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Generally, there are two important types of microseismic (MS) signals caused by mining and blasting activities at coal mines. The
waveform characteristics of MS signals using FFT, STA/LTA method, and envelope analysis were studied to distinguish these two
types of MS signals. The main results are as follows: the dominant frequency and duration of two types of signals are significantly
different. The following peak envelope curves of two types of MS signals fit a power function. The power exponent was obtained to
describe the attenuated speed of the MS signals. The attenuation of the coal mining MS signals is slower and more fluctuant than that
of the blasting signal. Waveform characteristics consisting of the dominant frequency, duration, and attenuation coefficient were
extracted as the discriminating parameters. The discriminating performance of these parameters was compared and discussed.
Based on the waveform characteristics, a discriminant model for coal mining MS and blasting signals was established by using
Fisher linear discriminant method and its performance was checked. The results show that the accuracy of the discriminant model

is more than 85%, which can meet the requirements of MS monitoring at coal mines.

1. Introduction

The rockburst is a sudden, violent fracture of rock mass
in tunnels and mines, generally caused by failure of highly
stressed rock and the rapid instantaneous release of accu-
mulated stain energy [1-3]. The rockburst often causes coal
mass failure, roadways collapse, casualties, mining equip-
ment, ground building damage, and so on. The occurrence
of the rockburst is accompanied by many small energy
microseismic activities which are of great importance for
rockburst research [4]. A MS monitoring system installed in
a mine can monitor the state of the rock mass by analyzing
the MS events caused by the mining activities. The core
parts of the MS monitoring system include the layout of the
monitoring network, data processing, MS source location,
and MS early warning [5]. One of the challenges of the data
processing is to identify the MS signals caused by coal mining
activities among the many interference signals [6-8]. In these
complex waveforms, the blasting signals are dominant and

can be easily confused with the coal mining MS signals.
Thus, distinguishing between the coal mining MS signals and
blasting signals becomes the main task of data processing and
worth further study.

Recently, MS monitoring systems were widely installed
in coal mines in China, and considerable MS data has been
recorded. However, little attention has been paid to the
discrimination of coal mining MS signals and blasting signals
and there is also lack of related literature based on wave-
form analysis. By contrast, the discrimination of earthquake
signals against those of nuclear explosions has been studied
extensively. The widely used methods of discrimination can
be divided into two categories. One is based on source or
waveform characteristics which includes the source location,
source depth, origin time, direction of first motion of P wave,
ratio of surface wave magnitude to body wave magnitude,
ratio of P wave first arrival amplitude to maximum amplitude,
ratio of Love wave amplitude to Rayleigh wave amplitude,
and ratio of P wave spectral amplitude to S wave spectral
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amplitude [9-11]. The other is based on statistical identifi-
cation which includes Fisher discriminant classifier, logistic
regression, unascertained measurement, and neural networks
[12-14].

Studies on MS signals were also conducted in non-coal
mines. Dong analyzed the source parameters of blasting
and MS events of three mines in Australia and Canada
and established three statistical discriminant models by the
Fisher classifier, the naive Bayesian classifier, and the logistic
Regression. The classification performances and discriminant
precision of three statistical techniques were discussed and
compared [8, 15]. Ma et al. analyzed seven parameters to
distinguish between mining MS signals and blasting signals
in a phosphorite mine, based on which, two statistical
discriminant models were proposed by the Bayesian classifier
and the Fisher classifier. Their models were more accurate
than traditional methods [16, 17]. Based on the works
of Booker and Taylor, Malovichko applied a multivariate
maximum-likelihood Gaussian classifier technique to dis-
criminate between mining MS and blasting events. Analysis
of a large number of events showed that approximately 20%
(1431 out of 7053) of MS mining events were reclassified as
blasting events [7]. Vallejos and Mckinnon applied logical
regression and neural network modeling to classify mine
earthquake and blasting events. The location error and 13
seismic parameters provided by full-waveform system of
ESG were used to calibrate the models. The logical regres-
sion and neural network approaches can effectively classify
different event categories under nonlinear conditions [18].
Zhao et al. decompose the signals in time and frequency
domains, and time-frequency characteristics of two kinds
of waveforms are analyzed. The results showed that the
energy of MS signals was mainly concentrated in the lower
frequency band than blast vibration signals [19]. Pan et al.
proposed a comprehensive analysis method to identify and
calibrate microseismic events by using STA/LTA method and
waveform information [20]. Zhu et al. analyzed the fractal
dimension box of specified frequency bands through the
wavelet analysis and the fractal theory and obtained 23-
dimensional values of pattern recognition feature vector.
Finally, a SVM network model was established to recognize
MS events, but the efficiency of identification still needs
further improvement [21]. Jiang et al. presented a strategy
for classifying local multichannels MS waveforms, triggered
by a single event. However, the method required a lot of
computation and the efficiency of identification needs further
improvement [22]. Li et al. analyzed the characteristics of
coal mining MS and blasting signals using the Hilbert-Huang
Transform (HHT) method, but, no clear line of demarcation
between these characteristics of the two types of signals was
obtained [23].

As the geological conditions in coal mine areas are
complex and the transmission medium is not homogenous,
the MS signals in coal mines are more complicated than
those in non-coal mines and natural earthquakes. Thus, it is
difficult to differentiate the two kinds of signals with high
precision. Moreover, because most MS monitoring sensors
used in coal mines are single component and the monitoring
region is small, the difference between the propagation time
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of the P waves and S waves produced by the rupture of coal
and rock is small. The S waves are likely to overlap the P
coda waves, making it difficult to detect them. Therefore,
the recognition method, utilizing the P/S-wave energy ratio
which is widely used to identify nuclear explosion signals
and natural earthquake signals, is not suitable for coal mines.
In this paper we analyzed three significant characteristics of
these two types of signals using the Fourier transform (FFT),
short-term averaging/long-term averaging (STA/LTA), and
envelope analysis. Based on the characteristics, a discrim-
inant model for coal mining MS signals and blasting sig-
nals, with the help of Fisher linear discriminant method,
is established, which are useful to improve the efficiency
of automatic discrimination and reduce the workload of
artificial discrimination.

2. Outline of the Mine and MS
Monitoring System

2.1. Coal Mine and Field MS Site Description. The Qianqiu
coal mine is located at Sanmenxia city, Henan province,
China, with a history of rockburst. It is one of the core mines
in the Yima Coal Group with the annual coal production
of 2.1 million tons. The number 21 mining district was the
main production area and the number 21141 working face
was the main mining face when this work was conducted.
As shown in Figure 1, the 21141 is a longwall panel in the
number 21 mining district with a dimension of 1500 m x
130 m. The average overburden depth is 684.4m, and the
average coal seam thickness and dip angle are 10.6 m and
13°, respectively. The number 21121 goaf and number 21161
virgin field are located in the northern and southern side
of number 21141 longwall panel, respectively. The immediate
roof of the coal seam is composed of dark grey mudstone with
the thickness of 23.02-27.63 m. The main roof is composed of
mottled sand, conglomerates, and sandstone with an average
thickness of 612m. The huge thick gravel roof can easily
accumulate a great deal of elastic energy which can be
released suddenly during the process of fracturing or sliding,
leading to a rockburst. According to the field statistical
analysis, 5 rockbursts occurred within 100-200m of the
working face and 9 rockbursts occurred more than 200 m
from the working face from 2008 to 2012.

2.2. 'The MS Monitoring System. The rockbursts and mine
earthquakes have become more and more severe with the
increase of mining depth and intensity. To monitor these
mining induced seismic activities, the ARAMIS M/E MS
monitoring system was installed in the Qianqgiu coal mine.
This system was developed by EMAG mining automation
center, Poland. MS signals are recorded by the SPI-70 micro-
seismic sensors and transmitted these signals to the data
analysis center by the digital transmission system (DTSS).
The system can monitor events with energy greater than 100],
frequency less than 250 Hz, and dynamic ranges less than
100 dB. The MS technique has been a daily rockburst mon-
itoring tool because of the real time monitoring capability,
source location, events energy calculations, and rockbursts
risk assessment. The ARAMIS M/E MS monitoring system at
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FIGURE 1: Number 21141 longwall panel and layout of the ARAMIS M/E system sensors network.

the Qiangiu coal mine is equipped with 16 MS sensors, S1, S2,
..., S16. The layout of the MS monitoring network is shown
in Figure 1.

2.3. Sample Database. The MS events recorded by the
ARAMIS MS monitoring system can be divided into two
main categories: (1) coal mining MS events, which refer to
the vibration caused by mining; they contain abundant infor-
mation on the fracturing of the coal and rock; (2) blasting
events, which refer to the vibration caused by blasting. The
type of recorded event was manually confirmed and marked
with different symbols in the database of ARAMIS system. To
establish discriminant model of coal mining MS and blasting
signals, fifty coal mining MS events and fifty blasting events
were randomly selected as the training sample; the other fifty
coal mining MS events and fifty blasting events were selected
as the testing sample. As the distance between sensors and
hypocenter increases, the attenuation and changes of signals
become stronger. Therefore, the earliest available signal,
received by the nearest sensor from the source, should be
selected as the representative signal of the event. Finally, a
total of one hundred training sample signals and one hundred
testing sample signals are obtained.

3. Characteristics of the Coal Mining MS and
Blasting Signals

3.1. Spectral Characteristics of the Coal Mining MS
and Blasting Signals

3.11. Fourier Transform Method. In the field of frequency
spectrum analysis, the fast Fourier transform (FFT) is often

used to convert signals from the time domain into the
frequency domain [24, 25]. The theoretical basis of FFT is
as follows: any function that satisfies the Dirichlet condition
can be expressed as a sum of sinusoidal functions of different
frequencies. The proportion of sine waves of frequency w in
these signals is given by [26]

Fw) = fo £ e dr. )

3.1.2. Dominant Frequency Statistics for the Coal Mining
MS and Blasting Signals. For the signal processing in this
work, the MATLAB command FFT was used to perform the
frequency spectrum analysis. The dominant frequencies of
100 training sample signals (50 coal mining signals and 50
blasting signals) were obtained and analyzed statistically. As
shown in Figure 2, the dominant frequencies lie in the band
of below 150 Hz. The majority of the coal mining MS signals
fall within the low-frequency range while most of the blasting
signals are in the high-frequency range. Below 80 Hz there are
39 signals, which are 78% of all the coal mining MS signals.
Above 80 Hz there are 42 signals, comprising 84% of all the
blasting signals. The results demonstrate that the dominant
frequency of the coal mining MS signals is generally lower
than that of the blasting signals. Thus the dominant frequency
can be an important index for distinguishing the two types of
signals.

3.2. Duration of the Coal Mining MS and Blasting Signals

3.2.1. Calculating the Signal Duration. The duration of the
signals is the time from the arrival time to the end of
undulations (Figure 3). We define T§,,, as the arrival time and
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FIGURE 2: Distribution of the dominant frequency of coal mining
MS and blasting signals.
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FIGURE 3: Diagram illustrating the arrival and termination times of
a coal mining MS signal.

T,nq as the terminate time of a wave. For the sample frequency
f> the duration is given by
_ (Tend ~ Tstart)

T, 2)

s
The arrival time and termination time can be determined

by the short-term average/long-term average (STA/LTA)
method as [27-29]

R = STA ) _m Yiin CE()) )
LTA = s 3 CE(f)

where i is the sampling moment, which represents the com-
mon position of short time window and long time window.
j ranges in each of short time and long time window, and
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FIGURE 4: Duration distribution of coal mining MS and blasting
signals recorded in the coal mine.

it is used to calculate average values of signal amplitude in
the windows. #; is the length of the long time window, and
n, is the length of the short time window. CF(i) represents
the characterization function at point i. In practice, CF(3) is
often replaced with the signal energy or the absolute value of
amplitude. When the ratio R; > A (A is the trigger threshold),
an event is detected. Thus, automatic recognition and arrival
picking can be implemented. In this study, the values for T,
are n; = 50 (sampling points), n, = 20 (sampling points), and
A =2 and the values for T, 4 are n; = 50 (sampling points), 7,
= 20 (sampling points), and A = L.5.

3.2.2. Duration Statistics of the Coal Mining MS and Blasting
Signals. Taking one of the coal mining MS signals as an
example, the STA/LTA time series of the arrival time and
terminate time are shown in Figure 3. The windows move
from the first point to the last point for picking Ty, and the
windows move from the last point to the first point for picking
T..4- The coal mining MS signal starts at the 920th data point
and ends at the 1398th data point in Figure 3. So the duration
is T'= (1398 — 920)/500 = 0.956 s according to (2).

Figure 4 shows the durations of 100 training sample
signals. The duration distribution of all the signals is in the
range of 0.5~6s; most of the coal mining MS signals last
longer than the blasting signals. With 2 s as the dividing line,
44 signals lasted 2~6 s, making up 88% of the coal mining
signals and 35 signals lasted 0.5~2 s, contributing 70% of the
blasting signals. Therefore, the duration of the signal can be
another important index to differentiate between the coal
mining MS and blasting signals in coal mines.

3.3. Attenuation Characteristics of the Coal Mining MS
and Blasting Signals

3.3.1. Calculating the Attenuation Coefficient. We defined the
period from the peak point of the MS waveform (maximum
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FIGURE 5: Following peak attenuation curve of typical coal mining MS signal.

amplitude) to the corresponding point of terminate time
as the attenuation of the MS signal. The following peak
attenuation curve is proposed for quantitative analysis of the
MS signal attenuation. In Figure 5, T, is the time of peak
point, T, 4 is the termination time, the envelope fitting curve
from Ty, t0 T¢q is defined as the following peak attenuation
curve.

To investigate the following attenuation curve, the enve-
lope curve should be obtained first. The steps to obtain the
envelope curve are as follows:

(1) Picking all the peaks of the waveform

(2) Interpolating the discrete peaks using cubic spline
interpolation to obtain a complete envelope curve.

The cubic spline interpolation [30, 31] is based on the
following method: the interval [a b] is divided as a < x;, <
x, < -+ < x, <b. For the point x;, y; = f(x;), if the function
S(x) is cubic polynomial in every small interval [x;, x;,,] and
also has second-order continuous derivatives in [a, b], S(x) is
regarded as a cubic spline function in [a b]. Moreover, if S(x)
satisfies

S(x;)=y;, (i=0,1,...,n) (4)

after derivation, the expression of S(x) is

S(x) = 0 (%) y; + gy (%) Yigy + B () 1 + iy,
x € [xpx;]

To study the function form corresponding to the fol-
lowing peak envelope curve of the coal mining MS and
blasting signals recorded in the mine and then to describe
the signal attenuation process quantitatively, it is necessary
to fit the following peak envelope curve of the signals. Gao
et al. found that the shock vibration energy in rock-soil
medium diminished in a power relation with respect to the

travel distance [32]. This power function is adopted here to
investigate the attenuation of the recorded signals:

y = ax’, (6)

where y is the amplitude of the signal, x is the sampled
point, and a and b are the fitting parameters corresponding
to the peak value and attenuation rate, respectively. Generally
speaking, the energy of the signal decreases more rapidly
when the absolute of b (|b]) increases; thus, |b| is called the
attenuation coefficient. The fitting precision is represented
by the adjusted R-squared value, which is a calibration
correlation coeflicient and is widely used in Origin and
MATLAB. A coefficient value close to 1 indicates a high-
fitting precision and stable attenuation of the signal’s energy.

3.3.2. Statistics of Attenuation Coefficient and Fitting Preci-
sion. Taking the coal mining MS signal in Figure 3 as an
example, the envelope curve of the waveform is given by the
cubic spline interpolation and the termination time point
is determined by the STA/LTA method. The fitted envelope
curve stretching from the maximum amplitude point to the
termination time point is shown in Figure 6. The attenuation
coeflicient of the signal is 27.73 with a fitting precision (Adj.
R-square) of 0.96, indicating that the following peak envelope
curve satisfies the power function.

The fitting precision and attenuation coefficient of 100
training sample signals are obtained as shown in Figure 7.
Figure 7(a) shows the distribution of the fitting precision of
the following peak attenuation curve. Of the 100 sampled
signals, 93% show a fitting precision above 0.8, indicating
that the attenuation curve of both types of signals satisfy
the power function. The fitting precision of the following
peak attenuation curve of the coal mining MS signals is
mainly within 0.8~1, with 42% between 0.8 and 0.9 and 48%
between 0.9 and 1. The fitting precision of the following peak
attenuation curve of the blasting signal is higher, with 84%
of the signals falling in the range of 0.9~1. Therefore, in most
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cases, the fitting precision of the attenuation curve of the coal
mining MS signals is lower than that of the blasting signals.
The main reason is that the attenuation of the coal mining MS
signals often fluctuates while the attenuation of the blasting
signals is rapid and steady.

Figure 7(b) shows the distribution of the attenuation
coefficient for the coal mining MS and blasting signals,
which is generally within the range of 2~25. The attenuation
coeflicients of the coal mining MS signals are smaller than
those of the blasting signals, which demonstrates the slower
damping of the coal mining MS signals. Among all the
coal mining MS signals, the attenuation coefficients of 39
signals (78%) are located in the range 2~8. Among all the
blasting signals, the attenuation coefficients of 35 signals
(70%) are located in the 8~25 range. This demonstrates that

the attenuation coeflicient can reflect the difference between
the two kinds of signals and can be used as an important index
to distinguish between the two types of signals.

4. Discriminant Model of the Coal Mining MS
and Blasting Signals

4.1. Fisher Linear Discriminant. Pattern recognition is an
emerging subject in the 1960s. After decades of research, it has
been successfully used in various fields. For instance, it has
been applied to analyze nuclear explosion and earthquakes
and has achieved some results [12-14]. However, it is seldom
applied in the discrimination of coal mining MS signals
and blasting signals. Considering that there is a lack of
the corresponding geophysical models and equations in the
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discrimination of coal mining MS signals and blasting signals
and the data are not subject to the classical statistics, so the
pattern recognition has become an effective research method.
The pattern recognition methods include Bayes method,
minimum distance method, ICHAM, Fisher, SVM, and BEG,
in which Fisher linear discriminant analysis has been widely
used in seismology. Therefore, this paper introduces the
Fisher linear discriminant analysis for the discrimination of
coal mining MS signals and blasting signals.

The basic principle of Fisher linear discriminant analysis
is to project multidimensional and multiclass data to the
same direction and separate two or more classes [15, 17].
In fact, it is a dimension reduction process. Suppose the
number of collectivity is m, that is, G;,G,,...,G,,. The
corresponding mean vectors and covariance matrices are

D u@ ™ and VO,V V] respectively. The
number of #; samples is selected from the total samples, as

follows [33, 34]:

G _ [ 0 T
X, —{xal,xaz,...,x(xp} @)
(=1,2,...,n5 i=12,...,m).

MTXg) is the projection of Xs) on the axis, which is defined
as

(@) (@) @
I Xl {!41 oc1>.”2xalz’~--’l/‘pxazp}
i=12,...,m)
—(i) 1 o (i)
PR
= (®)
JRCRA
v_1 0)
X= nZZX(a)
i=la=1
m
n= Zn,-,
i=1
where X and X are the intergroup average and the total

average, respectively. The intergroup difference is as follows:

(5"

where p is the maximum eigenvalue A’s corresponding
eigenvector and S; is the deviation matrix of »; samples

XD (a=1,2,...
is as follows:

,1;) in G; samples. The intergroup difference

n;

(T(I)

T)2

@‘
[\/]§

Il
—

a=1

W (X7 -%) (X0 -X) u (10)

T [ni (X7-%)(x" -X)Tu] 2 "By,

To let the discrimination function better distinguish
samples from different population samples, the difference
between two groups from two population samples is expected
to be bigger while the intergroup difference is expected to be
smaller. Above all,

s

Il
—_

n

b ptTBpt an

e Wi

For this, the Lagrange’s multiplier is applied and the
equation of F = u"Bu — A(u" Wi — 1) can be obtained. The
partial differential result for F is 0:

oF — =2Bu-2AWu = 0. (12)
U

By calculating the above formula, the following result
could be obtained.

(W'B-AI)u=o. (13)

Then the coeficients of the discrimination function could
be calculated. I is the ratio of sum of squares of deviation
within the group to the sum of squares of deviation between
groups. By solving the equations, S-2 discrimination func-
tions could be obtained (S = min{G — 1, m}). Generally, most
of the information of the sample could be explained by the
first equation. If the first discrimination function is difficult
to distinguish, the following discrimination functions could
be applied for comprehensive consideration.

Writing the function y = yTX and plugging x* into y =
1"X, 7% could be obtained. Then values of 7 are ranged

from small to large; for example, if y(l) y@ < ~-§(m), the

threshold value between G; and G;,, is as follows:

n; +n —(i+1)
y (ii+1) = A. (14)

1+ iy

Take the training sample data of the known type into the
above formula and predict its type. For the given sample X, if
y = u" X is between y,(i — 1,i) and y,(i,i + 1), X belongs to
Gl'.
4.2. Discriminant Model. To use Fisher linear discriminant
analysis to get the discriminant function of coal mining MS
and blasting signals and establish discriminant model, it is
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TABLE 1: Tests of equality of group means.

Characteristic variables Lambda of Wilks F dfl df2 Sig.

Dominant frequency 0.427 131.674 1 98 0.000
Duration 0.654 51.917 1 98 0.000
Attenuation coefficient 0.701 41.775 1 98 0.000

TABLE 2: Structure matrix.

Characteristic variables Correlation coefficient

TaBLE 3: Central values of the final discriminant function in the coal
mining MS signals and blasting signals.

Dominant frequency 0.796 Category of signal Central values of the function
Duration —0.500 Coal mining MS —-1.442
Attenuation coefficient 0.448 Blasting 1.442

necessary to select proper signal characteristics to establish
eigenvectors. According the discussion of third chapter, we
can find that these two types of signals are significantly
different in dominant frequency, duration, and attenuation
coefficient. Therefore, these three characteristics are chosen
to construct the eigenvector. The 100 x 3 characteristic
matrix is composed of training sample signal’s dominant
frequency, duration, and attenuation coefficient. Meanwhile,
the modeling needs one column of data to show the real type
of signals in each group. Thus the coal mining MS signals
are marked as 1 and the blasting signals are marked as 2.
Importing the characteristic matrix and categorical data of
samples into SPSS to establish the model, partial results are
as follows.

(1) Tests of Equality of Group Means. Table 1 shows the tests of
equality of group means. It reflects these two types of signals’
mean differences in different indexes. The probability p (Sig’s
corresponding data in Table 1) is all less than 0.001 in the
detection of the coal mining MS signals and blasting signals.
It is indicated that there are significant differences between
these two types of signals in each index, so the discriminant
analysis could be carried out.

(2) Structure Matrix. The structure matrix in Table 2 shows
signals’ dominant frequency, duration, and attenuation coef-
ficient and the final discriminant functions’ correlations
between groups. It could be seen that the bigger the cor-
relation coeflicients absolute value, the greater the effects
of the variable on these two types of signals’ discriminant
functions. As shown in the table, the dominant frequency has
the greatest effects on the discriminant functions followed by
duration. The attenuation coefficient’s impact is minimal, but
the correlation coeflicient still reaches 0.448.

(3) Central Values of the Final Discriminant Function in the
Coal Mining MS and Blasting Signals. Table 3 shows the
central values of the final discriminant functions in the coal
mining MS signals and blasting signals. The result shows
only one discriminant function, with a discriminant score
of —1.442 and 1.442 in the center of coal mining MS signals
and blasting signals, respectively. Therefore, when the signal’s
discriminant score is near —1.442, the signal will belong to

TABLE 4: Discriminant function coeflicients of two types of signals.

Characteristic variables Discriminant function coefficients

Dominant frequency 0.029
Duration —-0.643
Attenuation coeflicient 0.081
Constant -1.592

the coal mining MS signal. When the discriminant score is
close to 1.442, the signal will be considered as the blasting
signal. Due to the only discriminant function, the obtained
scores change in the 1D line, and the values of the coal mining
MS signal and blasting signal are symmetric about the origin.
Then the demarcation point of the scores could be considered
as the origin and the discriminant process could be simplified.
When the signal’s discriminant score is less than zero, the
signal will be determined as the coal mining MS signal,
whereas the signal is considered as the blasting signal. The
discriminant result is more reliable with the score larger or
smaller than zero.

(4) Discriminant Function Coefficients of Coal Mining MS
and Blasting Signals. Table 4 shows the discriminant function
coeflicients of coal mining MS and blasting signals through
modeling. With f, representing the signal’s dominant fre-
quency, t,; representing the duration, and c, referring to the
attenuation coefficient, the discriminant function formula of
the coal mining MS and blasting discriminant model could
be expressed as follows:

F(f, tgc,) =0.029f, — 0.643t, + 0.081¢c, — 1.592,  (15)

where F(f,,t;¢,) refers to the discriminant score of the
signal. If F(f,,t4,¢,) < 0, the signal is determined as the coal
mining MS signal; if F(f,,t;,¢c,) > 0, the signal will belong
to the blasting signal. The discriminant result is more reliable
with F(f,,t4,¢,) larger or smaller than zero.

4.3. Performance of the Discriminant Model. Table 5 shows
the eigenvalues of the discriminant analysis. The eigenvalues
represent the amount of information, so the larger the
eigenvalue, the higher the discriminating performance of
the function. The canonical correlation coefficient refers to
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TaBLE 5: Eigenvalue of discriminant analysis.
Function Characteristic value Variance contribute rate% Cumulative variance contribute rate % Regular relativity
1 2.122 100.0 100.0 0.824
TABLE 6: Identification results of training sample.
Category of signal Total Number of correct identifications Number of error identifications Correct recognition rate%
Coal mining MS 50 45 5 90
Blasting 50 46 4 92

the correlation between the function coefficients and the
classified group. It could be seen from the table that the
discriminant function capability is significant. The variance
contribution rate is 100%, which could explain 100% of the
sample information, and the canonical correlation coefficient
is higher.

The constructed coal mining MS and blasting discrimi-
nant model is utilized to test the signal data of 100 training
samples, and the testing results are shown in Table 6.
Among 50 groups of coal mining MS signals, 45 groups
are recognized correctly, and 5 groups are recognized as the
blasting signals mistakenly. Among 50 groups of blasting
signals, 46 groups are recognized correctly, and 4 groups are
wrongly recognized as the coal mining MS signals. Therefore,
the correct recognition rates of the discriminant model for the
coal mining MS signals and blasting signals are 90% and 92%,
respectively, which has relatively higher recognition rate than
the single criterion.

To further check the performance of the discriminant
model, 100 testing sample signals were identified and clas-
sified by using this model and then compared with the real
category. Besides, two other classifiers (Bayes and Random
forest (RF)) were applied to establish discriminant models
using 100 training sample signals and check the accuracy of
the discriminant models using 100 testing sample signals. The
discriminant results of three classifiers for 100 testing sample
signals were compared with the discriminant results using

single characteristic. As shown in Figure 8, the discriminant
results using multiple characteristic indexes are much better
than the single indexes. The performance of the Fisher, Bayes,
and RF will have little difference as long as the proper
characteristic indexes are used, which indicates that selecting
proper characteristic indexes is one of the key steps to
distinguish different types of MS signals before establishing
discriminant model. Take the discriminant results of Fisher
as an example, among 50 groups of coal mining MS signals,
7 groups of signals are wrongly recognized as the blasting
signals. Among 50 groups of blasting signals, 5 groups
are wrongly recognized as the coal mining MS signals. It
could be obtained that the correct recognition rates of the
model for the coal mining MS signals and blasting signals
are 86% and 90%, respectively. The average accuracy of
Fisher for two types of signals is 88%, which is higher
than the other two classifiers (the average accuracy are both
87%). Thus, this Fisher discriminant model has relatively
high accuracy and stability and its application could be
promoted.

4.4. Application of the Discriminant Model. According to
the analysis results of field MS monitoring at Qiangiu coal
mine, a typical destructive mining MS event with energy
more than 107 ] and a roof-break blasting test occurred at
number 21141 longwall panel, respectively. Figures 9 and
10 are the waveforms of these MS events recorded by the
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FIGURE 9: Waveforms of the destructive mining MS event.

ARAMIS MS monitoring system. As shown in Figure 9,
there are 15 waveforms, among which, the waveform of S16
is not complete and its zero line drifts. Therefore, there are
14 waveforms involved in the source location. As shown in
Figure 10, there are 16 waveforms, among which, S13 and S15
have low signal-noise ratio (SNR) and the arrival time and the
terminal time could not be picked up. Therefore, the other 13
waveforms are involved in the source location.

The sensor with the earliest arrival time usually has the
smallest travel distance from the source, and the recorded
waveform has high SNR and is suitable for distinguishing
the type of MS signals. For the destructive mining MS and
blasting events, sensor S7 and sensor S3 had the earliest
arrival time, and the signals of S7 and S3 were selected as the
analysis object, respectively.

The analysis results of the destructive mining MS event
are shown in Figure 11. The arrival time and the terminal
time of sensor S7 are obtained by the STA/LTA method
(the 1152th sampling point and the 2906th sampling point,
resp.). Therefore the signal duration is (2906 — 1152)/500 =
3.51s. Figure 11(b) is the spectrum of the signal, which was
obtained by FFT method. It is found that the frequency
distribution is dispersed. There are wideband signals with
10-250 Hz frequency. The dominant frequency is 37.76 Hz
and the subdominant frequency and the third frequency are
86.7 Hz and 123.1 Hz. As shown in Figure 11(c), the following
peak envelope curve (red line) corresponds to the section
from the 1344th sampling point to the 2906th sampling point.
The declining process of the signal is not steady, which is
the typical characteristic of the coal mining MS signals. The
attenuation coefficient (|b|) is 6.14 and the fitting precision
(Adj. R-square) is 0.85. The discriminant score is —2.26, which
means this is a coal mining MS event.

The analysis results of the blasting event are shown in
Figure 12. The signal duration is (1686 — 990)/500 = 1.39s
(Figure 12(a)). Figure 12(b) is the spectrum of the signal, and
the frequency distribution is relatively dispersed. There are
obvious signals in 20-150 Hz frequency range. The dominant
frequency is 135.97 Hz. Figure 12(c) is the following peak
envelope curve and attenuation curve of the signal. The
following peak envelope curve (red line) corresponds to the
section from the 1110th sampling point to the 1686th sampling
point. The declining process of the signal is relatively steady
and there are no obvious fluctuations. The attenuation coef-
ficient (|b]) is 9.04 and the fitting precision (Adj. R-square) is

Shock and Vibration

0.96. The discriminant score is 2.19, indicating that the signal
belongs to blasting event.

5. Conclusions

Three significant characteristics of the coal mining MS and
blasting signals were studied by using FFT, STA/LTA, and
envelope analysis. Based on these characteristics and Fisher
method, a discriminant model for these two types of signals
was established. The conclusions are as follows.

(1) The following peak attenuation curves of the mining
MS and blasting signals satistfy the power function,
which makes it reasonable to quantify the attenuation
and stability of the signals utilizing the correspond-
ing fitting coefficient and fitting precision values.
Generally, the fitting precision and the attenuation
coefficient of the coal mining MS are smaller than
that of the blasting signals, which means that the
attenuation of the coal mining MS signals is slower
and more fluctuant than that of the blasting signals.

(2) Waveform characteristics consisting of the dominant
frequency, the duration, and the attenuation coeffi-
cient were extracted as the discriminating parameters.
And the boundaries between the two types of signals
on the three characteristics were obtained. At the
same time, the discriminating performance of the
three characteristics was compared and discussed.
The dominant frequency is most significant in dis-
tinguishing between two types of signals followed
by duration. The attenuation coeflicients impact is
relatively minimal.

(3) Based on the waveform characteristics, a discriminant
model of coal mining MS and blasting signals was
established using Fisher method. Its performance was
checked and compared with other methods by using
the real data from Qiangiu coal mine. Results show
that the correct discriminant rate of the coal mining
MS and blasting signals in the testing samples is 86
percent and 90 percent, which can basically meet the
requirements of the MS monitoring data processing
at the coal mine site. Besides, results also demon-
strated that the identification results using multiple
characteristic indexes are much better than the single
indexes. The performance of different recognition
methods such as the Fisher method, Bayes method,
and Random Forest will have little difference as long
as the proper characteristic indexes are used, which
indicates that selecting proper characteristic indexes
is one of the key steps to distinguish different types of
MS signals before establishing discriminant model.

(4) The results are useful to improve the efficiency of
automatic recognition for coal mining MS signals and
blasting signals and reduce the workload of artificial
recognition. Although the established discriminant
model in this paper is based on the monitoring data
in Qianqgiu coal mine, the research results could be
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FIGURE 12: Signal characteristics of sensor S3 for the blasting event.

utilized for other mines and tunnel engineering to a
great extent by adjusting the parameters.
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