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In order to identify the quadratic Volterra system simplified from the hydroturbine shaft system, a blind identificationmethod based
on the third-order cumulants and a reversely recursivemethod are proposed.The input sequence of the system under consideration
is an unobservable independent identically distributed (i.i.d.), zero-mean and non-Gaussian stationary signal, and the observed sig-
nals are the superposition of the system output signal and Gaussian noise. To calculate the third-order moment of the output signal,
a computer loop judgment method is put forward to determine the coefficient. When using optimization method to identify the
time domain kernels, we combined the traditional optimization algorithm (direct searchmethod) with genetic algorithm (GA) and
constituted the hybrid genetic algorithm (HGA). Finally, according to the prototype observation signal and the time domain kernel
parameters obtained from identification, the input signal of the system can be gained recursively. To test the proposed method,
three numerical experiments and engineering application have been carried out. The results show that the method is applicable
to the blind identification of the hydroturbine shaft system and has strong universality; the input signal obtained by the reversely
recursive method can be approximately taken as the random excitation acted on the runner of the hydroturbine shaft system.

1. Introduction

There are lots of nonlinear phenomena in engineering. Know-
ing of the coherent characteristics is of great importance to
engineering safety. Thus exploring an appropriate method to
describe an input-output relation defined by the nonlinear
system has been a hot research topic. At present, Volterra
series is a commonly used technique in researchers, and
achievements are involved with plenty of engineering fields.
Maheswaran and Khosa [1, 2] use a Volterra series model
withwavelet functions to identify the nonlinearity of a natural
stream flow and to forecast the water levels in groundwa-
ter system, respectively. In forensic investigation, a filter
designed with Volterra series can well work when it is nec-
essary to identify the latent fingerprints [3]. A nonlinear phe-
nomenon that is produced by a distorted harmonic audible
signal is recognized by estimating sound pressure level with

Volterra series [4]. In addition, the nonlinear structure
response of a large container carrier in irregular seaway is
calculated with a third-order Volterra model [5]. For a mul-
tiple input-multiple output (MIMO) system, a topological
assemblage scheme is developed tomake synthesis ofVolterra
system and applied to engineering, such as vibration analysis
of wind-excited suspended cable [6].

The applications of Volterra series are mainly demon-
strated in two aspects, that is, modeling and identification of
an input-output system. Two important properties ofVolterra
series are (1) output of a Volterra system depends linearly on
kernel parameters of this system; (2) nonlinearity of a signal
can be represented throughout multidimensional operators
on product of samples.Therefore, Volterra model is generally
used to describe the input-output relationship of a nonlinear
system in a long term. Nonlinear systems, such as system
with additivewhiteGaussiannoises [7], structure subjected to
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Figure 1: Hydroturbine shaft system and quadratic Volterra system.

impact load [8], and turbomachinery [9], can be represented
by Volterra series. Systems with multispectral properties are
also reported [10, 11].

Peng et al. make a lot of achievements on the modeling,
identification, and prediction with Volterra series [12–14].
They discussed lots of problems, for instance, the influence
on the force transmissibility of MDOF structures with cubic
nonlinear damping device [12], a new method to detect the
breathing fatigue crack in nonlinear beam [13] and the ana-
lytical expression of calculating the bispectrum with higher
order cumulants for nonlinear systems subjected to zero-
mean Gaussian excitation [14]. These works highly prove
the advantages of Volterra series in describing a nonlinear
system and the convenience for derivation of the subsequent
formulae.

It is fundamental to use Volterra seriesmethod to identify
a nonlinear system. Take Duffing oscillator as an example, its
“jump” phenomenon can be recognized by the Volterra series
method [15], which is expanded to identify a bilinear oscilla-
tor [16]. To deal with identification problemsmore effectively,
Volterra series is usually combined with an optimization
method [17]. However, the input signal of a nonlinear system
is not always known. Thus the blind identification method
without the input signal is developed. Le Caillec [18] blindly
identified a second-orderWienermodel driven by aGaussian
noisewith corrupted output data. Ghandchi Tehrani et al. [19]
compared the Volterra series method with the harmonic bal-
ance method, which proves the ability of blind identification
by the Volterra series method.

Actually, when Volterra series is employed to model and
blindly identify a nonlinear system, it needs to often meet
the situation in which higher order cumulants are used.
Antari et al. [20, 21] considered the third-order and fourth-
order cumulants to blindly identify a Hammerstein system.
However, the expression of higher cumulants sometimes
seems to be quite complicated [22]. For a hydroturbine main
shaft system in a hydropower station, the nonlinear input-
output relation is very complicated. Especially for the input
signals, such as the hydraulic excitation on the runner, its
working mechanisms are not completely known so far. On
the contrary, the corresponding output signals, such as the
throw at turbine guide bearing, are always easy to be obtained.

Thus it is a mathematical problem which needs to be solved
frequently in hydraulic engineering to identify the whole
shaft system with the observed vibration response only.

This paper proposes a novel blind identification method
based on higher order cumulants for a nonlinear system
described by a hydroturbine shaft Volterra model. A com-
puter loop judgment method is used to determine the coeffi-
cients 𝛾𝑖𝑗𝑘 when the third-order moment of the input signal
is calculated. It greatly simplifies formula and algorithm.
Finally, the Volterra kernel parameters of the nonlinear sys-
tem under consideration are identified by the hybrid genetic
algorithm (HGA).

2. Description of System

The shaft system of a certain hydroturbine generating set can
be simplified as a quadratic Volterra model, as shown in Fig-
ure 1.The input sequence of the system is {𝑥(𝑡)}, representing
the hydraulic excitation on the runner; the output sequence{𝑦(𝑡)} denotes the dynamic displacements at turbine guide
bearing; the observed signal is {𝑠(𝑡)}, and Gaussian noise is{𝑔(𝑡)}.

The corresponding nonlinear system is described as

𝑦 (𝑡) = 𝑞∑
𝑖=0

𝑞∑
𝑗=0

ℎ (𝑖, 𝑗) 𝑥 (𝑡 − 𝑖) 𝑥 (𝑡 − 𝑗) , (1)

𝑠 (𝑡) = 𝑦 (𝑡) + 𝑔 (𝑡) , (2)

where 𝑡 stands for the discrete time, ℎ(𝑖, 𝑗) stands for the
time domain kernels of the quadratic nonlinear system, and𝑞 represents the system memory length (𝑞 + 1), and 𝑖, 𝑗 are
the time delay.The excitation sequence {𝑥(𝑡)} of the system is
an unobservable, independent identically distributed (i.i.d.),
zero-mean and non-Gaussian stationary signal. It is assumed
that the following equations hold:

𝛾2𝑥 = 𝐸 [𝑥2 (𝑡)] ̸= 0,
𝛾3𝑥 = 𝐸 [𝑥3 (𝑡)] ̸= 0,
𝛾4𝑥 = 𝐸 [𝑥4 (𝑡)] ̸= 0,
𝛾6𝑥 = 𝐸 [𝑥6 (𝑡)] ̸= 0,

(3)
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where 𝛾𝑚,𝑥 stands for the 𝑚th-order moment at the origin of
the input signal. It is proved that, when {𝑥(𝑡)} is a zero-mean
sequence, the following properties [22] hold:

𝐸 {𝑥 (𝑡1) ⋅ ⋅ ⋅ 𝑥 (𝑡6)}

=
{{{{{{{{{{{{{{{{{{{{{

𝛾6𝑥 if 𝑡1 = 𝑡2 = 𝑡3 = 𝑡4 = 𝑡5 = 𝑡6
𝛾4𝑥𝛾2𝑥 if 𝑡1 = 𝑡2 ̸= 𝑡3 = 𝑡4 = 𝑡5 = 𝑡6
𝛾23𝑥 if 𝑡1 = 𝑡2 = 𝑡3 ̸= 𝑡4 = 𝑡5 = 𝑡6
𝛾32𝑥 if 𝑡1 = 𝑡2 ̸= 𝑡3 = 𝑡4 ̸= 𝑡5 = 𝑡6
0 otherwise.

(4)

Letting𝐶𝑚,𝑦(𝜏1, . . . , 𝜏𝑚−1) and𝐶𝑚,𝑠(𝜏1, . . . , 𝜏𝑚−1) be cumu-
lants of the output sequence and the observed sequence,
respectively, a relationship between the higher order cumu-
lants (HOC) and time domain kernels ℎ(𝑖, 𝑗) of the quadratic
nonlinear system is established by calculation. In the present
study, we try to establish a relationship between the third-
order cumulants of the observed signal and time domain
kernels ℎ(𝑖, 𝑗). Because the third-order or higher order
cumulants of the Gaussian noise are zero, we obtain from (2)
the following:

𝐶3𝑠 (𝜏1, 𝜏2) = 𝐶3𝑦 (𝜏1, 𝜏2) + 𝐶3𝑔 (𝜏1, 𝜏2) = 𝐶3𝑦 (𝜏1, 𝜏2) . (5)

Therefore, the third-order cumulants of the output sequence{𝑦(𝑡)} need to only be calculated. For a stationary random
sequence {𝑦(𝑡)}, the third-order cumulants are defined as

𝐶3𝑦 (𝜏1, 𝜏2)
= 𝑀3𝑦 (𝜏1, 𝜏2)

− 𝑀1𝑦 [𝑀2𝑦 (𝜏1) + 𝑀2𝑦 (𝜏2) + 𝑀2𝑦 (𝜏2 − 𝜏1)]
+ 2 (𝑀1𝑦)3 ,

(6)

where 𝑀1𝑦, 𝑀2𝑦(𝜏), and 𝑀3𝑦(𝜏1, 𝜏2) denote the first-order
moment, second-order moment, and third-order moment of
the sequence {𝑦(𝑡)}, respectively. The specific expression of𝑀1𝑦 is stated as

𝑀1𝑦 =
𝑞∑
𝑖=0

𝑞∑
𝑗=0

ℎ (𝑖, 𝑗) 𝐸 {𝑥 (𝑡 − 𝑖) 𝑥 (𝑡 − 𝑗)}

= 𝛾2𝑥 ⋅
𝑞∑
𝑖=0

ℎ (𝑖, 𝑖) .
(7)

It implies that when 𝑖, 𝑗 are not equal, the expectation value
is zero; only the diagonal elements ℎ(𝑖, 𝑖) are left for the time
domain kernels ℎ(𝑖, 𝑗).𝑀2𝑦(𝜏) is as follows:

𝑀2𝑦 (𝜏) = 𝐸 {𝑦 (𝑡) 𝑦 (𝑡 + 𝜏)}
= 𝑞∑
𝑖
1
,𝑖
2
,𝑗
1
,𝑗
2
=0

𝛾𝑖𝑗 ⋅ ℎ (𝑖1, 𝑖2) ℎ (𝑗1, 𝑗2) , (8)

where 𝛾𝑖𝑗 is the coefficient, which consists of the second-
ordermoment or the fourth-ordermoment of the input signal{𝑥(𝑡)}, and the value depends on the different time delay of
the sequence {𝑥(𝑡)}. Among the four subscripts−𝑖1, −𝑖2, 𝜏−𝑗1,
and 𝜏−𝑗2, if the value of one subscript (time) is different from
the rest of the three, the expectation is zero, and 𝛾𝑖𝑗 = 0. The
values of 𝛾𝑖𝑗 are yielded as

𝛾𝑖𝑗 =
{{{{{{{{{{{{{{{{{{{{{

𝛾4𝑥 if − 𝑖1 = −𝑖2 = 𝜏 − 𝑗1 = 𝜏 − 𝑗2
𝛾22𝑥 if − 𝑖1 = −𝑖2 ̸= 𝜏 − 𝑗1 = 𝜏 − 𝑗2, or

if − 𝑖1 = 𝜏 − 𝑗1 ̸= −𝑖2 = 𝜏 − 𝑗2, or
if − 𝑖1 = 𝜏 − 𝑗2 ̸= −𝑖2 = 𝜏 − 𝑗1

0 otherwise.

(9)

In order to calculate the three second-order cumulants in (6),
we substitute 𝜏, respectively, by 𝜏1, 𝜏2, and 𝜏2 − 𝜏1 in (8). The
expression of the last term𝑀3𝑦(𝜏1, 𝜏2) in (6) is written as

𝑀3𝑦 (𝜏1, 𝜏2) = 𝐸 {𝑦 (𝑡) 𝑦 (𝑡 + 𝜏1) 𝑦 (𝑡 + 𝜏2)}
= 𝑞∑
𝑖
1
,𝑖
2
,𝑗
1
,𝑗
2
,𝑘
1
,𝑘
2
=0

𝛾𝑖𝑗𝑘 ⋅ ℎ (𝑖1, 𝑖2) ℎ (𝑗1, 𝑗2) ℎ (𝑘1, 𝑘2) (10)

in which coefficient 𝛾𝑖𝑗𝑘 is composed of one or several certain
ordermoments of the input signal sequence {𝑥(𝑡)}. According
to the different time delay of the sequence {𝑥(𝑡)}, the different
values are obtained as

𝛾𝑖𝑗𝑘

=
{{{{{{{{{{{{{{{{{{{{{

𝛾6𝑥 if − 𝑖1 = −𝑖2 = 𝜏1 − 𝑗1 = 𝜏1 − 𝑗2 = 𝜏2 − 𝑘1 = 𝜏2 − 𝑘2
𝛾4𝑥𝛾2𝑥 if − 𝑖1 = −𝑖2 ̸= 𝜏1 − 𝑗1 = 𝜏1 − 𝑗2 = 𝜏2 − 𝑘1 = 𝜏2 − 𝑘2
𝛾23𝑥 if − 𝑖1 = −𝑖2 = 𝜏1 − 𝑗1 ̸= 𝜏1 − 𝑗2 = 𝜏2 − 𝑘1 = 𝜏2 − 𝑘2
𝛾32𝑥 if − 𝑖1 = −𝑖2 ̸= 𝜏1 − 𝑗1 = 𝜏1 − 𝑗2 ̸= 𝜏2 − 𝑘1 = 𝜏2 − 𝑘2
0 otherwise.

(11)

The judgment of the first line 𝛾6𝑥 is simple, and the judgments
of the rest 𝛾4𝑥𝛾2𝑥, 𝛾23𝑥, and 𝛾32𝑥 are relatively complicated
since there exist a variety of different combinations, and all
combinations need to compile a programming code to loop
for judgment, which is called as a method on the computer
loop judgment (details in the Appendix). With this method,
it is possible to calculate the second-ordermoment and third-
order moment of the output sequence {𝑦(𝑡)} and to have a
great superiority in computing.

3. Hybrid Genetic Algorithm

3.1. Consistent Estimate. For a known observed signal {𝑠(𝑡)},
we need to have an expectation operation. Because the num-
ber of the observed signals is limited, it is difficult to precisely
calculate the expectation required. So, an approximating
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method is used to calculate this value by consistent estimate;
namely,

�̂�3𝑠 (𝜏1, 𝜏2)
= �̂�3𝑠 (𝜏1, 𝜏2)

− �̂�1𝑠 [�̂�2𝑠 (𝜏1) + �̂�2𝑠 (𝜏2) + �̂�2𝑠 (𝜏2 − 𝜏1)]
+ 2 (�̂�1𝑠)3 ,

(12)

�̂�3𝑠 (𝜏1, 𝜏2) = 1𝑁
𝑁∑
𝑛=1

𝑠 (𝑛) 𝑠 (𝑛 + 𝜏1) 𝑠 (𝑛 + 𝜏2) , (13)

�̂�2𝑠 (𝜏) = �̂�𝑠 (𝜏) = 1𝑁
𝑁∑
𝑛=1

𝑠 (𝑛) 𝑠 (𝑛 + 𝜏) , (14)

�̂�1𝑠 = �̂�𝑠 = 1𝑁
𝑁∑
𝑛=1

𝑠 (𝑛) . (15)

In order to complete the consistent estimate of the third-order
cumulants in (12), we replace 𝜏 with 𝜏1, 𝜏2, and 𝜏2 − 𝜏1 in (14),
respectively.

3.2. Algorithm. The hybrid genetic algorithm (HGA) is an
intelligent optimization algorithm which combines the sim-
ple genetic algorithm (SGA)with the traditional optimization
methods.

As we know, for a kind of optimization algorithm, the
global search ability of the genetic algorithm (GA) is very
strong. However, when the search process is close to a local
optimal point, its local search ability starts to become poor.
That is a shortcoming of the simple genetic algorithm. On
the contrary, the traditional direct search method of discrete
variables is lack of global search ability, although the local
search ability is very strong. Therefore, the authors make a
hybrid genetic algorithm by combining the traditional direct
searchmethodwith the genetic algorithm.Thehybrid genetic
algorithm (HGA) improves the ability of the global and local
searches in calculation.

The basic steps of HGA are sentenced in the process of
GA.The local search is carried out in a certain probability 𝑝ℎ
(for example 5%) to find out a local optimal point as soon as
possible. Then it goes back to the genetic operation for the
global search to complete the global search.The flow chart of
HGA is as shown in Figure 2.

3.3. Blind Identification of TimeDomainKernels. Through the
above derivation, we calculate the consistent estimates of the
third-order cumulants of the observed signal {𝑠(𝑡)} by using
(12) and (13)–(15). On the other hand, we obtain a relationship
between time-domain kernels ℎ(𝑖, 𝑗) of the nonlinear system
and the third-order cumulants by using (6) and (7)–(11).
Thus, letting (6) equal (12), we obtain an equation as

�̂�3𝑠 (𝜏1, 𝜏2)
= 𝑀3𝑦 (𝜏1, 𝜏2)

Calculation of fitness

Convergence?

Selection, crossover, and mutation

Local searching?

Local searching

Best individual

End

Begin

Y

N

Y

N

Creation of initial population

Figure 2: Flow chart of hybrid GA.

−𝑀1𝑦 [𝑀2𝑦 (𝜏1) + 𝑀2𝑦 (𝜏2) + 𝑀2𝑦 (𝜏2 − 𝜏1)]
+ 2 (𝑀1𝑦)3 .

(16)

Obviously, this is a cubic nonlinear equation with unknownℎ(𝑖, 𝑗). By solving this equation, ℎ(𝑖, 𝑗) is obtained. It is noted
that because the output signal of the system is only used in
calculation, namely, no input signal {𝑥(𝑡)} is needed, so, this
identification method is called blind identification.

In actual application, the third-order cumulants of (𝑞+1)2
have to be computed; that is, 𝐶3𝑦(𝜏1, 𝜏2), 0 ≤ 𝜏1, 𝜏2 ≤ 𝑞.
Since it is not easy to directly solve a cubic nonlinear system,
the above-mentioned HGA is proposed to solve (16). The
objective function (the fitness value of an individual) of the
optimization problem is as follows:

min𝐹 (h) = 𝑞∑
𝜏
1
=0

𝑞∑
𝜏
2
=𝜏
1

[𝐶3𝑦 (𝜏1, 𝜏2) − �̂�3𝑠 (𝜏1, 𝜏2)]2 , (17)

where h is the unknown column matrix composed of the
elements in time domain kernels ℎ(𝑖, 𝑗). Due to the symmetry
properties of the third-order cumulants, namely,𝐶3𝑦(𝜏1, 𝜏2) =𝐶3𝑦(𝜏2, 𝜏1), the loop variable 𝜏2 in (17) increases from 𝜏1 to 𝑞.

For HGA, when the Gaussian noise is zero-mean i.i.d.
signal, the following constraint condition can be used:

𝑀1𝑦 − �̂�1𝑠 ≤ 𝜀, (18)

where 𝜀 denotes the admissible error of the constraint condi-
tion. Comparing (7) with (15), it is seen that the introduction
of the constraint (18) can guarantee the small deviation of the
diagonal elements ℎ(𝑖, 𝑖) in kernels ℎ(𝑖, 𝑗) to be identified.
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Table 1: Identified results [E1: diagonal element ℎ(𝑖, 𝑖)].
True values SNR = 0 dB SNR = 20 dB SNR = 40 dB SNR =∞

Mean ± SD Mean ± SD Mean ± SD Mean ± SDℎ (0, 0) 1.00 0.9437 ± 0.1250 0.9877 ± 0.0913 0.9930 ± 0.0857 0.9962 ± 0.0685ℎ (1, 1) −0.30 −0.2460 ± 0.1368 −0.3018 ± 0.1124 −0.2997 ± 0.1138 −0.3010 ± 0.1145ℎ (2, 2) −0.85 −0.7958 ± 0.1394 −0.8328 ± 0.1003 −0.8377 ± 0.1001 −0.8390 ± 0.0872ℎ (3, 3) 0.66 0.6053 ± 0.1356 0.6557 ± 0.0981 0.6540 ± 0.0990 0.6534 ± 0.0953
F 0.751054𝐸 − 01 0.316731𝐸 − 02 0.314600𝐸 − 02 0.357726𝐸 − 02

Table 2: Identified results [E1: full element ℎ(𝑖, 𝑗)].
True values SNR = 0 dB SNR = 20 dB SNR = 40 dB SNR =∞

Mean ± SD Mean ± SD Mean ± SD Mean ± SDℎ (0, 0) 1.00 0.9568 ± 0.0631 0.9745 ± 0.0575 0.9783 ± 0.0610 0.9731 ± 0.0501ℎ (0, 1) 0 −0.0161 ± 0.0768 −0.0162 ± 0.0712 0.0001 ± 0.0712 −0.0071 ± 0.0717ℎ (0, 2) 0 0.0054 ± 0.0658 −0.0038 ± 0.0602 −0.0045 ± 0.0645 −0.0083 ± 0.0624ℎ (0, 3) 0 −0.0147 ± 0.0426 −0.0061 ± 0.0501 −0.0162 ± 0.0517 −0.0186 ± 0.0533ℎ (1, 1) −0.30 −0.2752 ± 0.0687 −0.2928 ± 0.0706 −0.2935 ± 0.0733 −0.2948 ± 0.0668ℎ (1, 2) 0 −0.0484 ± 0.0785 −0.0212 ± 0.0693 −0.0405 ± 0.0600 −0.0294 ± 0.0635ℎ (1, 3) 0 0.0012 ± 0.0676 −0.0012 ± 0.0579 −0.0063 ± 0.0597 −0.0047 ± 0.0570ℎ (2, 2) −0.85 −0.8289 ± 0.0668 −0.8324 ± 0.0678 −0.8348 ± 0.0713 −0.8328 ± 0.0598ℎ (2, 3) 0 −0.0096 ± 0.0782 −0.0191 ± 0.0627 −0.0143 ± 0.0579 −0.0044 ± 0.0632ℎ (3, 3) 0.66 0.6448 ± 0.0604 0.6543 ± 0.0627 0.6528 ± 0.0639 0.6534 ± 0.0516
F 0.693044𝐸 − 01 0.201256𝐸 − 02 0.184063𝐸 − 02 0.259258𝐸 − 02

4. Numerical Experiment

To examine the proposed method, two quadratic nonlinear
Volterra systems, E1 by (19) and E2 by (20), are herein
considered as

𝑦 (𝑛) = 𝑥2 (𝑛) − 0.30𝑥2 (𝑛 − 1) − 0.85𝑥2 (𝑛 − 2)
+ 0.66𝑥3 (𝑛 − 3) , (19)

𝑦 (𝑛) = 𝑥2 (𝑛) − 0.3𝑥 (𝑛) 𝑥 (𝑛 − 1) + 0.5𝑥 (𝑛) 𝑥 (𝑛 − 2)
− 0.26𝑥 (𝑛) 𝑥 (𝑛 − 3) − 0.30𝑥2 (𝑛 − 1)
+ 0.36𝑥 (𝑛 − 1) 𝑥 (𝑛 − 2)
− 0.28𝑥 (𝑛 − 1) 𝑥 (𝑛 − 3) − 0.85𝑥2 (𝑛 − 2)
− 0.2𝑥 (𝑛 − 2) 𝑥 (𝑛 − 3) + 0.66𝑥2 (𝑛 − 3) .

(20)

In (19) and (20), 𝑛 is used to replace time 𝑡, to denote
discrete time.

Because (19) is of completely squared terms, the coeffi-
cients of each term are the true solutions. Therefore, the true
solutions of E1 are

ℎ (𝑖, 𝑖) = [1.00 −0.30 −0.85 0.66] . (21)

In (20), the coefficient of a squared term is the true
solution; however, half of the coefficient of a cross term is the
true solution. Hence the true values of E2 are

ℎ (𝑖, 𝑗) = [[[[[
[

1.00 −0.15 0.25 −0.13
−0.30 0.18 −0.14

−0.85 −0.10
sym 0.66

]]]]]
]
. (22)

The input signal 𝑥0(𝑛) is generated by RAND command in
MATLAB. Their lengths are 1024 and 8192, and each has 50
groups. Then the generated uniform white noises are scaled
as independent identically distributed (i.i.d.) signal with vari-
ance 1. Assuming that thememory length of themodel is𝑀 =𝑞+ 1 = 4, the simulation is under the condition of 50 Monte-
Carlo runs. At the same time, the different values of the
signal-to-noise ratio (SNR) defined by (23) are considered
[20]:

SNR = 10 ⋅ log10 [𝐸 (𝑦2 (𝑡))
𝐸 (𝑔2 (𝑡)) ] . (23)

Only the diagonal elements exist in the time domain kernelsℎ(𝑖, 𝑖) of E1; in other words, the system is a simplified Volterra
Model: Hammerstein Model. The identification results are
listed in Table 1 for four cases of SNR = 0, 20, 40,∞. At the
same time, to assess the universality of the method, the time
domain ℎ(𝑖, 𝑖) is identified by treating it as a full matrix with
element ℎ(𝑖, 𝑗). The results are listed in Table 2. The time
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Table 3: Identified results [E2: full element ℎ(𝑖, 𝑗)].
True values SNR = 0 dB SNR = 20 dB SNR = 40 dB SNR =∞

Mean ± SD Mean ± SD Mean ± SD Mean ± SDℎ (0, 0) 1.00 0.9793 ± 0.0689 1.0118 ± 0.0523 1.0138 ± 0.0546 1.0191 ± 0.0507ℎ (0, 1) −0.15 −0.1713 ± 0.0945 −0.1395 ± 0.0593 −0.1364 ± 0.0543 −0.1319 ± 0.0518ℎ (0, 2) 0.25 0.2185 ± 0.1070 0.2273 ± 0.0789 0.2324 ± 0.0768 0.2282 ± 0.0773ℎ (0, 3) −0.13 −0.0719 ± 0.0953 −0.0890 ± 0.0604 −0.0907 ± 0.0609 −0.0972 ± 0.0564ℎ (1, 1) −0.30 −0.3062 ± 0.0699 −0.3024 ± 0.0604 −0.3071 ± 0.0620 −0.3167 ± 0.0599ℎ (1, 2) 0.18 0.2247 ± 0.0913 0.1723 ± 0.0654 0.1765 ± 0.0580 0.1812 ± 0.0529ℎ (1, 3) −0.14 −0.0892 ± 0.1079 −0.1223 ± 0.0693 −0.1246 ± 0.0704 −0.1183 ± 0.0685ℎ (2, 2) −0.85 −0.8162 ± 0.0606 −0.8569 ± 0.0660 −0.8494 ± 0.0662 −0.8467 ± 0.0603ℎ (2, 3) −0.10 −0.0878 ± 0.0777 −0.1008 ± 0.0520 −0.1014 ± 0.0518 −0.1001 ± 0.0513ℎ (3, 3) 0.66 0.6423 ± 0.0722 0.6586 ± 0.0707 0.6558 ± 0.0635 0.6567 ± 0.0611
F 0.107841𝐸 + 00 0.351261𝐸 − 02 0.340253𝐸 − 02 0.384778𝐸 − 02

domain kernels ℎ(𝑖, 𝑗) of E2 are originally full matrix with the
elements, and the E2’s results are listed in Table 3.

It is seen from Tables 1–3 that the proposed method is
suitable to well identify the quadratic nonlinear system under
consideration. Table 1 shows that, when SNR = 0 dB, the
relative errors of the four values of the time domain kernelsℎ(𝑖, 𝑖) are basically within 10%, and the standard deviation is
between 0.12 and 0.14.With the increase of the signal-to-noise
ratio, the relative errors are gradually reduced to less than 2%,
and the standard deviation is to 0.06–0.11; the objective func-
tion value (sum of the square of the third-order cumulants
errors) is also reduced.The identification error becomes large
with the small SNR; this is due to the fact that there exists
certain error between Gaussian noise signal generated by the
numerical method and the real Gaussian distribution, which
leads a direct effect of the identification results.

In Table 2, the same sequence to the signal data as
Table 1 is used.The identifiedmean values of the nondiagonal
elements are generally under 0.02 (the real value is 0), and
the standard deviation is below 0.08. This is very important;
when the blind identification method is used to identify a
quadratic system, we do not know the length of the memory,
or whether the time domain kernels ℎ(𝑖, 𝑗) have only the
diagonal elements. By using different memory length to
identify an identical system, we obtained very similar results,
which show that this method has strong universality.

5. Blind Identification of Quadratic Volterra
System of Number 4 Hydroturbine Shaft in
a Certain Hydropower Station

The number 4 hydroturbine generating set shaft system in
a certain hydropower station, as shown in Figure 1(a), can
be simplified as a second-order Volterra system (shown in
Figure 1(b)). The observed data of the lateral throw 𝑦2(𝑛)
at the turbine guide bearing in the experiment is shown in
Figure 3 (after filtration). These observed signals are taken
as the output signals 𝑦(𝑛), and this engineering problem is
identified according to the above proposed method. Note
that, for the problem in which the input signals are unknown,

−0.04
−0.02

0
0.02
0.04
0.06

y
2
(n
)

(m
m

)

200 300 400 500 600 700 800 900 1000100
n (1–1024)

Figure 3: Transient waveshape of the lateral throw at turbine guide
bearing (filtered).

there is a precondition here: the input must be zero-mean,
i.i.d., stationary signals, and their statistics are known.

According to the 50 groups of the zero-mean, i.i.d.
stationary signals generated by MATLAB, the statistics of the
input signals are chosen as follows:

𝛾2𝑥 = 𝐸 [𝑥2 (𝑛)] = 1.000,
𝛾3𝑥 = 𝐸 [𝑥3 (𝑛)] = 2.645 × 10−2,
𝛾4𝑥 = 𝐸 [𝑥4 (𝑛)] = 1.800,
𝛾6𝑥 = 𝐸 [𝑥6 (𝑛)] = 3.900.

(24)

The memory length of the system is taken as 𝑀2 = 𝑞2 +1 = 6, so the time domain kernels parameters (optimization
variables) to be identified are

ℎ (𝑖, 𝑗)

=
[[[[[[[[[[[
[

ℎ (0, 0) ℎ (0, 1) ℎ (0, 2) ℎ (0, 3) ℎ (0, 4) ℎ (0, 5)
ℎ (1, 1) ℎ (1, 2) ℎ (1, 3) ℎ (1, 4) ℎ (1, 5)

ℎ (2, 2) ℎ (2, 3) ℎ (2, 4) ℎ (2, 5)
ℎ (3, 3) ℎ (3, 4) ℎ (3, 5)

ℎ (4, 4) ℎ (4, 5)
ℎ (5, 5)

]]]]]]]]]]]
]

. (25)
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Figure 4:The second-order time domain kernels of the shaft system
in overspeed test.

The system becomes an optimization problem with 21
design variables. When using HGA, we set the population
as 50, crossover probability 50%, mutation probability 5%,
and local search probability 5%.The lower and upper bounds
of the variables are [−100, 100], and the increment of the
discrete variables is 0.01. The interval of each variable is
narrowed down after some test run, and the increment of
the discrete variables is ultimately decreased to 0.00001. The
number of the evolution generations is one million.

After identification, the time domain kernels parametersℎ(𝑖, 𝑗) of theVolterra system for this shaft systemare obtained,
as shown in Figure 4. The frequency domain kernels param-
eters (Generalized Frequency Response Function, GFRF)
can be obtained by two-dimensional Fourier Transform, as
shown in Figure 5.

So far, by use of the blind identificationmethod proposed
in this paper, the blind identification of the system was
successfully carried out, based on the observed throw signals
at the turbine guide bearing.

6. Reversely Recursive Solution to
Hydraulic Excitation

6.1. Reversely Recursive Algorithm. The hydraulic excitation
acted on the hydraulic turbine runner is very important in
the design and calculation of shaft system in a hydroelectric
generating set but difficult to be observed. A reversely
recursive algorithm is proposed in the paper, which can be
used to approximately find out the input signal of the system
based on the following two sets of data: (1) the observed
output signal 𝑦0(𝑛) of the system; (2) the system time domain
kernels ℎ(𝑖, 𝑗) obtained through blind identification.

Expanding the second-order discretized time domain
Volterra system (1), the specific expression of 𝑦(𝑛) can be
obtained. When 𝑛 = 0, from the following expression:

𝑦 (0) = ℎ (0, 0) 𝑥 (0) 𝑥 (0) . (26)

We can get

𝑥 (0) = ±√ 𝑦0 (0)ℎ (0, 0) , (27)

where 𝑦0(0) is the observed output signal of the system. 𝑥(0)
thus obtained has two roots.

When 𝑛 = 1,
𝑦 (1) = ℎ (0, 0) 𝑥 (1) 𝑥 (1) + ℎ (0, 1) 𝑥 (1) 𝑥 (0)

+ ℎ (1, 0) 𝑥 (0) 𝑥 (1) + ℎ (1, 1) 𝑥 (0) 𝑥 (0) (28)

in which 𝑥(0) is known and 𝑥(1) is unknown. Equation (28)
becomes a quadratic equation of 𝑥(1):

ℎ (0, 0) 𝑥 (1) 𝑥 (1)
+ [ℎ (0, 1) 𝑥 (0) + ℎ (1, 0) 𝑥 (0)] 𝑥 (1)
+ ℎ (1, 1) 𝑥 (0) 𝑥 (0) − 𝑦 (1) = 0.

(29)

Set 𝑎 = ℎ(0, 0), 𝑏 = ℎ(0, 1)𝑥(0) + ℎ(1, 0)𝑥(0) = 2ℎ(0, 1)𝑥(0),
and 𝑐 = ℎ(1, 1)𝑥(0)𝑥(0) − 𝑦0(1); then

𝑎 ⋅ 𝑥 (1) 𝑥 (1) + 𝑏 ⋅ 𝑥 (1) + 𝑐 = 0. (30)

So

𝑥 (1) = −𝑏 ± √𝑏2 − 4𝑎𝑐2𝑎 . (31)

Because 𝑥(0) has two roots, substituting, respectively, the
two roots into (31), we can obtain the four roots of 𝑥(1).
The question now is which roots should 𝑥(0) and 𝑥(1) take?
The answer is obvious. First, calculate 𝑦(0) and 𝑦(1) through
(26) and (28), then calculate the errors of 𝑦(0) − 𝑦0(0) and𝑦(1) − 𝑦0(1), and finally compare the errors. The roots with
minimum error are the true solution. So we take

𝐹 = [𝑦 (1) − 𝑦0 (1)]2 + [𝑦 (0) − 𝑦0 (0)]2 (32)

as the optimal objective function and find out the minimum
value𝐹min from several values of objective function𝐹, and the
corresponding 𝑥(0) and 𝑥(1) are taken as the true solution
(input signal).

When the previous values of 𝑥(𝑛 − 2) and the 𝑥(⋅) have
been confirmed, the general formulae for calculating 𝑥(𝑛) are
as follows:

𝑦 (𝑛) = ℎ (0, 0) 𝑥 (𝑛 − 0) 𝑥 (𝑛 − 0)
+ ℎ (0, 1) 𝑥 (𝑛 − 0) 𝑥 (𝑛 − 1) + ⋅ ⋅ ⋅
+ ℎ (0, 𝑞) 𝑥 (𝑛 − 0) 𝑥 (𝑛 − 𝑞)
+ ℎ (1, 0) 𝑥 (𝑛 − 1) 𝑥 (𝑛 − 0)
+ ℎ (1, 1) 𝑥 (𝑛 − 1) 𝑥 (𝑛 − 1) + ⋅ ⋅ ⋅
+ ℎ (1, 𝑞) 𝑥 (𝑛 − 1) 𝑥 (𝑛 − 𝑞) + ⋅ ⋅ ⋅
+ ℎ (𝑞, 0) 𝑥 (𝑛 − 𝑞) 𝑥 (𝑛 − 0)
+ ℎ (𝑞, 1) 𝑥 (𝑛 − 𝑞) 𝑥 (𝑛 − 1) + ⋅ ⋅ ⋅
+ ℎ (𝑞, 𝑞) 𝑥 (𝑛 − 𝑞) 𝑥 (𝑛 − 𝑞) .

(33)
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Figure 5: The frequency domain kernels of the shaft system in overspeed test.

Let 𝑎 = ℎ(0, 0), 𝑏 = ∑𝑞𝑖=1 2 ⋅ ℎ(0, 𝑖)𝑥(𝑛 − 𝑖), and 𝑐 =[∑𝑞𝑖=1∑𝑞𝑗=1 ℎ(𝑖, 𝑗)𝑥(𝑛 − 𝑖)𝑥(𝑛 − 𝑗)] − 𝑦0(𝑛); thus
𝑥 (𝑛) = −𝑏 ± √𝑏2 − 4𝑎𝑐2𝑎 . (34)

Because 𝑥(𝑛 − 1) has two values, we can obtain the four
roots of 𝑥(𝑛). In order to determine 𝑥(𝑛 − 1) and 𝑥(𝑛), we
still use optimization method. The objective function for
optimization is

𝐹 = 𝑞∑
𝑖=0

[𝑦 (𝑛 − 𝑖) − 𝑦0 (𝑛 − 𝑖)]2 . (35)

Finding the minimum value 𝐹min, the corresponding𝑥(𝑛 − 1) and 𝑥(𝑛) can be taken as the input signal. Thus
through recursive calculation, we can find out 𝑥(0)∼𝑥(𝑁);
here 𝑁 + 1 is the sampling length. The above method is the
reversely recursive algorithm.

6.2. Numerical Experiment E2. For convenience, we still use
the experimental data E2 in Section 4. According to the above
method, the calculated input data 𝑥(𝑛) can be obtained, as
shown in Figure 6, where 𝑥𝑥(𝑛) is the calculated result and𝑥0(𝑛) is the original input signal.

To illustrate the correctness and feasibility of the calcu-
lation results, substituting in (1) the calculated results 𝑥𝑥(𝑛)
and the original input signal 𝑥0(𝑛), respectively, we can find
out the output signal𝑦(𝑛) and the original output signal𝑦0(𝑛)
and their differences:

𝑑𝑦 (𝑛) = 𝑦 (𝑛) − 𝑦0 (𝑛) (36)

and draw in Figure 7. At the same time, the relative error
of output signal energy is calculated by using the following
formula:

𝑅𝐸 = Σ𝑦2 (𝑛) − Σ𝑦20 (𝑛)Σ𝑦20 (𝑛) × 100%. (37)

From Figures 6 and 7 we can see that, by the reversely
recursive method proposed in this paper, we can approxi-
mately findout the input signal of the systembased on the sys-
tem output signal.The calculated input signal𝑥𝑥(𝑛) is slightly
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Figure 6: E2 numerical experiment results (input signals).
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Figure 8:The input signals calculated by recursivemethod and their
histogram.

different from the original input signal 𝑥0(𝑛), which ismainly
caused by the quadratic nonlinearity of the system. However,
the errors 𝑑𝑦(𝑛) between the system output signal 𝑦(𝑛) calcu-
lated through the input signal 𝑥𝑥(𝑛) and the original output
signal 𝑦0(𝑛) are smaller (Figure 7). Only a few signal values
have errors, andmost output signal values are the same as the
original value. The relative error of the output signal energy
by (37) is only 3.96%.Therefore, the input data 𝑥𝑥(𝑛) thus cal-
culated can be approximately used as the system input signal.

6.3. Reversely Recursive Solution to Hydraulic Excitation on
Turbine. The hydraulic excitation (input signal) 𝑥𝑥(𝑛) on
the turbine runner and its distribution can be calculated
recursively using the proposed method in Section 6.1, as
shown in Figure 8.

Since there is no real input signals that can be compared,
we cannot tell the difference between the input signal 𝑥𝑥(𝑛)
obtained with recursive method and the real input signals.
However, we can compare the calculated output signal 𝑦(𝑛)
with the real output signal 𝑦0(𝑛). Figure 9 shows the calcu-
lated output signal𝑦(𝑛) and the absolute errors with observed
output signal 𝑦0(𝑛). From the figure we can see that the error
is not very big. Besides, the relative error of the output signal
energy was calculated, whose value is 8.95%. This shows that
the method is feasible; that is to say, the input signal 𝑥𝑥(𝑛)
is acceptable and can be approximately taken as the hydraulic
excitation on the turbine runner of a hydroelectric generating
set shaft system.

7. Conclusions

A blind identification method based on the third-order
cumulants is proposed for a quadratic Volterra nonlinear sys-
tem. Through three numerical experiments and engineering
application, the following conclusions are drawn.
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Figure 9: The output signals 𝑦(𝑛) calculated by 𝑥𝑥(𝑛) and their
errors.

(1) Two different types of the memory length are used to
identify the same sets of the signal data sequence of
hydroturbine main shaft, and the error between the
two groups of the time domain kernels ℎ(𝑖, 𝑗) is small.
It shows that the proposed method is applicable to
the blind identification of the hydroturbinemain shaft
system and has strong universality.

(2) The proposed computer loop judgment method to
determine the coefficient 𝛾𝑖𝑗𝑘 for calculating the third-
order moment of the output signal greatly simplifies
the formulae derivation and compiling of the pro-
gramming code and is suitable for calculating the
fourth- or higher order cumulants.

(3) With the gradual increase of the signal-to-noise ratio,
the relative error of the identified time domain kernels
decreases, the standard deviation is reduced, and the
objective function value is also reduced.

(4) According to the observed signal of the shaft system
of a certain hydroturbine generating set, the time
domain kernels of the Volterra system can be blindly
identified by the method proposed in this paper.
Furthermore, according to these time domain kernels
and the observed signal, the input signal of the
system can be recursively calculated.The results show
that the computed input signal can be approximately
taken as the stochastic excitation acted on the turbine
runner, and the error is not big (relative error of
the output signal energy is acceptable). The proposed
method is of enlightening significance for the form of
hydraulic action.
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Appendix

Loop Judgment Method for
Determining Coefficient Value

In the expressions of the third-order moment (10), suppose
the six subscripts of input sequence {𝑥(𝑡)} are, respectively,𝑡1 = −𝑖1, 𝑡2 = −𝑖2, 𝑡3 = 𝜏1 − 𝑗1, 𝑡4 = 𝜏1 − 𝑗2, 𝑡5 = 𝜏2 − 𝑘1, and𝑡6 = 𝜏2−𝑘2; then the coefficient values 𝛾𝑖𝑗𝑘 can be determined
by the loop judgment method from computer.

Step 1. If 𝑡1 = 𝑡2 = 𝑡3 = 𝑡4 = 𝑡5 = 𝑡6, obviously 𝛾𝑖𝑗𝑘 = 𝛾6𝑥. If
not satisfied, go to Step 2.

Step 2. If 𝑡1 = 𝑡2 = 𝑡3 ̸= 𝑡4 = 𝑡5 = 𝑡6, then 𝛾𝑖𝑗𝑘 = 𝛾23𝑥. In this
condition, there are totally 10 kinds of combinations. These
combinations can be expressed (only use subscripts) as 123
and 456; 124 and 356; 125 and 346; 126 and 345; 134 and 256;
135 and 246; 136 and 245; 145 and 236; 146 and 235; 156 and
234. If not satisfied, go to Step 3.

Step 3. if 𝑡1 = 𝑡2 ̸= 𝑡3 = 𝑡4 ̸= 𝑡5 = 𝑡6, then 𝛾𝑖𝑗𝑘 = 𝛾32𝑥;
Furthermore, if 𝑡1 = 𝑡2 ̸= 𝑡3 = 𝑡4 = 𝑡5 = 𝑡6, then 𝛾𝑖𝑗𝑘 = 𝛾4𝑥𝛾2𝑥.

First, divide the six time 𝑡𝑖 into two groups: 2 + 4. For
example, when 𝑡1 = 𝑡2, then to judge whether 𝑡3, 𝑡4, 𝑡5, and𝑡6are equal, there are three possibilities.

(1) All four times 𝑡3, 𝑡4, 𝑡5, and 𝑡6 equal each other; that
is, 𝑡3 = 𝑡4 = 𝑡5 = 𝑡6; then 𝛾𝑖𝑗𝑘 = 𝛾4𝑥𝛾2𝑥.

(2) Two times are equal; say 𝑡3 = 𝑡4 and 𝑡5 = 𝑡6, and in
the two groups there is one group equal to 𝑡1; then𝛾𝑖𝑗𝑘 = 𝛾4𝑥𝛾2𝑥.

(3) Two times are equal; say 𝑡3 = 𝑡4, 𝑡5 = 𝑡6, and in the two
groups there is no one group equal to 𝑡1; then 𝛾𝑖𝑗𝑘 =𝛾32𝑥.

This grouping can be distinguished by the following five
kinds of combinations; that is, the 2 in 2 + 4 are 𝑡1 = 𝑡2, 𝑡1 =𝑡3, 𝑡1 = 𝑡4, 𝑡1 = 𝑡5, and 𝑡1 = 𝑡6, and the rest is 4. In each
combination, the previous comparison and judgment should
be repeated.

If the previous conditions are not satisfied, go to Step 4.

Step 4. If Steps 1, 2, and 3 are not met, 𝛾𝑖𝑗𝑘 = 0.
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