.1. XFEM for Dynamic Problems

3.1.1. XFEM Approximation. The XFEM approximation for
2D cracked domains can be written as

uh (x) = ∑
𝑖∈𝐼

𝑁𝑖 (x) u𝑖 + ∑
𝑖∈𝐼∗abs

𝑁∗𝑖 (x) [𝐻 (x) − 𝐻 (x𝑖)] a𝑖
+ ∑
𝑖∈𝐼∗br

𝑁∗𝑖 (x) 4∑
𝑗=1

[𝐹𝑗 (x) − 𝐹𝑗 (x𝑖)] b𝑗𝑖 , (7)

where 𝑁𝑖(x) is the standard finite element shape function of
node 𝑖; u𝑖 is the unknown of the standard finite element part
at node 𝑖; 𝐼 is the set of all nodes in the domain; and𝑁∗𝑖 (x) is
the partition of unity functions, and the function can hold the
same form with the standard finite element shape function
but is not necessary; a𝑖 and b𝑗𝑖 are the nodal enriched degree
of freedom; 𝐼∗abs and 𝐼∗br are the set of enrichment nodes shown
in Figure 1, and 𝐼∗abs, 𝐼∗br ⊂ 𝐼.

For these elements that are cut completely by a crack,
the nodes of these elements that are the nodal subset 𝐼∗abs
are enriched by Heaviside function 𝐻(x). The definition of
Heaviside function𝐻(x) follows:

𝐻(x) = {{{
+1, (x − x∗) ⋅ n > 0−1, (x − x∗) ⋅ n < 0, (8)

where x∗ is the projection of a point x on the crack surface; n
is the unit outward normal to the crack surface.

For these elements that are cut partially by a crack, the
nodes of these elements that are the nodal subset 𝐼∗br are

enriched by the crack tip enrichment function 𝐹𝑗(x). The
definition of the crack tip enrichment function 𝐹𝑗(x) follows:
𝐹𝑗=1,2,3,4 (𝑟, 𝜃)
= {√𝑟 sin 𝜃2 , √𝑟 cos 𝜃2 , √𝑟 sin 𝜃 sin 𝜃2 , √𝑟 sin 𝜃 cos 𝜃2} , (9)

where 𝑟 and 𝜃 are the local crack tip coordinate system.

3.1.2. Discrete Equations. By the principle of virtual work, the
following discrete equations can be obtained:

Müh + Kuh = f , (10)

where K (M) is the global stiffness (mass) matrix assembled
by the element stiffness (mass) matrix; f is the global external
force vector; uh and üh denote the vector of nodal parameters
(which include the classic degrees of freedom, u, and the
enrichment degrees of freedom, a, b) and its second time
derivative, respectively; and

uh = {u, a, b}T ,
üh = {ü, ä, b̈}T . (11)

The element stiffness matrix is expressed by

ke = [[[[
kuu kua kub

kau kaa kab

kbu kba kbb

]]]]
, (12)
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where

k𝑟𝑠 = ∫
Ωe
(B𝑟)T DB𝑠dΩ

= ∫
Ωe
[B𝑟1 B𝑟2 B𝑟3 B𝑟4]T D [B𝑠1 B𝑠2 B𝑠3 B𝑠4] dΩ

(𝑟, 𝑠 = u, a, b) ,
Bu
𝑖 = [[[[

𝜕𝑁𝑖𝜕𝑥 0 𝜕𝑁𝑖𝜕𝑦0 𝜕𝑁𝑖𝜕𝑦 𝜕𝑁𝑖𝜕𝑥
]]]]
T

, 𝑖 = 1, 2, 3, 4,

Ba
𝑖 = [[[[

𝜕 (𝑁∗𝑖 󵱰𝐻)𝜕𝑥 0 𝜕 (𝑁∗𝑖 󵱰𝐻)𝜕𝑦0 𝜕 (𝑁∗𝑖 󵱰𝐻)𝜕𝑦 𝜕 (𝑁∗𝑖 󵱰𝐻)𝜕𝑥
]]]]
T

,
󵱰𝐻 = 𝐻 (x) − 𝐻 (x𝑖) , 𝑖 = 1, 2, 3, 4,

Bb
𝑖 = [Bb1

𝑖 Bb2
𝑖 Bb3
𝑖 Bb4
𝑖 ] ,

Bb𝑗
𝑖 = [[[[[

𝜕 (𝑁∗𝑖 󵱰𝐹𝑗)𝜕𝑥 0 𝜕 (𝑁∗𝑖 󵱰𝐹𝑗)𝜕𝑦
0 𝜕 (𝑁∗𝑖 󵱰𝐹𝑗)𝜕𝑦 𝜕 (𝑁∗𝑖 󵱰𝐹𝑗)𝜕𝑥

]]]]]

T

,
󵱰𝐹𝑗 = 𝐹𝑗 (x) − 𝐹𝑗 (x𝑖) , 𝑖, 𝑗 = 1, 2, 3, 4.

(13)

The element mass matrix is expressed by

me = [[[[
muu mua mub

mau maa mab

mbu mba mbb

]]]]
, (14)

where

muu = ∫
Ωe
𝜌 (N)T N 𝑑Ω,

mua = [mau]T = ∫
Ωe
𝜌 (N)T (N󵱰𝐻)𝑑Ω,

mub
𝑗 = [mbu

𝑗 ]T = ∫
Ωe
𝜌 (N)T (N 󵱰𝐹𝑗) 𝑑Ω,

maa = ∫
Ωe
𝜌 (N󵱰𝐻)T (N󵱰𝐻)𝑑Ω,

mab
𝑗 = [mba

𝑗 ]T = ∫
Ωe
𝜌 (N󵱰𝐻)T (N 󵱰𝐹𝑗) 𝑑Ω,

mbb
𝑗𝑘 = ∫

Ωe
𝜌 (N 󵱰𝐹𝑗)T (N 󵱰𝐹𝑘) 𝑑Ω,

𝑗, 𝑘 = 1, 2, 3, 4,

N = [N1 N2 N3 N4] ,
N𝑖 = [𝑁𝑖 00 𝑁𝑖] , 𝑖 = 1, 2, 3, 4.

(15)

The element external force vector is

fe = [fu fa fb]T , (16)

where

fu = ∫
Ωe

NTb dΩ + ∫
Γet

NTt dΓ,
fa = ∫

Ωe
(N∗󵱰H)T b dΩ + ∫

Γet

(N∗󵱰H)T t dΓ
+ ∫
Γec

(N∗󵱰H)T (p ⋅ n) dΓ,
fb𝑗 = ∫

Ωe
(N∗󵱰F𝑗)T b dΩ + ∫

Γet

(N∗󵱰F𝑗)T t dΓ
+ ∫
Γec

(N∗󵱰F𝑗)T (p ⋅ n) dΓ, 𝑗 = 1, 2, 3, 4.

(17)

3.1.3. Time Integration Schemes. The following time-integra-
tion scheme is used in dynamic analysis. Equation (10) for a
specific time 𝑡 + Δ𝑡 is expressed as

Mü𝑡+Δ𝑡 + Ku𝑡+Δ𝑡 = f𝑡+Δ𝑡,
u̇𝑡+Δ𝑡 = u̇𝑡 + (1 − 𝛾) ü𝑡Δ𝑡 + 𝛾ü𝑡+Δ𝑡Δ𝑡,
u𝑡+Δ𝑡 = u𝑡 + u̇𝑡Δ𝑡 + (12 − 𝛽) ü𝑡Δ𝑡2+ 𝛽ü𝑡+Δ𝑡Δ𝑡2,

(18)

where u𝑡, u̇𝑡, and ü𝑡 are the displacement, velocity, and
acceleration vectors at time 𝑡, respectively;Δ𝑡 is the time step;𝛾 and 𝛽 are parameters that can be determined to obtain
integration accuracy and stability, with

𝛽 = 14 (1 − 𝛼)2 ,
𝛾 = 12 − 𝛼,

−13 ≤ 𝛼 ≤ 0.
(19)

Here, referring to the software ABAQUS (ABAQUS
Theory Manual, Version 6.9), we set parameter 𝛼 = −0.05
to remove the slight high frequency noise in the solution
without having any significant effect on themeaningful, lower
frequency response.

The following steps describe the prescribe integration
method procedure, while neglecting the damping effects.
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Figure 2: Element partitioning method for these elements containing a discontinuous interface.

(I) Initial Calculations

(i) Form stiffness matrix K, and mass matrixM.
(ii) Give the initial displacement vector u0 and the initial

velocity vector u̇0. Then, calculate the initial accelera-
tion vector ü0 by the equilibrium equation:

Mü0 + Ku0 = f0. (20)

(iii) Select a time step Δ𝑡 and the parameters 𝛽 and 𝛾.
Here, 𝛽 = 0.275625 and 𝛾 = 0.55 are used. Calculate
integration constants:

𝑐0 = 1𝛽Δ𝑡2 ,
𝑐1 = 𝛾𝛽Δ𝑡 ,
𝑐2 = 1𝛽Δ𝑡 ,
𝑐3 = 12𝛽 − 1,
𝑐4 = 𝛾𝛽 − 1,
𝑐5 = Δ𝑡 ( 𝛾2𝛽 − 1) ,
𝑐6 = Δ𝑡 (1 − 𝛾) ,𝑐7 = 𝛾Δ𝑡.

(21)

(iv) Form the effective stiffness matrix K̃:

K̃ = K + 𝑐0M. (22)

(II) For Each Time Step

(i) Calculate effective loads f̃𝑡+Δ𝑡 at time 𝑡 + Δ𝑡:
f̃𝑡+Δ𝑡 = f𝑡+Δ𝑡 +M (𝑐0u𝑡 + 𝑐2u̇𝑡 + 𝑐3ü𝑡) . (23)

(ii) Solve for the displacement vector u𝑡+Δ𝑡 at time 𝑡 + Δ𝑡:
K̃u𝑡+Δ𝑡 = f̃𝑡+Δ𝑡. (24)

(iii) Calculate the acceleration vector ü𝑡+Δ𝑡 and the veloc-
ity vector u̇𝑡+Δ𝑡 at time 𝑡 + Δ𝑡:

ü𝑡+Δ𝑡 = 𝑐0 (u𝑡+Δ𝑡 − u𝑡) − 𝑐2u̇𝑡 − 𝑐3ü𝑡,
u̇𝑡+Δ𝑡 = u̇𝑡 + 𝑐6ü𝑡 + 𝑐7ü𝑡+Δ𝑡. (25)

3.1.4. Integration Schemes at theDiscontinuities. For these ele-
ments partitioned by a crack, the ordinary Gauss quadrature
rules cannot accurately calculate the integration of enrich-
ment function. An alternative method that is dividing the
enrichment element into a set of subpolygons usually needs
to be used [31]. Additionally, some simplified numerical
integration methods also had been proposed in literatures.
Ventura [32] conducted an important first attempt to sim-
plify numerical integration. His work is based on replac-
ing nonpolynomial functions by “equivalent” polynomials.
However, the proposed method is exact for triangular and
tetrahedral elements, but for quadrilateral elements, when
the opposite sides are not parallel, additional approximation
is introduced. Another method is strain smoothing [33].
In strain smoothing, the surface integration is transformed
into equivalent boundary integration by use of the Green-
Ostrogradsky theorem. Natarajan et al. [34] used the new
numerical integration proposed for arbitrary polygons [35] to
integrate the discontinuous and singular integrands appear-
ing in the XFEM stiffness matrix. In this paper, the method
subdividing the element into subquads is used. For these
elements partitioned completely or partially by a crack, the
method subdividing these elements into subquads is shown
in Figure 2.

To solve the element stiffness or mass matrix of these
enrichment elements, each subquad element is, respectively,
transferred into the standard element (−1, 1) × (−1, 1) by the
method of the coordinate transformation.TheGauss integra-
tion points are distributed into each subquad. To improve the
accuracy of crack tip integration, 15 Gauss integration points
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Figure 3: Elements selection for the interaction integral near the
crack tip.

are distributed into each subquad for elements containing
crack tip. The numerical integration is firstly performed in
each subquad element domain, and then the element stiffness
or mass matrix of the enrichment element can be obtained by
assembling the numerical integration results of each subquad
element. It is worthwhile pointing out that these subquads are
only necessary for integration purposes. They do not provide
additional degrees of freedom for the global stiffness and
mass matrix.

3.1.5. Interaction Integral for Computing Stress Intensity Fac-
tors. Take field 1, (𝜎(1)𝑖𝑗 , 𝜀(1)𝑖𝑗 , 𝑢(1)𝑖 ), for the actual field, and
field 2, (𝜎(2)𝑖𝑗 , 𝜀(2)𝑖𝑗 , 𝑢(2)𝑖 ), for the auxiliary field. The actual field
is obtained from numerical solutions computed by using
XFEM, and the auxiliary field refers to the asymptotic results
of linear elastic fracture dynamics [36]. The interaction
integral equation which is used to evaluate the stress intensity
factors is as follows:

𝐼(1,2) = ∫
A
(𝜎(1)𝑖𝑗 𝑢(2)𝑖,1 + 𝜎(2)𝑖𝑗 𝑢(1)𝑖,1 − 12𝜎(1)𝑖𝑘 𝜀(2)𝑖𝑘 𝛿1𝑗) 𝑞,𝑗𝑑Ω

+ ∫
Γd+∪Γd−

(12𝜎(1)𝑖𝑘 𝜀(2)𝑖𝑘 𝛿1𝑗 − 𝜎(1)𝑖𝑗 𝑢(2)𝑖,1 − 𝜎(2)𝑖𝑗 𝑢(1)𝑖,1 )
⋅ 𝑞𝑛𝑗dΓ.

(26)

The second term in (26) denotes the contribution of
traction along crack interface. As shown in Figure 3, A
denotes the circle domain with centre at the crack tip and the
radius 𝑅; Γd+ ∪ Γd− consists of a interface starting from the
external integration radius to crack tip in a two-way manner.𝑅 is defined as 𝑅 = 𝑟kℎe, (27)

where ℎe is the crack-tip element size; 𝑟k is a user-specified
scalar multiple; 𝑞 is the weight function; 𝑞 = 1 if the node lies
in A; and 𝑞 = 0 if the node lies outside of A or lies on the

boundary of A. The weight function 𝑞 in the interior of an
element is obtained by the interpolation of the nodal value:

𝑞 = 4∑
𝑖=1

𝑁𝑖𝑞𝑖. (28)

Additionally, the interaction integral relates to the stress
intensity factors through the relation:

𝑀(1,2) = 2𝐸∗ [𝐾I𝐾aux
I + 𝐾II𝐾aux

II ] , (29)

where 𝐾aux
I and 𝐾aux

II are the local auxiliary stress intensity
factors for the auxiliary fields, respectively; and the definition
of 𝐸∗ is

𝐸∗ = {{{{{
𝐸 (plane stress)𝐸1 − ]2

(plane strain) . (30)

By setting 𝐾aux
I = 1 and 𝐾aux

II = 0 as well as 𝑀(1,2) =𝑀(1,2)1 , we obtain the expression of𝐾I as follows:

𝐾I = 𝐸∗𝑀(1,2)12 . (31)

Similarly, we obtain the equality

𝐾II = 𝐸∗𝑀(1,2)22 (32)

by setting𝐾aux
I = 0 and𝐾aux

II = 1 and𝑀(1,2) = 𝑀(1,2)2 .

3.1.6. Crack Propagation Criteria. The maximum circumfer-
ential stress criterion [37] is used to determine the crack
growth direction. Once 𝐾I and 𝐾II are calculated, the crite-
rion gives the following crack growth direction:

𝜃c = 2 tan−1 14 ( 𝐾I𝐾II
± √( 𝐾I𝐾II

)2 + 8) , (33)

where 𝜃c is the crack growth angle in the local crack-tip
coordinate system. If 𝐾II = 0, then 𝜃c = 0. It should also
be noted that if 𝐾II > 0, the crack growth angle 𝜃c < 0, and
if 𝐾II < 0, then 𝜃c > 0. Sukumar and Prévost (2003) [38]
proposed a computationally more amenable expression for𝜃c:

𝜃c = 2 tan−1( −2𝐾II/𝐾I1 + √1 + 8 (𝐾II/𝐾I)2). (34)

The equivalent stress intensity factor then follows:

𝐾e = cos
𝜃c2 (𝐾Icos

2 𝜃c2 − 1.5𝐾II sin 𝜃c) . (35)

The double-K criterion [39] is used for determining
crack propagation. The crack propagation processes can be
expressed as follows:



Shock and Vibration 7

Control volume

2 3

Nodes

Q

L1 L2

ew
P

p0 pt
1

Figure 4: Dividing fluid domain into discrete control volumes.

(i) If 𝐾e < 𝐾ini
Ic , the crack does not propagate.

(ii) When𝐾e = 𝐾ini
Ic , the performed crack begins to crack

initially.
(iii) When 𝐾ini

Ic < 𝐾e < 𝐾un
Ic , the propagating crack

develops steadily.
(iv) When𝐾e ≥ 𝐾un

Ic , the crack propagates unsteadily.𝐾ini
Ic is the initiation toughness; 𝐾un

Ic is the unstable fracture
toughness.

3.2. Finite Volume Methods of the Flow along a Crack. Con-
sidering (3) and (4) and ignoring the fluid loss into the solid
media, the following expression can be obtained:𝜕𝜕𝑥 (𝑘𝜕𝑝𝜕𝑥) + 𝜕𝑤𝜕𝑡 = 0, (36)

where

𝑘 = − 𝑤312𝜇 . (37)

3.2.1. Discretised Equation. Equation (36) is one-dimensional
steady state diffusion equation. Here, we discretise the equa-
tion by finite volume methods. The first step in the finite
volume method is to divide the domain into discrete control
volumes. As shown in Figure 4, we place a number of nodes
in the fluid space between𝑃 and𝑄.The boundaries of control
volumes are positioned midway between adjacent nodes.
Thus, each node is surrounded by a control volume.The west
side face of the control volume is referred to by “w” and the
east side face of the control volume is referred to by “e.”

Integrating the governing equation in (36) over a control
volume, the following discretised equation can be obtained.

∫
Δ𝑉

𝜕𝜕𝑥 (𝑘𝜕𝑝𝜕𝑥) d𝑉 + ∫
Δ𝑉

𝜕𝑤𝜕𝑡 d𝑉
= ∮
𝐴
𝑛(𝑘𝜕𝑝𝜕𝑥) d𝐴 + ∫

Δ𝑉

𝜕𝑤𝜕𝑡 d𝑉
= (𝑘𝐴𝜕𝑝𝜕𝑥)e

− (𝑘𝐴𝜕𝑝𝜕𝑥)w
+ ∫
Δ𝑉

𝜕𝑤𝜕𝑡 d𝑉
= (𝑘𝐴𝜕𝑝𝜕𝑥)e

− (𝑘𝐴𝜕𝑝𝜕𝑥)w
+ Δ𝑤Δ𝑡 ⋅ Δ𝑉 = 0,

(38)

where𝐴 is the cross-sectional area of the control volume face;Δ𝑉 is the volume; 𝑤 is the average crack opening width over
a control volume.

According to (36) and observing a typical finite volume
element with node 2, we can obtain

(𝑘𝐴𝜕𝑝𝜕𝑥)e
− (𝑘𝐴𝜕𝑝𝜕𝑥)w

= −Δ𝑤2Δ𝑡 ⋅ Δ𝑉2. (39)

To calculate gradients at the control volume faces, a linear
approximate distribution of pressure is considered here. So
(39) yields

𝑘e𝐴e
𝑝3 − 𝑝2𝐿2 − 𝑘w𝐴w

𝑝2 − 𝑝1𝐿1 = −Δ𝑤2Δ𝑡 ⋅ Δ𝑉2. (40)

𝑘w, 𝐴w, 𝑘e, and 𝐴e can be obtained by the way of linearly
interpolated values, and

𝑘w = 𝛿w𝑘1 + (1 − 𝛿w) 𝑘2,𝐴w = 𝛿w𝐴1 + (1 − 𝛿w) 𝐴2,
𝛿w = 𝐿w2𝐿1 ,𝑘e = 𝛿e𝑘2 + (1 − 𝛿e) 𝑘3,𝐴e = 𝛿e𝐴2 + (1 − 𝛿e) 𝐴3,
𝛿e = 𝐿e3𝐿2 .

(41)

Equation (40) can be rewritten as

𝑎21𝑝1 + 𝑎22𝑝2 + 𝑎23𝑝3 = 𝑏2, (42)

where

𝑎21 = 𝑘w𝐴w𝐿1 ,
𝑎22 = −𝑘w𝐴w𝐿1 − 𝑘e𝐴e𝐿2 ,
𝑎23 = 𝑘e𝐴e𝐿2 ,
𝑏2 = −Δ𝑤2Δ𝑡 ⋅ Δ𝑉2.

(43)

3.2.2. Boundary Conditions

(I) Boundary Conditions for Fluid Injection Point. As shown
in Figure 5, integration of (36) over the control volume
surrounding node 1 gives

𝑘e𝐴e
𝑝2 − 𝑝1𝐿1 − 𝑘w𝐴w

𝑝1 − 𝑝w𝐿0 = −Δ𝑤1Δ𝑡 ⋅ Δ𝑉1. (44)

Equation (44) can be rewritten as

𝑎11𝑝1 + 𝑎12𝑝2 = 𝑏1, (45)



8 Shock and Vibration

2

L1L0

ew 1

Figure 5: Boundary conditions for fluid injection point.
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Figure 6: Boundary conditions for fluid front.

where

𝑎11 = −𝑘e𝐴e𝐿1 − 𝑘w𝐴w𝐿0 ,
𝑎12 = 𝑘e𝐴e𝐿1 ,
𝑏1 = −Δ𝑤1Δ𝑡 ⋅ Δ𝑉1 − 𝑘w𝐴w𝐿0 𝑝w,
𝑘e = 𝛿e𝑘1 + (1 − 𝛿e) 𝑘2, 𝐴e = 𝛿e𝐴1 + (1 − 𝛿e) 𝐴2.

(46)

𝑘w and 𝐴w can be calculated directly according to crack
opening displacement, and 𝑝w is the pressure of the fluid
injection point.

(II) Boundary Conditions for Fluid Front. Similarly, as shown
in Figure 6, integration of (36) over the control volume
surrounding node n gives

𝑘e𝐴e
𝑝t − 𝑝𝑛𝐿𝑛 − 𝑘w𝐴w

𝑝𝑛 − 𝑝𝑛−1𝐿𝑛−1 = −Δ𝑤𝑛Δ𝑡 ⋅ Δ𝑉𝑛. (47)

Equation (47) can be rewritten as

𝑎𝑛(𝑛−1)𝑝𝑛−1 + 𝑎𝑛𝑛𝑝𝑛 = 𝑏𝑛, (48)

Dynamic loads 

Solid medium Crack opening

Fluid pressure
Fluid injection

Figure 7: The coupling of the elasticity, fluid flow, and fracture
growth.

where

𝑎𝑛(𝑛−1) = 𝑘w𝐴w𝐿𝑛−1 ,
𝑎𝑛𝑛 = −𝑘w𝐴w𝐿𝑛−1 − 𝑘e𝐴e𝐿𝑛 ,
𝑏𝑛 = −Δ𝑤𝑛Δ𝑡 ⋅ Δ𝑉𝑛 − 𝑘e𝐴e

𝑝t𝐿𝑛 ,𝑘w = 𝛿w𝑘𝑛−1 + (1 − 𝛿w) 𝑘𝑛, 𝐴w = 𝛿w𝐴𝑛−1 + (1 − 𝛿w) 𝐴𝑛.
(49)

𝑘e and𝐴e can be calculated directly according to crack width
at the fluid front, and 𝑝t is the pressure of the fluid front and𝑝t = 0.

By setting up discretised equations of the forms (42), (45),
and (48), at each node, the fluid pressure distribution along a
crack can be obtained.

3.3. Coupling Scheme. To correctly solve the system of equa-
tions, the elasticity, fluid flow, and fracture growth should
be coupled together; see Figure 7. The crack opening causes
the fluid injecting into the solid medium. The injecting fluid
produces fluid pressures along crack surface and affects the
deformation of the solidmedium and crack propagation. Due
to the deformation of the solid medium, the crack opening
changes again.

According to (36), the relations between the fluid pressure
and crack width are nonlinear. It is necessary to use an
algorithm that can solve iteratively the fluid pressure and
crack width. The staggered Newton algorithm [40] is used
here.The iteration processes for solving fluid pressure at time𝑡 are stated as follows:

(i) Assume that the fluid pressure 𝑝𝑘 has been computed
at the kth step iteration. Compute dynamic responses
of solid medium under dynamic loads and fluid
pressure by using XFEM. According to dynamic
responses, we can obtain the crack width𝑤𝑘 at the 𝑘th
step iteration.

(ii) According to the known crackwidth𝑤𝑘 at the kth step
iteration, compute the fluid pressure 𝑝𝑘+1/2 by using
FVM.

(iii) Compute the fluid pressure 𝑝𝑘+1 at the (𝑘 + 1)th step
iteration by the flowing expression:𝑝𝑘+1 = (1 − 𝛼) 𝑝𝑘 + 𝛼𝑝𝑘+1/2. (50)
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Figure 8: Schematic of a notched cubic concrete specimen subjected
to a splitting force (unit: mm).

(iv) Compute dynamic responses of solid medium under
dynamic loads and fluid pressure 𝑝𝑘+1 by using
XFEM. According to dynamic responses, we can
obtain the crack width 𝑤𝑘+1/2.

(v) Compute the crack width 𝑤𝑘+1 at the (𝑘 + 1)th step
iteration by the flowing expression:

𝑤𝑘+1 = (1 − 𝛼)𝑤𝑘 + 𝛼𝑤𝑘+1/2. (51)

(vi) Given tolerance 𝜀 = 0.01, compute the following
expression:

𝛿𝑝 = ∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑝𝑘+1 − 𝑝𝑘󵄨󵄨󵄨󵄨∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑝𝑘+1󵄨󵄨󵄨󵄨 . (52)

If 𝛿𝑝 ≤ 𝜀, finish iteration, or else go to (ii).

4. Numerical Example

As shown in Figure 8, a notched cubic concrete specimenwith
the dimension of 200mm × 200mm × 200mm subjected
to a splitting force was considered in this example. Here,
the splitting force was applied on the iron. The iron was
fastened on the concrete specimen. The material properties
of concrete were Young modulus 𝐸 = 36GPa, Poisson ratio
V = 0.167, and mass density 𝜌 = 2400 kg/m3. The material
properties of iron were Youngmodulus 𝐸 = 200GPa, Poisson
ratio V = 0.3, and density 𝜌 = 7800 kg/m3. In numerical
model, the specimen was discretised into 10154 elements and
10370 nodes; see Figure 9. The concrete material’s initiation
toughness𝐾ini

Ic equalled 0.888MPa⋅m1/2 for slow loading case
and 0.909MPa⋅m1/2 for fast loading case, and its unstable
fracture toughness 𝐾un

Ic equalled 2.914MPa⋅m1/2 for slow
loading case and 3.028MPa⋅m1/2 for fast loading case. The
parameters were tested by experiment. For the slow loading
case, we set the time step Δ𝑡 = 10 s, while Δ𝑡 = 0.1 s for the fast
loading case.

Figure 9: XFEMmesh.

In this section, we mainly investigated the water pressure
distribution along crack surface and the effect of water
pressure distribution on the fracture property.

4.1. Splitting Force versus CMOD Curve: Comparison with
Our Experiments [41]. As shown in Figures 10 and 11, we
plotted splitting force versus CMOD curve for slow loading
case and fast loading case, respectively, with three different
water pressure cases: (i) without water pressure; (ii) water
pressure 𝑝 = 0.2MPa at the crack mouth; (iii) water pressure𝑝 = 0.4MPa at the crack mouth. We also compared our
present numerical results with our experimental results.

Both numerical and experimental results show that,
(i) with the increase of the applied water pressure at the
crack mouth, the peak value of the splitting force decreased
dramatically; (ii) under the same case, compared with the
slow loading case, the maximum splitting force from the fast
loading case had an obvious increase. Additionally, a fairly
satisfactory agreement can still be observed for the curve
in ascending section. This verification indicated that the
proposed model was quite effective for simulating hydraulic
fracture problems.

We also listed the maximum splitting force with three
different water pressure cases in Table 1. The maximum error
reached to 16.98%.

4.2. Effect ofWater Pressure at the CrackMouth on the Fracture
Property. For experiment, the maximum water pressure 𝑝𝑛
= 0.4MPa at the crack mouth was applied. Due to the
limitation of experimental conditions, it was quite difficult
in the experiment to increase the water pressure at the crack
mouth for investigating its effect on the fracture property.
The numerical simulation showed its huge advantages in
extending test conditions. Here, we observed numerically
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Table 1: The maximum splitting force 𝐹max/kN.
Slow loading case Fast loading case𝑝𝑛 = 0.0 𝑝𝑛 = 0.2MPa 𝑝𝑛 = 0.4MPa 𝑝𝑛 = 0.0MPa 𝑝𝑛 = 0.2MPa 𝑝𝑛 = 0.4MPa

Numerical results 15.60 13.31 10.75 19.51 17.02 14.00
Experimental results 18.79 14.28 10.52 19.82 16.16 12.95
Error 16.98% 6.79% 2.19% 1.56% 5.32% 8.11%
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(b) Water pressure 𝑝𝑛 = 0.2MPa at the crack mouth
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(c) Water pressure 𝑝𝑛 = 0.4MPa at the crack mouth

Figure 10: Splitting force versus CMOD curve for slow loading case with different water pressures.

six cases, 𝑝𝑛 = 0.0, 0.2MPa, 0.4MPa, 0.6MPa, 0.8MPa, and
1.0MPa.

Figure 12(a) showed the effect of water pressure distribu-
tion on the fracture property for a slow loading case with six
different water pressure cases and Figure 12(b) for fast loading
case. We also plotted maximum splitting force versus applied
water pressure at the crack mouth curve; see Figure 13. As
depicted in Section 4.1, the results shown in these figures were

still straightforward. With the increase of the applied water
pressure at the crack mouth, the peak value of the splitting
force decreased dramatically. Under the same case, compared
with the slow loading case, the maximum splitting force from
the fast loading case had an obvious increase. It was obvious
that if the applied water pressure increased, the mechanical
splitting force was designed to decrease to maintain the
same CMOD. In Figure 13, it also could be found that if
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(c) Water pressure 𝑝𝑛 = 0.4MPa at the crack mouth

Figure 11: Splitting force vesus CMOD curve for fast loading case with different water pressures.

𝑝𝑛 ≥ 0.6MPa, the decrease velocity of the maximum splitting
force slowed down.

The F-CMOD curve contained two phases: the pre-
peak/peak response and the postpeak response. The CMOD
value responding to peak response was always less than
0.2mm.With the increase of the applied water pressure at the
crack mouth, the CMOD value responding to peak response
decreased significantly.

4.3. Water Pressure Distribution along a Propagating Crack
Surface. Figure 14 showed the water pressure distribution
along a propagating crack surface for slow and fast loading
cases. To limit the length of this paper, only the case 𝑝𝑛 =
0.4MPa was shown here. It could be seen that the water
pressure distribution along crack surface followed parabolic

distribution. But, at the beginning, the water pressure distri-
bution closely approximated linear distribution. At last, the
water pressure for most crack segments approximated the
applied water pressure at the crack mouth. Adjacent to tip,
the water pressure dropped rapidly to zero.

4.4. Failure Patterns. As shown in Figures 15 and 16, we
showed the failure mode for slow and fast loading cases with𝑝𝑛 = 0.2MPa. In numerical model, we assumed that the con-
crete specimen was ideal homogeneous material. Therefore,
the numerical results showed that the crack was pure mode-I
crack and propagated in a straight manner.The experimental
results also showed that the crack propagated approximately
in a straight manner, but a slight deflection could still be
observed. This phenomenon could be interpreted as the
heterogeneity of the actual concrete specimen.
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Figure 12: Effect of water pressure at the crack mouth on the fracture property.
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Figure 13:Maximum splitting force versus applied water pressure at
the crack mouth curve.

5. Summary and Conclusions

In this paper, wemodel the fluid flowwithin the crack as one-
dimensional flow and assume that the flow is laminar; the
fluid is incompressible and accounts for the time-dependent
rate of crack opening.Here, we discretise the flow equation by
finite volume methods.The extended finite element methods
are used for solving solid medium with crack under dynamic
loads. Having constructed the approximation of dynamic
extended finite element methods, the derivation of governing
equation for dynamic extended finite elementmethods is pre-
sented.The implicit time algorithm is elaborated for the time
descritisation of dominant equation. In addition, the interac-
tion integral method is given for evaluating stress intensity

factors. Then, the coupling model for modelling hydraulic
fracture can be established by the extended finite element
methods and the finite volume methods. We compare our
present numerical results with our experimental results for
verifying the proposed model. Finally, we investigate the
water pressure distribution along crack surface and the effect
of water pressure distribution on the fracture property. Some
valuable conclusions can be drawn from this study.

(i) Some conclusions between numerical results and
experimental results were quite identical. A fairly
satisfactory agreement could also be observed for F-
CMOD curve in ascending section. Therefore, the
proposed model was quite effective for simulating
hydraulic fracture problems.

(ii) The F-CMOD curve contained two phases: the pre-
peak/peak response and the postpeak response. The
CMODvalue responding to peak responsewas always
less than 0.2mm. With the increase of the applied
water pressure at the crack mouth, the CMOD value
responding to peak response decreased significantly.

(iii) With the increase of the applied water pressure at
the crack mouth, the peak value of the splitting
force decreased dramatically. Under the same case,
compared with the slow loading case, the maximum
splitting force from the fast loading case had an
obvious increase.

(iv) The water pressure distribution along crack surface
followed parabolic distribution. But, at the beginning,
the water pressure distribution closely approximated
linear distribution. At last, the water pressure for
most crack segments approximated the applied water
pressure at the crackmouth. Adjacent to tip, the water
pressure dropped rapidly to zero.
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Figure 14: Water pressure distribution along a propagating crack surface.
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Figure 15: Failure mode for slow loading case with 𝑝𝑛 = 0.2MPa.
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Figure 16: Failure mode for fast loading case with 𝑝𝑛 = 0.2MPa.

(v) In numerical model, we assumed that the concrete
specimen was ideal homogeneous material. There-
fore, the numerical results showed that the crack
was pure mode-I crack and propagated in a straight
manner. The experimental results also showed that
the crack propagated approximately in a straight
manner, but a slight deflection could still be observed.
This phenomenon could be interpreted as the hetero-
geneity of the actual concrete specimen.

Our future work will further investigate the water pres-
sure distribution along a propagating crack surface and the
effect of water pressure distribution on the fracture property
with considering crack opening-closing.
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