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Nonlinear principal parametric resonance and stability are investigated for rotating circular plate subjected to parametric excitation
resulting from the time-varying speed in the magnetic field. According to the conductive rotating thin circular plate in magnetic
field, the magnetoelastic parametric vibration equations of a conductive rotating thin circular plate are deduced by the use of
Hamilton principle with the expressions of kinetic energy and strain energy. The axisymmetric parameter vibration differential
equation of the variable-velocity rotating circular plate is obtained through the application of Galerkin integral method. Then,
the method of multiple scales is applied to derive the nonlinear principal parametric resonance amplitude-frequency equation.
The stability and the critical condition of stability of the plate are discussed. The influences of detuning parameter, rotation rate,
and magnetic induction intensity are investigated on the principal parametric resonance behavior. The result shows that stable
and unstable solutions exist when detuning parameter is negative, and the resonance amplitude can be weakened by changing the
magnetic induction intensity.

1. Introduction

An annular or discoid rotating plate member application
is widely used in aerospace, large generating units, and
mechanical engineering. The change of the rotation speed in
complicated circumstance which includes electric, magnetic,
and force will cause large amplitude vibration and lead to the
loss of stability, even damage the rotatable structures. Hence,
it is important to analyze the dynamic response of varying
parameters in rotatable system. The dynamic response of
a nonlinear system is investigated in [1, 2]. The decom-
position and study of the equations of motion proposed
are beneficial in the analysis of vibration. The nonlinear
response of a base-excited slender beam carrying a lumped
mass subjected to principal parametric resonance is investi-
gated. The steady-state response and stability of the system
by the method of multiple scales are obtained as discus-
sed by Dwivedy and Kar [3]. EL-Bassiouny [4] investigated

the principal parametric resonance of a single-degree-of-
freedom system with nonlinear two-frequency parametric
and self-excitations and analyzed the influences of damping,
nonlinear excitation, and self-excitation. Feng et al. [5] stud-
ied principal parametric resonances of a slender cantilever
beam subjected to random excitation. Nonlinear vibration
equation and many valuable conclusions were given. Feng
and Hu [6] investigated principal parametric and internal
resonance of flexible beams. By giving nonlinear modulation
equations of combined vibration, they obtained the solutions
and considered the problem of stability. Hashemi et al. [7]
analyzed natural frequency and free vibration of rotating
plates under different parameters. Hu et al. [8–11] investigated
the problems of vibration and resonance of rectangular or
circular thin plate in magnetic field. They discussed the
influences of parameters on stability of a system. Özhan
and Pakdemirli [12] considered the primary parametric res-
onance of the parametric excitation of nonlinear continuous
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system. They used the method of multiple scales to find an
approximate analytical solution and discussed steady state
solutions and their stability. Shahgholi and Khadem [13]
studied the primary and parametric resonances of rotating
asymmetrical shaft. They showed the influences of principal
axes and external damping on the steady state response of
the asymmetrical rotating shaft. The parametric vibrations
of orthotropic plates with complex forms for different types
of boundary conditions are studied with a novel approach
in [14]. Awrejcewicz et al. [15] studied the chaotic vibrations
of flexible plates of infinite length by the use of fast Fourier
transforms and wavelets and illustrated the advantages of
wavelet-oriented analysis of nonlinear vibrations ofmechani-
cal systems in [16]. Tang and Chen [17] studied the influences
of variation speed of axially moving plates on stability. They
calculated and analyzed natural frequency and modal under
the method of multiple scales. Zhao et al. [18] investigated
the stability of principal parametric resonance of stayed-
cable. They obtained the nonlinear equations of vibration
under axial excitation with the method of multiple scales and
presented numerical simulation. Zhou et al. [19] investigated
the dynamic behavior of magneto-elastic-plastic interaction
and coupling for beam-plates. They showed the influences of
systemic parameters on plastic deformation.

In this study, the magnetoelastic axisymmetric paramet-
ric vibration equations of a conductive rotating thin circular
plate are obtained. The problems of principal parametric
resonance and stability of the variable-velocity rotating cir-
cular plate in transverse magnetic field are investigated, and
amplitude-parameter curves are obtained for analyzing the
influences of parameters on amplitude.

2. The Magnetoelastic Vibration Equations
of the Rotating Circular Plate

The applied computational scheme is based on the Kirchhoff
hypotheses and is treated as themodel of first approximation.
It is sufficient for engineering oriented analysis as it has been
pointed out in [15]. According to the spinning circular thin
plate in themagnetic field (Figure 1), the displacement vectors
of each internal point of the circular plate in three directions
in cylindrical coordinates are assumed as
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Figure 1: Sketch of the rotating circular plate.

𝑢𝑟1 (𝑟, 𝜃, 𝑧, 𝑡) = 𝑢𝑟 (𝑟, 𝜃, 𝑡) + 𝑧𝑢1 (𝑟, 𝜃, 𝑡) ,
𝑢𝜃1 (𝑟, 𝜃, 𝑧, 𝑡) = 𝑢𝜃 (𝑟, 𝜃, 𝑡) + 𝑧V1 (𝑟, 𝜃, 𝑡) ,
𝑢𝑧 (𝑟, 𝜃, 𝑧, 𝑡) = 𝑤 (𝑟, 𝜃, 𝑡) ,

(1)

where 𝑢𝑟 and 𝑢𝜃 denote the displacement in themiddle plane,𝑤 denotes the transverse displacement, 𝑢1 = −𝜕𝑤/𝜕𝑟 and
V1 = −(1/𝑟)(𝜕𝑤/𝜕𝜃) denote angular displacements, 𝑟, 𝜃,
and 𝑧 denote radial, circumferential and normal coordinates,
respectively, and 𝑡 denotes the time variable.

Velocity components of rotating circular plate, derived
from (1), are as follows:

𝑉𝑟 = 𝑑𝑢𝑟1𝑑𝑡 − Ω𝑢𝜃1,
𝑉𝜃 = Ω (𝑟 + 𝑢𝑟1) + 𝑑𝑢𝜃1𝑑𝑡 ,
𝑉𝑧 = 𝑑𝑤𝑑𝑡 ,

(2)

where 𝑑/𝑑𝑡 = 𝜕/𝜕𝑡 + Ω(𝜕/𝜕𝜃) and Ω denotes the rotation
speed.The expression of the kinetic energy can be determined
as

𝑇𝑘 = 12𝜌∫ℎ/2
−ℎ/2

∫𝑅
0

∫2𝜋
0

{(𝑑𝑢𝑟1𝑑𝑡 − Ω𝑢𝜃1)2 + [Ω (𝑟 + 𝑢𝑟1) + 𝑑𝑢𝜃1𝑑𝑡 ]2 + (𝑑𝑤𝑑𝑡 )2} 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑧. (3)

The deformation potential caused by bending deforma-
tion can be determined as

𝑈𝜀1 = 12 ∫𝑅
0

∫2𝜋
0

(𝑀𝑟𝜅𝑟 + 𝑀𝜃𝜅𝜃 + 2𝑀𝑟𝜃𝜅𝑟𝜃) 𝑟 𝑑𝑟 𝑑𝜃. (4)

The potential energy of strain in the middle plane of the
plate can be determined as

𝑈𝜀2 = 12 ∫𝑅
0

∫2𝜋
0

(𝑁𝑟𝜀𝑟 + 𝑁𝜃𝜀𝜃 + 𝑁𝑟𝜃𝛾𝑟𝜃) 𝑟 𝑑𝑟 𝑑𝜃, (5)

where 𝑀𝑟 and 𝑀𝜃 denote bending moments, 𝑀𝑟𝜃 denotes
torque, 𝜅𝑟 and 𝜅𝜃 denote curvatures, 𝜅𝑟𝜃 denotes torsion, 𝑁𝑟,𝑁𝜃, and𝑁𝑟𝜃 denote inertial forces in themiddle plane, and 𝜀𝑟,
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𝜀𝜃, and 𝛾𝑟𝜃 denote strains in the middle plane. It is assumed
that there is transversal microdisplacement which is allowed
by the displacement boundary condition, namely, virtual
displacement 𝛿𝑤. Virtual work done by the electromagnetic
forces and moments 𝐹𝑟, 𝐹𝜃, 𝐹𝑧, 𝑚𝑟, and 𝑚𝜃 can be written as

𝛿𝑈𝐹 = ∫𝑅
0

∫2𝜋
0

[𝐹𝑟𝛿𝑢𝑟 + 𝐹𝜃𝛿𝑢𝜃 + 𝐹𝑧𝛿𝑤 + 𝑚𝑟𝛿𝑢1
+ 𝑚𝜃𝛿V1] 𝑟 𝑑𝑟 𝑑𝜃.

(6)

Applying the Hamilton principle, we get

∫𝑡1
𝑡0

(𝛿𝑇𝑘 − 𝛿𝑈𝜀1 − 𝛿𝑈𝜀2 + 𝛿𝑈𝐹) 𝑑𝑡 = 0. (7)

Substituting (3)–(6) into (7) and considering axisymmet-
ric vibration problem, one can compute the magnetoelastic
axisymmetric vibration equation of spinning circular thin
plate, which gives

𝜕𝑁𝑟𝜕𝑟 + 𝑁𝑟 − 𝑁𝜃𝑟 + 𝐹𝑟 = [𝑑2𝑢𝑟𝑑𝑡2 − Ω2 (𝑟 + 𝑢𝑟)] 𝜌ℎ, (8)

1𝑟 [𝜕2 (𝑟𝑀𝑟)𝜕𝑟2 − 𝜕𝑀𝜃𝜕𝑟 + 𝜕𝜕𝑟 (𝑟𝑁𝑟 𝜕𝑤𝜕𝑟 )] + 1𝑟
𝜕 (𝑟𝑚𝑟)𝜕𝑟

+ 𝐹𝑧 = 𝜌ℎ𝑑2𝑤𝑑𝑡2 − 𝜌ℎ312 [1𝑟 𝑑2𝑑𝑡2 (𝜕𝑤𝜕𝑟 )
+ 𝑑2𝑑𝑡2 (𝜕2𝑤𝜕𝑟2 ) − Ω2 (1𝑟 𝜕𝑤𝜕𝑟 + 𝜕2𝑤𝜕𝑟2 )] .

(9)

3. Electromagnetic Force

The circular plate is affected by Lorentz force in the magnetic
field. The electromagnetic force per unit volume of plate is

f (𝑓𝑟, 𝑓𝜃, 𝑓𝑧) = J × B = 𝑓𝑟i + 𝑓𝜃j + 𝑓𝑧k, (10)

where J = 𝜎0(e + V × B), e denotes electric field intensity, V
denotes the velocity vector of each internal point of the thin
plate, and 𝜎0 denotes the electric conductance.

Integrating (10) in the direction of the thickness, we
obtain the expression of the electromagnetic forces and
moments:

𝐹𝑟 = ∫ℎ/2
−ℎ/2

𝑓𝑟𝑑𝑧 = 𝜎0 [𝑒𝜃 + 𝜕𝑤𝜕𝑡 𝐵0𝑟 − 𝑑𝑢𝑟𝑑𝑡 𝐵0𝑧]𝐵0𝑧
− 𝜎0 [𝑒𝑧 + 𝑑𝑢𝑟𝑑𝑡 𝐵0𝜃 − (Ω (𝑟 + 𝑢𝑟) + 𝑑𝑢𝑟𝑑𝑡 )𝐵0𝑟]𝐵0𝜃,

𝐹𝑧 = ∫ℎ/2
−ℎ/2

𝑓𝑧𝑑𝑧 = 𝜎0 [Ω (𝑟 + 𝑢𝑟) 𝐵0𝑧 − 𝜕𝑤𝜕𝑡 𝐵0𝜃]𝐵0𝜃
− 𝜎0 [𝑒𝜃 + (𝜕𝑤𝜕𝑡 + Ω𝜕𝑤𝜕𝑡 )𝐵0𝑟 − 𝑑𝑢𝑟𝑑𝑡 𝐵0𝑧]𝐵0𝑟,

𝑚𝑟 = ∫ℎ/2
−ℎ/2

𝑓𝑟𝑧 𝑑𝑧 = 𝜎0ℎ312 𝐵20𝑧 𝜕2𝑤𝜕𝑡𝜕𝑟
+ 𝜎0ℎ312 𝐵20𝜃 ( 𝜕2𝑤𝜕𝑡𝜕𝑟 − Ω𝑟 𝜕𝑤𝜕𝑟 ) − 𝜎0ℎ312 𝐵0𝑟𝐵0𝜃Ω𝜕𝑤𝜕𝑟 .

(11)

4. Principal Parametric Resonance of
a Rotating Circular Plate in Magnetic Field

According to the spinning circular plate in transverse mag-
netic field (0, 0, 𝐵0𝑧) and substituting the expressions of
bending moment, internal force, electromagnetic force, and
electromagnetic torque into (9), the axisymmetric oscillation
differential equation of the spinning circular plate in trans-
verse magnetic field is obtained as

− 𝐷𝑀(𝜕4𝑤𝜕𝑟4 + 2𝑟 𝜕3𝑤𝜕𝑟3 − 1𝑟2 𝜕
2𝑤𝜕𝑟2 + 1𝑟3 𝜕𝑤𝜕𝑟 ) + 12𝑟

⋅ 𝐷𝑁 (𝜕𝑤𝜕𝑟 )3 + 32𝐷𝑁 (𝜕𝑤𝜕𝑟 )2 𝜕2𝑤𝜕𝑟2 + 𝜎0ℎ312
⋅ 𝐵20𝑧 (1𝑟 𝜕2𝑤𝜕𝑟𝜕𝑡 + 𝜕3𝑤𝜕𝑟2𝜕𝑡) = 𝜌ℎ𝜕2𝑤𝜕𝑡2
− 𝜌ℎ312 [1𝑟 𝜕3𝑤𝜕𝑟𝜕𝑡2 + 𝜕4𝑤𝜕𝑟2𝜕𝑡2 − Ω2 (1𝑟 𝜕𝑤𝜕𝑟 + 𝜕2𝑤𝜕𝑟2 )] ,

(12)

where 𝐷𝑀 = 𝐸ℎ3/12(1 − 𝜇2) denotes the flexural rigidity,𝐸 denotes Young’s modulus, 𝐷𝑁 = 𝐸ℎ/(1 − 𝜇2) denotes the
tensile rigidity, and 𝜇 denotes the Poisson coefficient.

We assume that an approximation to the solution of𝑤(𝑟, 𝑡) can be expressed as

𝑤 (𝑟, 𝜃, 𝑡) = 𝑊 (𝑟) 𝑇 (𝑡) cos (𝑛𝜃)
= ∑
𝑛=0

𝑟𝑛

⋅ ( ∑
V=0,1,2,...

𝐶V ( 𝑟𝑅)2V)𝑇𝑛 (𝑡) cos (𝑛𝜃) ,
(13)

where 𝑅 denotes the radius of the plate. The coefficients
denote 𝐶0 = 1, 𝐶1 = −2, 𝐶2 = 1 for fixed supported
conditions and 𝐶0 = 1, 𝐶1 = −(6 + 2𝜇)/(5 + 𝜇), 𝐶2 =(1 + 𝜇)/(5 + 𝜇) for simply supported conditions and we let𝑛 = 1.

Substituting (13) into (12) and using Galerkin method,
the principal parametric resonance differential equation is
obtained (𝑛 = 1, 2):

𝐴1𝑛𝑇̈0 (𝑡) + 𝐵1𝑛𝑇̈1 (𝑡) + 𝐴2𝑛𝑇̇0 (𝑡) + 𝐵2𝑛𝑇̇1 (𝑡)
+ (𝐴3𝑛 + 𝐴4𝑛Ω2) 𝑇0 (𝑡) − (𝐵3𝑛 + 𝐵4𝑛Ω2) 𝑇1 (𝑡)
+ 𝐴5𝑛𝑇30 (𝑡) + 𝐵5𝑛𝑇31 (𝑡) + 𝐴6𝑛𝑇20 (𝑡) 𝑇1 (𝑡)
+ 𝐵6𝑛𝑇0 (𝑡) 𝑇21 (𝑡) = 0,

(14)

where
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𝐴1𝑛 = ∫𝑅
0

∫2𝜋
0

[(𝜌ℎ − 𝜌ℎ33 𝐶1𝑅2) + (𝜌ℎ𝐶1𝑅2 − 4𝜌ℎ33 𝐶2𝑅4) 𝑟2 + 𝜌ℎ𝐶2𝑅4 𝑟4]𝑊 cos𝑛−1 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟,
𝐵1𝑛 = ∫𝑅

0
∫2𝜋
0

[(𝜌ℎ − 2𝜌ℎ33 𝐶1𝑅2) 𝑟 + (𝜌ℎ𝐶1𝑅2 − 2𝜌ℎ3𝐶2𝑅4 ) 𝑟3 + 𝜌ℎ𝐶2𝑅4 𝑟5]𝑊 cos𝑛 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟,
𝐴2𝑛 = −∫𝑅

0
∫2𝜋
0

𝜎0ℎ312 𝐵20𝑧 (4𝐶1𝑅2 + 16𝐶2𝑅4 𝑟2)𝑊 cos𝑛−1 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐵2𝑛 = −∫𝑅

0
∫2𝜋
0

𝜎0ℎ312 𝐵20𝑧 (8𝐶1𝑅2 𝑟 + 24𝐶2𝑅4 𝑟3)𝑊 cos𝑛 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐴3𝑛 = ∫𝑅

0
∫2𝜋
0

64𝐷𝑀𝐶2𝑅4𝑊 cos𝑛−1 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐵3𝑛 = ∫𝑅

0
∫2𝜋
0

𝐷𝑀 ( 1𝑟3 + 192𝐶2𝑅4 𝑟)𝑊 cos𝑛 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐴4𝑛 = ∫𝑅

0
∫2𝜋
0

𝜌ℎ312 (4𝐶1𝑅2 + 16𝐶2𝑅4 )𝑊 cos𝑛−1 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐵4𝑛 = ∫𝑅

0
∫2𝜋
0

𝜌ℎ312 (8𝐶1𝑅2 𝑟 + 24𝐶2𝑅4 𝑟3)𝑊 cos𝑛 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐴5𝑛 = −∫𝑅

0
∫2𝜋
0

𝐷𝑁 [ 12𝑟 (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)
3 + 32 (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)

2 (2𝐶1𝑅2 + 12𝐶2𝑅4 ) 𝑟2]𝑊 cos𝑛−1 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐵5𝑛 = −∫𝑅

0
∫2𝜋
0

𝐷𝑁 [ 12𝑟 (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)
3

cos3 (𝜃) + 32 (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)(6𝐶1𝑅2 𝑟 + 20𝐶2𝑅4 𝑟3) cos3 (𝜃)
− 12𝑟2 (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)

2 (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5) ⋅ cos3 (𝜃) + 2𝑟2 (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5)(1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)
2

sin2 (𝜃)
⋅ cos (𝜃) − 12𝑟3 (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5)

2 . (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4) sin2 (𝜃) cos (𝜃) + 32𝑟4 (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5)
3

sin2 (𝜃)
⋅ cos (𝜃) − 12𝑟2 (6𝐶1𝑅2 𝑟 + 20𝐶2𝑅4 𝑟3)(1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)

2 ⋅ sin2 (𝜃) cos (𝜃)]𝑊 cos𝑛 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝐴6𝑛 = −∫𝑅

0
∫2𝜋
0

𝐷𝑁{ 32𝑟 (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)
2 (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4) cos (𝜃)

+ 32 [(2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)
2 ⋅ (6𝐶1𝑅2 𝑟 + 20𝐶2𝑅4 𝑟3) + 2 (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)(1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)(2𝐶1𝑅2 + 12𝐶2𝑅4 𝑟2)] cos (𝜃)

− 12𝑟2 (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5)(2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)
2 ⋅ cos (𝜃)}𝑊 cos𝑛−1 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟

𝐵6𝑛 = −∫𝑅
0

∫2𝜋
0

𝐷𝑁{ 32𝑟 (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)
2 (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)

2

cos2 (𝜃) + 2𝑟2 (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)
⋅ (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5)(1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4) sin2 (𝜃)
+ 32 [(1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)

2 (2𝐶1𝑅2 + 12𝐶2𝑅4 𝑟2) + 2 (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3)(6𝐶1𝑅2 𝑟 + 20𝐶2𝑅4 𝑟3) ⋅ (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4)]
⋅ cos2 (𝜃) − 12𝑟3 (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5)

2 (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5) ⋅ sin2 (𝜃) − 1𝑟2 (1 + 3𝐶1𝑅2 𝑟2 + 5𝐶2𝑅4 𝑟4) ⋅ (𝑟 + 𝐶1𝑅2 𝑟3 + 𝐶2𝑅4 𝑟5)
⋅ (2𝐶1𝑅2 𝑟 + 4𝐶2𝑅4 𝑟3) cos2 (𝜃) + 12𝑟2 (2𝐶1𝑅2 + 12𝐶2𝑅4 𝑟2)(1 + 𝐶1𝑅2 𝑟2 + 𝐶2𝑅4 𝑟4)

2 ⋅ sin2 (𝜃)}𝑊 cos𝑛 (𝜃) 𝑟𝑛𝑑𝜃 𝑑𝑟
𝑊 = 1 + 𝐶1𝑅2 𝑟2 + 𝐶2𝑅4 𝑟4.

(15)
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The time history diagrams of principal parametric reso-
nance about 𝑇0(𝑡) and 𝑇1(𝑡) are given in Figure 2 (ℎ = 8mm,𝑅 = 0.8m, Ω1 = 400 r/min, 𝐵0𝑧 = 0.1T, Ω0 = 7500 r/min).
This figure shows that under the same conditions the first-
order amplitude 𝑇0(𝑡) is greater than the second-order
amplitude 𝑇1(𝑡). In order to simplify the calculation, we only
analyze first-order amplitude:

𝐴1𝑇̈0 (𝑡) + 𝐴2𝑇̇0 (𝑡) + (𝐴3 + 𝐴4Ω2) 𝑇0 (𝑡) − 𝐴5𝑇30 (𝑡)
= 0, (16)

where

𝐴1 = 𝜌ℎ2 𝑅2 + (𝜌ℎ2 𝑅2 − 𝜌ℎ36 )𝐶1 + (𝜌ℎ3 𝑅2 − 𝜌ℎ33 )
⋅ 𝐶2 + (𝜌ℎ6 𝑅2 − 𝜌ℎ312 )𝐶21 + (𝜌ℎ10𝑅2 − 𝜌ℎ36 )𝐶22
+ (𝜌ℎ4 𝑅2 − 5𝜌ℎ318 )𝐶1𝐶2,

𝐴2 = −𝜎0ℎ312 𝐵20𝑧 (2𝐶1 + 4𝐶2 + 𝐶21 + 2𝐶22 + 103 𝐶1𝐶2) ,
𝐴3 = 𝐷𝑀𝑅2 (323 𝐶22 + 16𝐶1𝐶2 + 32𝐶2) ,
𝐴4 = 𝜌ℎ312 (2𝐶1 + 4𝐶2 + 𝐶21 + 2𝐶22 + 103 𝐶1𝐶2) ,
𝐴5 = 𝐷𝑁𝑅2 (83𝐶41 + 4𝐶31 + 20𝐶31𝐶2 + 2645 𝐶21𝐶22

+ 24𝐶21𝐶2 + 48𝐶1𝐶22 + 1763 𝐶1𝐶23 + 32𝐶32
+ 1607 𝐶42) .

(17)

We assume

Ω = Ω0 + Ω1 cos𝜔1𝑡, (18)

where Ω0 denotes a constant term, Ω1 denotes the constant
amplitude of disturbance term (the cosinusoid variation
of the angular velocity), and 𝜔1 denotes the frequency of
disturbance term. The order of Ω1 is less than the order ofΩ0.

Substituting (18) into (16), one can obtain

𝑇̈0 (𝑡) + 𝜂1𝑇̇0 (𝑡) + [𝜂2 + 𝜂3 (Ω20 + 12Ω21)]𝑇0 (𝑡)
+ (2Ω0Ω1𝜂3 cos𝜔1𝑡 + Ω212 𝜂3 cos 2𝜔1𝑡)𝑇0 (𝑡)
− 𝜂4𝑇30 (𝑡) = 0,

(19)

where 𝜂1 = 𝐴2/𝐴1, 𝜂2 = 𝐴3/𝐴1, 𝜂3 = 𝐴4/𝐴1, and 𝜂4 =𝐴5/𝐴1.

For simplification, we let 𝜔1𝑡 = 2𝜏, 𝑞(𝜏) = 𝑇0(𝜏)/ℎ and
obtain

𝑞̈ + 2𝜉̃𝑞̇ + 𝜔2𝑛𝑞 + (ℎ̃1 cos 2𝜏 + ℎ̃2 cos 4𝜏) 𝑞 − ℎ̃3𝑞3 = 0, (20)

where 𝜉̃ = 𝜂1/𝜔1, ℎ̃1 = 8Ω0Ω1𝜂3/𝜔21 , ℎ̃2 = 2Ω21𝜂3/𝜔21 , ℎ̃3 =4ℎ2𝜂4/𝜔21 , and 𝜔2𝑛 = (4𝜂2 + 4𝜂3(Ω20 + (1/2)Ω21))/𝜔21 .
We introduce a small parameter 𝜀. Equation (20) can be

expressed as

𝑞̈ + 2𝜀𝜉𝑞̇ + 𝜔2𝑛𝑞 + (𝜀ℎ1 cos 2𝜏 + 𝜀ℎ2 cos 4𝜏) 𝑞 − 𝜀ℎ3𝑞3
= 0, (21)

where 𝜉 = 𝜉̃/𝜀, ℎ1 = ℎ̃1/𝜀, ℎ2 = ℎ̃2/𝜀, and ℎ3 = ℎ̃3/𝜀.
We assume

𝜔𝑛 = 1 + 𝜀𝜎, (22)

where 𝜎 denotes the detuning parameter. By the use of the
method of multiple scales [20], the solution of (21) in terms
of different time scales can be expressed as

𝑞 (𝜏, 𝜀) = 𝑞0 (𝑇0, 𝑇1) + 𝜀𝑞1 (𝑇0, 𝑇1) . (23)

Substituting (22)-(23) into (21) and equating the coeffi-
cients of the same order of 𝜀 in both sides, the following
equations are obtained:

𝐷20𝑞0 + 𝑞0 = 0, (24)

𝐷20𝑞1 + 𝑞1 = −2𝐷0𝐷1𝑞0 − 2𝜉𝐷0𝑞0 − 2𝜎𝑞0
− (ℎ1 cos 2𝜏 + ℎ2 cos 4𝜏) 𝑞0 + ℎ3𝑞30,

(25)

where 𝐷0 = 𝜕/𝜕𝑇0, 𝐷1 = 𝜕/𝜕𝑇1. The solution of (24) is

𝑞0 = 𝐴 (𝑇1) 𝑒i𝑇0 + 𝐴 (𝑇1) 𝑒−i𝑇0 . (26)

Substituting (26) into (25), one may obtain

𝐷20𝑞1 + 𝑞1 = (3ℎ3𝐴2 𝐴 − 2i𝐴󸀠 − 2i𝜉𝐴 − 2𝜎𝐴) 𝑒i𝑇0
+ ℎ3𝐴3𝑒3i𝑇0 − ℎ12 (𝐴𝑒3i𝑇0 + 𝐴𝑒i𝑇0)
− ℎ22 (𝐴𝑒5i𝑇0 + 𝐴𝑒3i𝑇0) + cc,

(27)

where 𝐴󸀠 = 𝜕𝐴/𝜕𝑇1 and cc is conjugate complex number in
right side.

The solvability conditions of (27) express that the coef-
ficients of 𝑒i𝑇0 must be vanished. Then (27) has nontrivial
solution which gives

3ℎ3𝐴2 𝐴 − 2i𝐴󸀠 − 2i𝜉𝐴 − 2𝜎𝐴 − ℎ12 𝐴 = 0. (28)

To solve (28), 𝐴(𝑇1) is written in the polar form:

𝐴 = 12𝑎 (𝑇1) 𝑒i𝜑(𝑇1), (29)
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Figure 2: Time history diagram.

where 𝑎 and 𝜑 are real numbers. Substituting (29) into (28)
and separating the result into its real and imaginary parts, we
obtain

𝑎󸀠 = −𝜉𝑎 + 𝑎ℎ14 sin 2𝜑,
𝜑󸀠 = 𝜎 − 3𝑎2ℎ38 + ℎ14 cos 2𝜑.

(30)

The frequency-response equation of the principal para-
metric resonance can be obtained by combining the equa-
tions of (30) when 𝑎󸀠 = 0, 𝜑󸀠 = 0:

𝜉2 + (𝜎 − 3𝑎2ℎ38 )2 = (ℎ14 )2 . (31)

The stabilization of the steady-state solutions correspond
to the stabilization of the singular points. As in (30), we let
[20]

𝑎 = 𝑎0 + 𝑎1,
𝜑 = 𝜑0 + 𝜑1, (32)

where 𝑎1 and 𝜑1 are small compared with 𝑎0 and 𝜑0. Substi-
tuting (32) into (30) and linearizing the resulting equations in𝑎1 and 𝜑1, we obtain

𝑎󸀠1 = −𝜉𝑎1 + 2(3ℎ38 𝑎30 − 𝜎𝑎0)𝜑1,
𝜑󸀠1 = −3ℎ3𝑎04 𝑎1 − 2𝜉𝜑1.

(33)

According to the stability theory, the solution is stable if
the real parts of characteristic values are negative in (33). Due
to 𝜉 > 0, the real parts of characteristic values are negative if
and only if

3ℎ32 𝑎20 (3ℎ38 𝑎20 − 𝜎) > 0. (34)

As this time, the steady-state motion of rotating system is
stable.

5. Numerical Study

For numerical study of nonlinear primary parametric res-
onances of rotating circular plate with simply supported
conditions, the circular plate with the following parameters
is used: the mass density 𝜌 = 2670 kg/m3, Young’s modulus𝐸 = 71GPa, the electric conductance𝜎0 = 3.63×107 (Ω⋅m)−1,
and Poisson’s ratio 𝜇 = 0.34. In the figures, the solid curves
denote stable solution and the dotted line denotes unstable
solution.

Figure 3 shows the amplitude-frequency response curves
(𝐵0𝑧 = 0.1T). In order to make curves clear, the detuning
parameters and amplitude values are small. It is seen that the
value of amplitude 𝑎 decreases with the sign of the detuning
parameter 𝜀𝜎 changing from negative to positive. Resonance
phenomenon vanishes when the amplitude 𝑎 changes to
zero. We also notice the resonance region between the stable
and unstable solutions increases with the increase of Ω1,Ω0, and radius 𝑅 and the decrease of thickness ℎ. There
is an intersection in Figure 3(a), and different regularities
exist in both sides of this intersection. The stable amplitude
increases with the parametric Ω0 decreasing at the left of
intersection and decreases with the parametricΩ0 decreasing
at the right of intersection. According to numerical con-
version, we compare the first-order displacement amplitude
(Figure 2) which is obtained by numerical calculation with
amplitude frequency diagram (Figure 3(b)) which is obtained
by amplitude frequency response equation of steady motion
with given parameters and find that they are identical. It
shows that the rationality of solving the resonance solution
with the first order approximate expression of the multiscale
method is confirmed.

Figure 4 shows the characteristic curves of relationship
between the amplitude and the magnetic induction intensity𝐵0𝑧 (ℎ = 8mm, 𝑅 = 1m, Ω1 = 200 r/min). This figure
shows that system has stable and unstable solutions. When
the magnetic induction intensity 𝐵0𝑧 is small, the change
of amplitude is insensitive. From Figure 3(b), we can see
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Figure 3: Amplitude-frequency response curves.
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Figure 5: The characteristic curves of resonance amplitude-amplitude of velocity disturbance term.

that the magnetic induction intensity remains constant or
substantially constant with the variation of the detuning
parameter when bifurcation emerges. However, saddle-node
bifurcation exists and resonance vanishes when the magnetic
induction intensity increases to a critical value. It means
that we can attenuate the resonance phenomenon of rotating
plate by changing the magnetic field intensity while other
parameters are constant.

Figure 5 shows the characteristic curves of relationship
between the amplitude 𝑎 and the amplitude of velocity dis-
turbance termΩ1 with different magnetic induction intensity𝐵0𝑧 (ℎ = 8mm,𝑅 = 1m).Thefigure shows that unstable non-
trivial solutions exist when the detuning parameter 𝜀𝜎 =−0.01, while stable nontrivial solutions exist when 𝜀𝜎 = 0.The
nonresonance region, called zero solution region, expands
with the increase of 𝐵0𝑧. Meanwhile, we can see that the
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Figure 6: The characteristic curves of resonance amplitude-amplitude of velocity disturbance term.

distance between different curves decreases with the increase
of Ω1.

Figure 6 represents the characteristic curves of reso-
nance amplitude-amplitude of velocity disturbance termwith
parameter Ω0 (ℎ = 8mm, 𝑅 = 1m). It shows that unsta-
ble nontrivial solutions also existed when the detuning
parameter 𝜀𝜎 = −0.01, while it only has stable nontrivial sol-
utions when 𝜀𝜎 = 0. The distance between different curves
increases with the parametric Ω1 increasing. From Figures 4

and 5, we note that the curves show symmetrical distribution
because the direction of the time-varying speed is different.
Figure 6 is also shows the similar property.

Figure 7 shows the characteristic curves of resonance
amplitude-amplitude of velocity disturbance term with dif-
ferent detuning parameter 𝜀𝜎 (Ω0 = 7500 r/min, ℎ = 8mm,𝑅 = 1m). From Figures 6(a), 6(b), and 6(c) we note that
the unstable nontrivial solution occurs and increases when
detuning parameter 𝜀𝜎 increases along the negative direction.
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Figure 7: The characteristic curves of resonance amplitude-amplitude of velocity disturbance term.

Figures 6(d), 6(e), and 6(f) represent the intersection of
the stable and unstable solutions occurring on the axis of
abscissa. Figures 6(a) and 6(d) show that the stable solution
exists when the detuning parameter 𝜀𝜎 is positive, and the
zero solution region broadens with the increase of detuning
parameter 𝜀𝜎. These properties have no transformation with
the magnetic induction intensity varying.

Figure 8 is the phase trajectory charywith different detun-
ing parameters. The trajectory movement direction is the

direction of arrow (𝐵0𝑧 = 0.1T, Ω0 = 7500 r/min, Ω1 =400 r/min, 𝑅 = 0.8m, ℎ = 8mm). There is only one stable
solution when the detuning parameter 𝜀𝜎 is close to zero,
and the unstable solution occurs with the increase of 𝜀𝜎
in negative direction. There only exists a stable focus 𝑆1 in
Figure 8(a) whose stable solution is 𝑎𝑆1 = 0.008, which is
written as 𝑆1 (𝑎𝑆1 = 0.008); there is only one stable focus𝑆1 (𝑎𝑆1 = 0.018) and a saddle point 𝑆2 (𝑎𝑆2 = 0.016) in
Figure 8(b); there exist a stable focus 𝑆1 (𝑎𝑆1 = 0.021) and
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Figure 8: The phase plane curves.

a saddle point 𝑆2 (𝑎𝑆2 = 0.019) in Figure 8(c). These stable
solutions coincide with the amplitude characteristic curves in
Figure 2.

Figure 9 is phase diagrams with different parameters. We
get that the amplitude of the circular plate increases with the
increase of the detuning parameter 𝜀𝜎, magnetic induction
intensity 𝐵0𝑧, and the parametric Ω1 and decreases with
the increase of parametric Ω0. The solution coincides with
the amplitude characteristic curves in Figure 2. The rotating
system represents single period condition.The singular point
is (0, 0).
6. Conclusions

Nonlinear principal parametric resonance and stability for
rotating circular plate subjected to parametric excitation
resulting from the time-varying speed in the magnetic
field are investigated. The influence of rotating velocity,
the detuning parameter, the magnetic induction intensity,

thickness, and radius on the principal parametric resonance
is studied.

(1) The magnetoelastic parameter vibration equation of
rotating electroconductive circular plate in the mag-
netic field is derived.

(2) According to the numerical examples, the following
results can be concluded: (a) the resonance amplitude
presents different change regularities with variation
of rotating velocity, the detuning parameter, and the
magnetic induction intensity; (b) there are unstable
and stable solutions and they are symmetrical withΩ1 = 0; (c) the magnetic induction intensity can be
chosen or adjusted so that the resonance amplitude
becomes zero.
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