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Here we present a theoretical analysis on the nonlinear free vibration of a tri-cross string system, which is an element of space
net-antennas. We derived the governing equations from Hamilton’s principle and obtained a linearized solution by the standard
perturbation method. The semi-analytical solutions of the governing equations have not been provided referring to the solution of
plate vibrating problem. This analysis revealed that natural frequencies of the tri-cross string depend on the vibration amplitude
due to the geometrical nonlinearity in the constitutive equation. The geometric parameters, such as the diameters and the lengths
of the constituent strings, also affect the frequency through the nonlinearity of the tri-cross string. The nonlinear natural frequency
shows coupled characteristic; that is, the natural frequency of the tri-cross string varies with that of the constituent strings, but the

contribution of each constituent string to the natural frequency is in different proportions.

1. Introduction

Recently, we have analyzed the nonlinear dynamic response
of the cross string, the simplest net structure of strings such
as the space antennas, using Hamilton’s principle and the
perturbation method [1]. Tri-cross string is another simplest
net structure with odd constituent strings among all the
multi-cross strings, except for the cross string. It is difficult
to discuss their oscillation characteristics (such as natural
frequency) by a theoretical analysis because of the complex
nonlinearity. However, it is necessary to provide an analytical
result to compare with experiments to obtain insight on the
motion law of the structure and guide the structural design.
Natural vibration of an initially stressed and linearly elas-
tic string with small amplitudes has been extensively investi-
gated by theoretical analysis, simulations, and experimental
researches. However, the relevant researches on the initially
stretched string with finite amplitudes are still rare, despite
they are quite important for the engineering problems.
The Kirchhoft string equation is accepted as a good first

approximation of the nonlinear behavior in the transverse
direction of a string [2]. Molteno and Tufillaro studied
qualitatively the agreement between the analytical results
obtained via the truncated Kirchhoff string equation and the
experimental results [3]. Various numerical schemes, such as
the Galerkin method, were developed to simulate the large-
amplitude vibrating problem of the elastic strings based on
the nonlinear Kirchhoff string model [4]. Xiong and Hutton
used Hamilton’s principle to obtain the governing equation
and the boundary conditions of a multi-guided rotating
string [5], and they proved that Hamilton’s principle could be
used for the derivation of nonlinear vibration problems as we
presented in a recent paper [1]. Later on, more complicated
conditions of single string vibrating problem were analyzed,
such as moving boundary conditions [6], unsteady vibration
varying length [7], and the influence of friction force [8].
The transverse vibration of nonlinear strings is governed
by partial differential equations. A finite difference method
has been developed to obtain the numerical solutions of
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FIGURE 1: (a) The initial state of a tri-cross string. (b) The oscillating state of a tri-cross string.

these equations using the perturbation method [9], different
from the treatment of Carrier [10, 11]. The mentioned studies
mainly focus on the vibrating characteristics of a single elastic
string. The experimental and computational researches of
networks and space antennas most focus on the cases of
linear vibration [12, 13] and linear design [14, 15], while the
complex nonlinear behavior of the multistring networks is
still an open issue. However, few theoretical works on the
multistring networks were found in the literature. In this
work, we further consider the problem of a tri-cross string,
which is another simplest net structure with odd constituent
strings and the theoretical studies on tri-cross strings are
necessary, especially for the space antennas.

In this study, we studied the free nonlinear vibration
response of a tri-cross string, composed of three single strings
as shown in Figure 1, and attempted to provide a theoretical
method to analyze the nonlinear features of the tri-cross
string. The governing equations of the nonlinear vibration
of the tri-cross string are derived from Hamilton’s principle
and solved by the perturbation method. As the traditional
potential-function method used for the nonlinear vibration
of a single string is quite difficult to adopt for a tri-cross string,
novel semi-analytical solutions of the governing equations
were provided. Based on the obtained solutions, we discuss
the influence of the nonlinear feature and coupling properties
on the total frequency of the tri-cross string. The results show
that the contribution of each constituent string to the tri-
cross natural frequency is in different proportions. Moreover,
the frequencies of the tri-cross string are dependent on
the material properties of its constituent strings. The work
may provide theoretical guide for the free vibration of net
structures such as space antennas with flexible strings.

2. Derivation of the Motion Equations

2.1. Model. As shown in Figure 1, the three single strings
are connected to each other by two joints (later referred to
as node) in the tri-cross string, and these two nodes will
keep connected during vibration. This assembled structure
known as tri-cross string can be treated as another kind of
the simplest net of strings except for the cross string in [1].
In this study, the condition of geometrical nonlinearity and

material linearity is considered. It means the motion of the
tri-cross string is transverse and one-dimensional with large
amplitude, but the elongation of the string during vibration
is not negligible. Furthermore, the strains in these strings
remain elastic in the linear range. In nonlinear analysis,
the tension in the tri-cross should vary and can usually be
expressed as the function of position and time, that is, T'(x, t).
For simplicity, the tension force can be further treated as the
only function of time T'(¢) [2, 11]. In Figure 1, the axis is
applied to connect to each string. The strings connected to
y'-axis and y°-axis are jointed to the string of x-axis, which
are called y'-axis and y”-axis for short, respectivel!. During
the vibration, the vibrated modal of y'-axis and y*-axis can
be different orders and would differ in the characteristics of
vibrating plane. However, they are both connected to the x-
string and affected by each other by the constraint of nodes.
Considering the real structure of net strings such as space
antennas, the nonrigid boundary conditions and the finite
span of this tri-cross string are adopted in this paper. For the
sake of simplicity, the three single strings are chosen to be
made of the same material as well.

In the following section, we will try to simplify the
structure of the tri-cross string and transfer it into a dynamic
model. At first, the whole jointed tri-cross string structure
can be divided into three single strings with two nodal forces
applied onto each of them. Considering jogged two strings of
the whole tri-cross string, the separated nodal force on each
of the jogged two strings has the same amplitude but in the
opposite direction. In this study, the jogged tri-cross string
will be disassembled into the three strings separately, and one
of them will be chosen as an object substituted into Hamilton’s
principle. In this way, the governing equation of one single
string belonging to the jogged tri-cross string structure can
be obtained, and it can demonstrate the common properties
of each single string.

Under the above assumptions, the governing equations of
the vibration of the tri-cross string are derived as follows.

2.2. Hamilton'’s Principle. The Lagrange integral function J of
a single string can be expressed as

J= j L) dr, )

1
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FIGURE 2: Displacement of the x-string component of the cross
string in Figure 1.

where ] is obtained by integrating Lagrange function L with
respect to the time t and L is expressed as

L{t)=K(#)-U(®)), )

where K is the kinetic energy and U is the potential energy of
the system.

As the derivation method and process of the mechanics
models for the three constituent single strings of the tri-cross
string are similar, it is convenient to present the derivation of
the mathematical expressions of K(¢) and U(t) of one string.

In the present problem, the vibrating direction is vertical
to x-y plane. Therefore, the expression of the kinetic energy
K(t) is shown as

1 fow)’

where [, is the length of the string in the initial static
equilibrium position, p is the mass per unit length and is the
function of x, w is the displacement of the string, and x is the
longitudinal coordinate.

The total potential energy U(t) of one string consists of
one part due to tension work U(#) and the other part coming
from the external excitation Ug(%), i.e., U(t) = U(t) + Ug(?).
As shown in Figure 2, a string in the equilibrium position
presents an initial tension T|, and its initial length ;. We take
an infinitesimal element of the displaced string as an object,
and its length in the deformed configuration is ds. In the
equilibrium position under initial tension, the length of this
element is dx, under the definition of initial length being dx;,.
It is assumed that the string remains linearly elastic under the
varying tension during the vibration, and the tension T'(x, t)
can be expressed as

T (x,t) = EAs, (4)
in which the total strain of the element ¢ is

_dsody _dsdr o dx
© dx,  dxdx, dx,

where ¢, is the initial strain. According to the geometrical
relations, the vibrating string away from the initial equilib-
rium position can be expressed as

ds ow\? 6

e =1+¢g,, (5)

By inserting (5) and (6) into (4), (4) can be expressed as

dw\?
T (x,t) = EA (l”o)J”(a) -1, (7)

where E is Young’s modulus and A is the cross-sectional
area. For simplicity and emphasis of geometrically nonlinear
behavior, the tension in the one-dimensional and flexible
string can be regarded as the function of time only [2, 11].
With the solution of the nonlinear vibration problem of two-
dimensional thin plates, averaging the stress in one axis is
one effective method. In our previous study, the tension is
presented under the same assumption [1]

B EA [ (b ow (x, 1) \*
T(t)—To+l—<J.o \/l‘f'(T) dx—lo> (8)

0
or

T (t)

_EA+T,

Jzo - <aw (x,t) >2dx _z0 )
I, 0 ox l+eg |

Using (9), the tension work stored in the potential energy of
the one single string with a length of dx can be expressed as

EA+T, | (b 2
T R e

IN 0 Ox 1+¢,

\j <aw)2
14+ — ) dx-dx
ox

Integrating (10) along the string, we can obtain

Up 6y = 2A T “l (a_w>2dx]

(10)

4l0 o \ Ox

Iy 2 2
. J Ly ( w ) dxt.
o | l+¢g ox
On the other hand, one external excitation work stored in the
potential energy is provided as

Iy
Up () = L Pl (68 (X = i) .

. ( 1 2 f)d
Wg \ X yjoint’ yjoint’ X

1

where Fjo

at(£)s szoim(t) denote the nodal forces at the
. . 1 2

joints, whose coordinates are (X, joint> Yioine> Yioint)> (¥2,joint>
yjlomt, yjzoim), respectively; wg represents the displacement
of the whole tri-cross string; d(x) is Dirac delta function.
Figure 3 shows the relation between the (inner) force and

the excitation. In fact, the nodal force should be regarded
as an inner constraint force by considering the whole
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FIGURE 3: Modeling of the tri-cross string by separating the three
strings of the structure and adding a joint force to the joint as the
joint condition.

tri-cross string. By dividing the tri-cross string into three
strings, the nodal forces in the same position but belonging
to two different jogged strings have the same amplitude and
opposite direction.

For one single string with more than one joint with other
constituent strings under multiple excitations, say, along x-
direction, (12) may be extended as

b,
Up (t) = L Y Fioine (t)- 8 (x
i=1

. ( 1 2 t)d
Wt \ X yjoint’yjoint’ X

According to Hamilton’s principle, (1) can be expressed by
substituting (11), (12), (13) into (1) as

Xijoint )
(13)

t

8] =46 L [K(t)-Up(t) -Ug(t)] dt = 0. (14)

2.3. Governing Equations. According to (14) and the differ-
ential variational principle, the governing equation of the x-
string can be obtained as

azw EA+T0 Iy Jw 2 &l
_EA+T, w\ obo
T ((L <ax> AR
Pw
+ 55 = B ()8 (% = Xy +

-8 (x - xZ,joint) >

e ()
(15a)

1_ 1
- yjoint’

2 _ 2
Y =Y joint*

Similarly, by app1y1n$ the kinetic energy K(t) and the poten-
tial energy U(f) on y strmg and y° strmg, we can obtain the
governing equations of y -string and y -string as

ow  EA+T, J" w'\* N ek
Pon I o\t ) V) T Tvg

o ow' 1 1 1
ayl ay = Fjoint (t) X (y - yjoint) > (15b)
X = X1 joint>
2 2
V= Vioint
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Pu'  EA+T, le ow” Zdz , &b
P on L o \ 9y2 1+e

0 ow” 2 2.2
: a_yzw = _Fjoint (t) ' 6 (y - yjoint) > (15C)
X = X2 joint>
1 1
Y = Vjoint

in which 1, I, are the lengths of y'-string and y*-string
in the static equilibrium position, respectively; w, w’,w”
are the displacements of x-string, y'-string, and y*-string,
respectively; and wy, is the displacement of the whole tri-cross
string structure,

_ 1 2
W= Wy (x, Yjoint> Yjoint> )>
! 1 2
W = Wy (xl,joint’ y ’yjoint’ t) ’ (16)
"

1 2
w = Wy ('xZ,joint’ yjoint’ Yo t) :

The boundary conditions corresponding to x-string, y'-
string, and y”-string are shown as follows:

w=0, atx=0, x=1, (17a)
1 1 1

w =0 aty =0,y =1, (17b)

w' =0, aty*=0, y* =1, (17¢)

and the initial conditions corresponding to x-string, yl-string,
and y°-string are

)|x 0y =y =y = wy (x, ¥}, 75,0),  (18)

wy (x5 y
where w, (x', y/, 2%, 0) is the initial displacement.

It is well known that the natural frequency with non-
linearity of a geometrically nonlinear string is composed of
the linear natural frequency of the string and the nonlinear
fluctuation frequency [16,17]. Based on the above derivations,
itis obvious that the vibration of the tri-cross string is coupled
with each other due to the two joint nodes. In the following,
we will discuss the nonlinearity and the coupling behavior
among the x-string, y'-string, and y’-string with the two
jogged mechanical connections.

3. Solution of the Governing Equations

In the integrodifferential nonlinear governing equations
(15a), (15b), and (15¢), the second terms all present the term
ow/ox. It is difficult to obtain the analytical solutions of
the above integrodifferential nonlinear governing equations.
In this study, modal superposition method is adopted here
to solve these equations with semi-analytical formula first,
and the solutions were used to analyze their responses with
coupled behavior.

The boundary and initial conditions of the tri-cross
string are one kind of a net or special plate; thus similarly
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the tri-trigonometric series can be employed to expand the
displacement of the tri-cross string as

M N1 N2

Mmimnx
Wt x V> 2 t) - Z Z Zan/mlnzfmnln2 sin
0

m=1n,=1n,=1

(19)
mmy'  nymy?
-sin—2—sin—2=-2—,
1 L
in which a,,, , is the mnn,th initial amplitude of the

vibration and fmn n,(t) presents the dimensionless time-
domain functlon In the tri- cross string, the time dependence
of x-string, y'-string, and y*-string is exactly the same.
Moreover, in order to make (9) satisfy the initial condition,
assumef,,, , (t = 0) = 1. Considering the geometrical
structure in Flgure L the magmtude of wy is zero when
X # xl,}omt or y # y]omt’ y # y]omt or y # y]omt’ and
X # X3 joint OF y # yjzoint. Lining to (8) and (19), all a,,,, ,,, s
should be equal to zero based on the initial and boundary
conditions. Therefore, it is obvious that wy is nonzero only
1 2 12 1 2

at (x’ yjoint’ yjoint) or (xl,joint’ a yjoint’t) or (xZ,joint’ yjoint’ Y ’t)
according to the geometrical structure shown in Figure 1.

Considering the corresponding external excitation terms
in (15a), (15b), and (15c), we can describe the nodal forces in
modal form as trigonometric series

M
1 1sx . MTIX
Fjoint (t)-6 (x - xl,joint) = ZlFm Sin lo > (20a)
m=
2 i 2 mmnx
Fjoint (t)-6 (x - xz,joint) = ZIFm sin lo > (20b)
m=
N1 1
1 1 1 1% . M7y
_Fjoint (t)- q (y - yjoint) = Zanl SIHT’ (20¢)
n=
2 2 2 2%
o ©-3(7 =) = Y Esn ™ g

n,=1

where F}**, F2**, FYL*, and Ffl: are the trigonometric modal
parameters.

In this paper, we aim to consider the effect of geometri-
cally nonlinear displacement. The length of the string varies
rather than being constant. Meanwhile, we suppose the weak
nonlinearity of this problem such that the strains inside the
tri-cross string are not quite large during vibration. Thus, the
amplitudes of displacement (a,,,, ,,) are small in magnitude;
as a result, the nodal force is also qulte small. By substituting
(19) and (20a) and (20b) into (15a), we can rewrite the

governing equation (15a), for simplicity,

P.fmnlnz (t)

EA T ZD M N1 N1 N2N2 . 2
! l: : <<J ZZ ZZZ (%) A ien fiji () Figen (£)

. 1 2 1 2
2 iTx . Jﬂyjoint . lﬂyjoint . knyjoint . hﬂyjoint (213)
- COS — - SIn Sin - Sin s
lo L L L L
&lo mm\? (Frln** +Fj,**)
+ ﬁ : T fmnlnz (t) = oler .\
& 0 (S}’Z am”1"2)

5
or
menlnz (t)
EA+T0 M NINLN2N2 /oo N2
Z Z N Qe fijt ) firn (£)
i=1 j=lk=11=1h=1 * 0
.1 2 1 2
sin JTjoint sin lnyjoint sin kmy, joint h”yjoint
L L L L (21b)
2
mm EA+T, g, mn
fmnlnz (t) < ) + 1 ’ fmnln2
0 1+¢,
(Fl *k F2* *)
_ m + m
(S,l";*amnlnz)
where
N1 N2 L 2
JE . nlﬂyjoint . nZnyjoint
S, = sin sin ,
yz Z 1 1
n=1n,=1 1
(22a)
M N2 2
1 . MITXjoint . 27joint
S.. = Z Z sin ; sin ] ,
m=1n,=1 0 2
N1 N2 2
2 . 1 T[y]omt 1, T[yjoint
S Ve = Z Z sin ] ; ,
nm=1n,= 1 2
(22b)
M NI 1
2% . mﬂxl,joint . nlﬂyjoim
S, = Z Z sin sin .
Y I 1
m=1n,= 0 1

The orthogonality of trigonometric functions is applied in the
derivation of (21a) and (21b). By inserting (19) and (20b) into
(15b), we can get similar governing equation for y'-string as

o 0+ FALE T (§§§§§< )

i=1k=1j=1I=1h=1

2
xl,joint . lﬂyjoint
S1

in
“ @i fiji @) fijn (£) - sin ] ;
0 2

kﬂxl joint

hry?, 2
joint Yioint () (M) (23a)
N L 172 I

EA, +T, &l n, 7T
+ L ! 11 (ll >fmn1n2

L 1+¢g
Fl*
" ()

Similarly, substituting (19) and (20c) into (15¢), we have
similar form of the governing equation for y°-string as

e ($§5

i=1 k=1 j=11=1 h=1

pfmmn2 (

|
x2,j0int . .]T[yjoint
S
lo h

in
“ Wi fijn () fian (£) - sin
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) K713 joint Sinlnyjloint f o (1’127'[ > 2 Lsin (”’”sz,joint/ lo) _ l_2 ﬁ
lo l1 mnn, 2 mn, losin (nzﬂyjzmm/lz) ll y;z
P ERR (B o0 = sin i,
L, 1+e, e Iy
F> m . X joint
S M Xy =sin—-="—,
(S?C;amnlnz ) 0
(23b) ny . nlﬂyjloint
¥y, =sin ,
In order to connect (21a), (23a), and (23b), (20a), (20b), (20c¢), 1
and (20d) should be rewritten as follows: TV
n, .2 yjoint
l ¥y, =sin .
0 mmx 2
JO joint (t) 8 (x xl Jomt) sin—— lo dx (26)
LM (24a)
_|° Z Flr i M G M 4 In the perturbation method, a properly chosen small pertur-
“J = s l ) x, bation parameter should be provided during the solution. For
l - achieving this purpose, we defined
J ' ij)im )-8 (x - xz,joim) sin mlnx dx -
0 o oapy G = (BAST) (BA,+T,) (B4, + ) (l—
0
B b (M F2 mrx \ | mrrxd (27)
=, Z " sin ) sin L X, (M)( >l L lf
" I L )T, T, T s
h _ mymy!
Jo _F}Lint (t)-6 (J’ - yjloint) sin— ] dy ' where
1
(24¢)
1, / N1 1 1 m
= J ( Z F”sinﬂ> sinwdyl Dy, = (EA+Ty) (EA, +T,) (EA, + Ty) ( ] )
n ’ 0
0 h L (28)
: (M) <@> b
L ]omt (t)-6 (}’ y)omt) sin Zl y dy ? L L )T, T, Tz.

(24d)  From (27), fiu,, (t) can be written as

Frmny (©) = (”l“_:>1 ( %r >-l <%>1

L, [ N2 2
= J ZFj*sinw sinwdyz.
0 ny=1 : lZ lZ

Based on (24a)-(24d), one has

Fl** = _p! F* 25 o h (29)
i i, Ey (252) (EA+T,)l, (EA, +T,)],
2k
F _ananz ’ (25b) T, g (t)
where (EA, +T,) 1, 7mmm 27
. [;sin (mnxljoim/lo) I ™ By substituting (29) into (22a) and (22b), the governing
i = . =1 —,1,1, equation of x-string can be transformed from (21a) and (21b)
" psin (”1”}’jloim/ll) lo i to
T’ Ty’ T, %, *a Dy m’ dJCCCE a4
oy, (8) + : — I G (O Gk ©) ) Gy, ()
" 4om? (EA +T,) (EA, +T)) (EA, + ) ;jdk;;h:ﬂklhamnmz PRSI S e
(30)
Fl** + F2**)
2 mnn ( m
+ (wOm) Imnn, (t) = ’ Lnn
(pSyZ mnlnz)
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Similarly, the governing equation of y'-string becomes

Gy, (£)
2 27 2p 42 2
I,°'T," 'L "y, M
4p7r (EA+T,)* (EA, +T,) (EA, + T,)’
M M N1N2N2 (31)
Ul“th kol
X Y5 Y501 () G (1)
3355 btauton
D Fl*
* Gmnyn, () + (w(l)nl)2 Gmn,n, (t) =
(PS m”l”z)

and the governing equation of y*-string becomes

gmnlnz (t)
2 2/ 27 —4 2 2
T T T, ay,  ny

4p712(EA+T) (EA, +T,)" (EA, +T,)

M M NINI1N2

DIP PP

i=1k=1j=11=1h= 1ijkl

k.l
XX Yy V) Gijn (t) Gran, (£)

mnln2
2%
nmo\2 mnyn,
* Imnyn, (t) + (wOnZ) Gmnn, (1) = l .
(psxy mnlnz)

As the three single strings have the identical displace-
ments at the joint, the joint condition can be defined as
follows:

1(1
w (xl,joint’ t) =w (yjoint’ t)
(33a)
_ 1 2
= Wyt (xl,joint’ yjoint’ yjoint’ t) >
1 2
w (x2,j0int’ t) =w (yjoint’ t)
(33b)
_ 1 2
= Wyt (xz,joinv Yjoint> Vjoint> t) :
Define
T, [ mm\*
o = To (—) , (34)
P\l

where wy, is the linear natural frequency of x-string, pro-
portional to the initial tension T}, and the square of the string
length [,. Similarly, the linear natural frequency of y'-string
and y*-string can be defined as
2
. ( mr ) i (35)
L

).

1 \2
(wonl ) -

T,

p

T
() = 2

7
Three small perturbation parameters can be defined as
TOZT 2TZZIO mn n m2
iy = : 5> (37)
4pn? (EA + Ty) (EA, + T,)’ (EA, + T,)
2 2 2] 42 2
yoo Ty Ty T, ay,, M (38)
mn, n, 5 2°
4pn? (EA +Ty) (EA, +T,) (EA, + T,)
2 27 2 42 2
syz _ TO T T2 l A nznz ’ (39)
" 4pm? (EA+ T,)” (EA, + Tl)2 (EA, +T,)
"
& = s L m* (EA+T,) (40)
mnyn, mn, “mnyny’ mn, —4 n, (EA + Tl)
-4 2
Chn = e il = AT g
2

“iny? (EA, +T)

By substituting (24a), (24b), (24¢), (24d), (27), (36), (37), (38),
and (39) into (30), (31), and (32), we obtain

gi;nn M N1 N1 N2 N2
Grmmym, () + yl—lzyl Z Pjkin
I+ bmn1 + bmn2 i=1 j=1k=11=1 h=1
1
%l
gl]l (t) Yikn (t) gmnln2 (t) +
Crnn1

N1 N2 N2

Qixiniji () Gijn () * Gy, (t)>

I\
-
x~
Ii
L
-
ii
-
I
L
=
I
-

N1 N1 N2 (42)
Viikiijn (t) Gran (£)

* Gmnyn, (t)

N——

2 1 ! no\2
(wOm) + br}r,ml (wOn ) + bmnz (wOnz)
+ 3! 32 gmnlnz (t)
1+ by, + b,
= 0’
in which
ijlaikh ikl h
Pjrn = V1V1)2)2>
J ]klhamn n
%ji%;jn i k1
Qikih = = X1%9 2)’2’ (43)
! iklha frmlnz
Aiin%in k1
Viik = 1]kl— 12 2)’1)’1’

mn1n2



1%
byl _ szanl
mn; Sl** 4
(44)
SZ*
N xy mn2
mnz - SZ**

By adopting the perturbation method, g,,, , () can be
decomposed by means of the perturbation expansion

X
mnyn,

gmnln2 (t) = gOmnlnz (t) + 2 glmnln2 (t)

1
+ by, + by, (45)

+ ...

The frequency of the tri-cross string is also expressed as the
following expressions with a small perturbation parameter

1 2
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By inserting (45) and (46) into (42), we obtain the follow-
ing relation accompanied with the perturbation parameter
/A+b), +b; ))

(mnn

2
gOmnlnz (t) + (wmnlnz) gOmnln2 (t) =0. (47)
By satistying f,,, ,(0) = 1, Goyn,n, (t) can be taken as

gOmnln2 (t) = Dmnlnz cos wmnlnz . (48)

The terms accompanied with the perturbation parameter
/(1+by +by )) are

( mnl n, mn,

2
glmnlnz (t) + (wmnlnz) glmnlnz (t) = (xlgOmnlnz (t)

(49)
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From (49), gy, (t) can be obtained as
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Gmnyn,(t) include the linear part gy, ,, () and Ist-order

perturbation parameter (smn " /(1 + bfr’;l + bfy'lznz))1 term
imnyn, (1)
x
Gonniny O = Gomnn, (O + =T Gy, (1) (52)

+ b, + B,
and lastly, fmnln2 (t) in (29) can be determined as

fmnlnz (t) = COs wmnlnzt

Enin, 1 (53)
2 glmnln2 (t) .
1+b 1m+bn ", D —_—

Thus, the circular frequency of the tri-cross string can be
obtained as

2
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mnyn,
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Therefore, the frequency of the tri-cross string is in the
following form:

1

fst -
mnn, 2

(55)

2
! ¥ " x
(wOm) +b mnl (wOnl) + bmnz ( Onz) + emnlnz

yl y ;.
1+ b, + by,

! v
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9
According to the initial conditions, the amplitude a,,,, ,, can
be obtained by the following relation:
M NI N2 nlﬂy}
j
Z Z Z Qi n, fmnmz (t) sm sm ]
m=1n;=1n,=1 1
(56)
2
. LTty 12
- sin = wy (%, ¥}, 76.0) 5
2
where m = 1,2,...,M;n; = 1,2,...,Nl;n, = 1,2,...,

N2.

In this study, approximate semi-analytic formulas on
the natural analysis of the structural displacements and
frequencies are presented. To approach the exact solution as
close as possible, large value of M, N1, N2 should be chosen,
where the number of the chosen sampling points on the three
strings should be identical as well. To improve the accuracy of
the solution derived from the above perturbation method, the
order of magnitude of the parameter (g}, ,, /(1+ b,ﬁfnl + bfr’;z )
also needs to be increased. Next we will demonstrate it with
various numerical examples.

4. Results and Discussion

We choose the geometrical and mechanical properties of the
tri-cross string as follows: [, = 1m, [, = 0.95m, [, = 1.05m,
1 2
Xpjoint = 0-32lg, X3 joint = 0.641, Yjoine = 0331y, Yioine = 0.631;,
E =210 x 10° Pa, p = 0.1543kg/m, & = 0.2x10">. The three
strings all have the same diameter, that is, 0.005m. The
magnitude of the maximum displacement is taken to be
1
/A + by, +

, N) are chosen to be much smaller

10~ m. The perturbation parameters (&
brjr/mz)) (m> ”1’ 7’12 = 1, 2, e

than unity with a maximum value of 107,

mnyn,

In order to discuss the accuracy of the solution equation
(55), Table 1 presents the first three-order natural frequencies
with different M, N1, and N2. It is shown that (55) with 4
or 5 perturbation terms already provides sufficient accuracy
for the current tri-cross string structure. This fact confirms
that the perturbation procedure with the above parameters is
sufficient for the problem considered here. In the following
discussions, we will choose M = N1 = N2 = 5.

Until now, the nonlinear free vibration analysis of a tri-
cross string with geometrical linearity cannot be accurately
simulated with a commercial finite element code to provide
a numerical solution because the nonlinearity from varying
arc length and the coupled characteristics caused by jogged
joints are quite complicated. In this work, we focus on the
discussion of the nonlinearity and couple characteristic of the
prestressed tri-cross string.

With similar process, we can obtain the nonlinear fre-
quency of one single string. The frequencies of the three
strings corresponding to the tri-cross string are given below
in an explicit form:
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TaBLE 1: The first three frequencies with different amplitudes (Hz).

Wy (x = 0.5, Yoy = 0.33, yp, = 0.63,0)/m

st
111

st
222

3 terms (N = 3)

333

4 terms (N =4)
st st
222 333

5terms (N =5)
st st st
111 222 333

st st
111

1.2x107° 37.74 75.60 114.53 37.03 74.03 111.96 36.95 73.82 111.63
24%x107° 37.89 75.92 115.05 37.22 74.38 112.52 37.46 74.77 112.92
3.0x107° 38.02 76.16 115.43 37.56 74.66 113.95 37.82 75.47 114.24
40%x107° 38.27 76.67 116.26 38.66 75.25 114.86 38.59 76.97 115.92
oLl +“3n(EA+To>162<mn)2 L. m<mﬂ)2+§l ) (n)
= — _ | — | —a —_— —a: — S
m 27 Om 2PT3 ZO 2 myl ZO Pt 2 i yl ZO
2 -2 2 T 2 N . \27
n_ 1 |, 2, a, (EA +T))] <mﬂ> 1, m(mﬂ) 1, i<zn>
= —|(w + — ) | =a2x" =) + ) =a’x(— ) |, (57)
fm 2T ( Om) 2pT12 ll 2 m71 ll ;2 71 l
2 1-2 2 T 2 N . \2]
A RN ) 4 (EAy+ D)l " (mr\* (1, (mn N Zlaz i
m =5 om 2 ] 2%md2 \ 7 2 i V2 I .
2p(T,) 2 L 2 i=1 27

In the following discussions, the natural frequencies of
the tri-cross string will be compared with those of the
corresponding constituent single strings. Comparing (55)
with (57), it can be seen that (55) includes not only linear

frequency [(wo,,)* +52, (@}, )2+bl, (@i, )1/(1+b2, +b),.),
combined with the linear frequencies from the three single

1
strings, but also nonlinear fluctuation ((sfnnlnz/ 1+ bfr'ml +

bfy'lznz))ocl), where the terms such as pji;,D;;Djyy, reflect the
coupling characteristics from the jogged strings.

In the following sections, we will discuss the nonlinear
frequencies of the tri-cross string by varying structural
parameters, such as the vibration amplitude, the diameter of
one string, the diameters of two strings, the length of one
string, and the lengths of two strings.

Figure 4 shows the first four natural frequencies of the
whole tri-cross string ( ff{l, 2552, 38;3, 34) with different ini-
tial amplitudes wg,(x = 0.5, yjloint’ yjzoim, 0). First, the natural
frequencies with the same mode in the three constituent
strings, that is, 1511 2552, 3553, fjfw are chosen in the discus-
sion. It is seen that the natural frequencies of the tri-cross
string and the three single strings increase with increasing
amplitudes. Moreover, the frequencies of the tri-cross string
are among those of the three single strings, reflecting the
averaging effect of the three strings. It is one kind of the
coupling effect of the tri-cross string. The total frequencies are
not only the average of the nonlinear frequencies of the three
constituent single strings in any way. To some extent, the total
frequency :ntnl », can be regarded as one kind of nonlinear
combination of frequencies of the three constituent single
strings. Therefore, the variation tendency of the frequency of

the tri-cross string presents a nonlinear response by varying
the amplitudes of the tri-cross string shown in Figure 4. If
geometries of the constituent single strings are changed, the
differences among the tri-cross string and the three single
strings become rather complicated according to the results
from our calculations.

Figure 5 shows the influence of increasing the diameter
of one constituent string on the first four natural frequencies
of the strings, with the initial displacement of 1 x 107> m at
the point with the maximum magnitude. By setting /[, = 1 m,
L 0.95m, [, = 1.05m, the initial natural frequencies
of the single strings are different from each other, which
has been shown in Figure 5. In the case of increasing the
diameter of one single string, its own frequencies increase
and the frequencies of the whole tri-cross string also increase.
It is shown that the change of the frequencies of the whole
tri-cross string accompanies the varying of diameter of y'-
string. In contrast, the x-string and y*-string have not been
changed while changing the diameter of y'-string. The results
demonstrate that changing the diameter of one single string
does not change the frequencies of the whole structure and
the frequencies of the other two constituent strings too
much.

In the following, we study the effect of changing the
diameters of two strings. Figure 6 depicts the profiles of the
first four natural frequencies of the strings, by increasing the
diameters of two constituent strings (with d, = d; (A, =
(1/4)nd3, A, = (1/4)nd3)), with the initial displacement of
1x107° mat the point in maximum magnitude. By setting [, =
lm, [, = 0.95m, ], = 1.05m, the initial natural frequencies
of the single strings are different from each other, which
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FIGURE 4: The influence of the vibration amplitude wy (x = 0.5, yjloim, yjzoim’ 0) on the first four frequencies of the strings: (a) the first mode

> (b) the second mode f35,, (c) the third mode f;,, and (d) the fourth mode f;

has been shown in Figure 6. When the diameters of these
two strings increase, their own frequencies increase and the
frequencies of the whole tri-cross string also increase. Similar
to the case of changing the diameter of only one string, the
tri-cross string changes its frequencies less than that of the
y'-string. The frequency of the y*-string does not change
too much as well. This confirms the important fact again
that the frequencies of tri-cross string cannot be treated as
a mere combination of the nonlinear frequencies of the three
constituent strings in any way.

444°

In addition to the diameters, the lengths of the strings
also have profound influence on the vibration of the tri-cross
string; see Figure 7 for the effect of the length ratio of the two
strings [, /I, (here I, and I, keep constant) on the first four
natural frequencies of the cross string (71, fa32 f333> fasa)>
with the initial displacement being 1 x 10> m at the point
with the maximum magnitude. With the consideration of
increasing the string length ratio, it is indicated that the
natural frequencies of the tri-cross string at different modes
will decrease. The length ratio factor by varying the length
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FIGURE 5: The influence of the diameter of one constituent string on the first four frequencies of the strings: (a) the first mode 5;1, (b) the

second mode f35,, (c) the third mode f;t,, and (d) the fourth mode

of one string provides pronounced effect on the tri-cross
string, however, not as that on the varying single string. That
is to say, the frequency of the tri-cross string is determined
by the properties of its constituent strings, but the response
sensitivity of the tri-cross string on local structural variation
decreases due to its coupling characteristics and nonlinear
response.

Furthermore, we increase the lengths of x-string and y*-
string proportionally. The first four natural frequencies of

the tri-cross string (f3],, fa32> fass fags) Tesulting from the

1

444°

influence of the length ratio of the two strings I, /1y, 1,/1,
(here I, and 1,/I; keep constant) are shown in Figure 8,
where the initial displacement is 1 x 107> m at the point
with the maximum magnitude. With the consideration of
increasing the string length ratio, it is indicated that the
natural frequencies of the tri-cross string at different modes
will decrease. Compared with the results shown in Figure 7,
the frequencies of tri-cross string are much closer to the
frequencies of the single strings which increase its own
lengths. The reason could be that the variation of the two
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FIGURE 6: The influence of diameters of two constituent strings on the first four frequencies of the strings: (a) the first mode f}},, (b) the

second mode f5,, (c) the third mode f;s,, and (d) the fourth mode f,
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constituent strings is more effective on the whole structure
than that of single constituent string.
Figure 9 shows the first four natural frequencies of the

tri-cross string (f31,, foss> fosa» fogy) With different initial
amplitudes wy(x = 0.5], yjlomt, yjzoim, 0). It is also shown

that the natural frequencies of the tri-cross string and the
three single strings increase with increasing amplitudes. More

importantly, the frequencies (f31,, f332 fosp fogp) Show that

the order of the modes is not a simple integer. It agrees with
(55), where the subscript and symbol mn, 1, in the expression
provide a multiple order of the natural frequencies of the
tri-cross string. In another way, the subscript and symbol
mn, n, in the expression mean the different orders of modes of
the constituent strings. Therefore, the results in Figure 9 and
(55) reflect the coupling characteristics that are the contri-
bution from the different orders of modes of the constituent
strings.
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5. Conclusion

In this paper, we derived the governing equations of the tri-
cross string from Hamilton’s principle. The analytical solution
of the coupled structure is obtained by using the perturbation
method. Furthermore, the accuracy and convergence analysis
of the analytical solution has been carefully conducted. As
for the properties of natural frequencies of the vibrating tri-
cross string, the results show that the overall feature of the
tri-cross string is combined with the nonlinear characteristics

Shock and Vibration
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and coupling features; that is, the natural frequencies of the
tri-cross string are composed of the linear natural frequencies
of the three constituent strings and the nonlinear parts. For
the nonlinear part, we use the analytical solution to study
the effect of the structural parameters on the nonlinear fre-
quencies of the tri-cross string, such as vibration amplitudes,
diameters and lengths, and the different orders of natural
modes of the constituent strings. The results demonstrated
that the contribution of each constituent string to the tri-cross
natural frequency is in different proportions. In addition,
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the frequencies of the tri-cross string are dependent on
the material properties of its constituent strings as well.
More importantly, the configuration of a string net or space
antennas (here the simplest net, i.e., a tri-cross string) tends
to decrease the sensitivity to local structural variation. The
solution obtained in this work may provide a theoretical
reference for similar free vibration problem of net structures
such as space antennas with flexible strings.
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