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A spiral bevel gear system supported on thrust bearings considering the coupled bending-torsional nonlinear vibration is proposed
and an eight degrees of freedom (8DOF) lumped parameter dynamic model of the spiral bevel gear system combined with time-
varying stiffness, static transmission error, gear backlash, and bearing clearances is investigated. The spiral bevel gear system is
analyzed with the equations of motion and the dynamic response is solved using the Runge-Kutta method. The effects of mesh
frequency, mesh damping coefficient, load coefficient, and gear backlash are revealed, which describe the true mesh characteristics
of the spiral bevel gear system.The bifurcation characteristics as jump discontinuities, periodic windows, and chaos are obtained by
studying time histories, phase plane portraits, Poincaré maps, Fourier spectra, and global bifurcation diagrams of the gear system.
The results presented in this study provide some useful information for engineers in designing and controlling such gear systems.

1. Introduction

As a typical gear transmission system, the spiral bevel gear
system has been used in main reducer of automobile driving
axle; particularly dynamic response is one of the most impor-
tant factors affecting NVH performance; its characteristic
research has attracted the attention of domestic and foreign
scholars. Accordingly, there are many related literatures
studying the spiral bevel gear system in the past several
decades.

In earlier years, many fundamental researches were
focused on the linear analysis of the spiral bevel gear system
[1]. A two degrees of freedom vibration model of a pair of
bevel gears was established by Kiyono et al. [2]; the model
was applied to conduct a stability analysis, in which the line
of action vector was simulated by a sine curve. Kahraman
and Singh [3] derived a single degree-of-freedommodel con-
sidering the constant stiffness; the dynamic equations with
backlash and transmission error were presented and solved in
the involute gear model. Gosselin et al. [4] analyzed the static
transmission error of spiral bevel gears, and the effects of
the shape and amplitude of the unloaded transmission error
curve on the loaded dynamic behaviors were demonstrated.

In order to get a basic understanding of dynamic behav-
ior, a lot of researches had been focusing on nonlinear vibra-
tion analysis. Litvin et al. [5] presented tooth contact analysis
and stress analysis in spiral bevel gears by means of finite
element method. Tang et al. [6] studied the effect of static
transmission error on nonlinear dynamic response of the spi-
ral bevel gear system combining with time-varying stiffness,
gear backlash, and observed various nonlinear phenomena
including periodic solutions, bifurcations, and chaos. Yang
et al. [7] established a single degree-of-freedom hypoid gear
pair dynamic equation, which included the time-varying
stiffness, transmission error, and backlash, and obtained
the FFT responses. Wang et al. [8] described a generalized
nonlinear time-varying (NLTV) dynamic model of a hypoid
gear pair with backlash nonlinearity and time-dependent
mesh point, line of action, mesh stiffness, and kinematic
transmission error. Periodic motions were obtained by the
incremental harmonic balance method (IHBM). Chang-
Jian [9] performed dynamic analysis of bevel-geared rotor
system supported on a thrust bearing and journal bearings
under nonlinear suspension. Theodossiades and Natsiavas
[10] established a simplified dynamic model of motor-
driven gear pair, considering the gear backlash and bearing
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clearance; then numerical results are presented in the form
of classical frequency response diagrams, revealing the effect
of the system parameters on its dynamics. Cheng and Lim
[11] pointed out that the gear kinematic transmission error
was the primary source of the vibratory energy excita-
tion; a new analytical derivation of the hypoid gear-mesh-
couplingmechanismbased on the simulation of tooth contact
assuming idealized gear geometry was proposed. However,
only in recent years did the related studies in finding
nonlinear behaviors of spiral bevel gear system gain some
attention.The dynamic analysis of a spiral bevel-geared rotor-
bearing system was studied by Li and Hu [12]. The model-
ing of coupled axial-lateral-torsional vibration of the rotor
system geared by spiral bevel gears was discussed. Differ-
ent degrees of freedom (DOF) gear dynamic models were
implemented byMohammed et al. [13]; their limitations were
evaluated by simulating different DOF for each gear disc.
Wang et al. [14] established a nonlinear dynamic model of
the spiral bevel gear with the dynamic relative transmission
error, backlash, and time-varying stiffness. The vibration
displacement and velocity in the torsional, horizontal, and
vertical directions in the spiral bevel gear model under
different conditions were depicted, and the dynamical
responses of the geared system with harmonic internal
excitation and parameter excitation were obtained. From the
literatures above, the nonlinear characteristics of gear system
such as stability, periodic solutions, bifurcations, and chaos
have become the most interesting research areas. Different
nonlinear parameters will generate an obvious change on
the dynamic response. However, the bifurcation character-
istics researches of nonlinear dynamic parameters as gear
backlash and bearing clearances seem a little deficient; the
dynamics analysis combined with thrust bearings clear-
ances considering the coupled bending-torsional vibration is
also rarely seen. In this paper, a nonlinear dynamic model
of the spiral bevel gear system is formulated, where the time-
varying stiffness, static transmission error, gear backlash,
and bearing clearances are included. The dimensionless
equations of the system are then solved using the Runge-
Kutta numerical method. The influence of the nonlinear
parameters on the spiral bevel gear system is studied and
the nonlinear mesh characteristics are detected and analyzed
by construction of the time histories, phase plane por-
traits, Poincaré maps, Fourier spectra, and global bifurcation
diagrams.

2. Mathematical Modeling and
Equations of Motion

Considering the supported stiffness of a spiral bevel gear
system is large, so the twist vibration can be neglected. The
complex spiral bevel gear system is simplified by the lumped
masses method; Figure 1 shows a generalized dynamic model
for eight degrees of freedom (8DOF) considering the coupled
bending-torsional vibration.The gear system ismodeled with
rotational and translational displacements as their coordi-
nates.
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Figure 1: Dynamic model of a spiral bevel gear system.

The generalized coordinates vector of the nonlinear
dynamic model can be expressed as

{𝑆} = {𝑥1, 𝑦1, 𝑧1, 𝜃1, 𝑥2, 𝑦2, 𝑧2, 𝜃2}𝑇 , (1)

where 𝑥1, 𝑦1, and 𝑧1 are the translations of the pinion along
the axes 𝑥, 𝑦, and 𝑧; 𝑥2, 𝑦2, and 𝑧2 are the translations of the
gear along the axes 𝑥, 𝑦, and 𝑧; 𝜃1 and 𝜃2 are the torsional
displacements of the pinion and gear, respectively.

Here, the term “pinion” refers to the smaller gear, which is
a driver gear connected to the input shaft, and the term “gear”
refers to the larger gear, which is a driven gear connected to
the output shaft.

Thepinion hasmass𝑚1 andmoment of inertia 𝐼1; the gear
has mass 𝑚2 and moment of inertia 𝐼2.

Static transmission error 𝑒(𝑡) can be expressed in the form
𝑒 (𝑡) = 𝑒0 + 𝑛∑

𝑙=1

𝐴𝑒𝑙 cos (𝑙Ωℎ𝑡 + Φ𝑒𝑙) , (2)

where 𝑒0 is constant amplitude of static transmission error,𝐴𝑒𝑙 is variable amplitude of static transmission error, Ωℎ is
excitation frequency, and Φ𝑒𝑙 is phase angle.

Since the stiffness is periodically time-varying with the
mesh frequency, its analytical formulation can be obtained by
means of a Fourier expansion [15]:

𝑘 (𝑡) = 𝑘𝑚 + 𝑁∑
𝑙=1

𝐴𝑘𝑙 cos (𝑙Ωℎ𝑡 + Φ𝑘𝑙) . (3)

Here, 𝑘𝑚 is mean value of the mesh stiffness, 𝐴𝑘𝑙 is
stiffness fluctuation amplitude, and Φ𝑘𝑙 is phase angle.

The backlash function 𝑓(𝛿) and the bearing clearances
functions 𝑓(𝑥𝑗), 𝑓(𝑦𝑗), and 𝑓(𝑧𝑗) (𝑗 = 1, 2) can be written
as

𝑓 (𝛿) = {{{{{{{{{
𝛿 − 𝑏 𝛿 > 𝑏0 |𝛿| ≤ 𝑏𝛿 + 𝑏 𝛿 < −𝑏,
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𝑓 (𝑥𝑗) = {{{{{{{{{
𝑥𝑗 − 𝑏1𝑗 𝑥𝑗 > 𝑏1𝑗0 󵄨󵄨󵄨󵄨󵄨𝑥𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏1𝑗𝑥𝑗 + 𝑏1𝑗 𝑥𝑗 < −𝑏1𝑗,

𝑓 (𝑦𝑗) = {{{{{{{{{
𝑦𝑗 − 𝑏2𝑗 𝑦𝑗 > 𝑏2𝑗0 󵄨󵄨󵄨󵄨󵄨𝑦𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏2𝑗𝑦𝑗 + 𝑏2𝑗 𝑦𝑗 < −𝑏2𝑗,

𝑓 (𝑧𝑗) = {{{{{{{{{
𝑧𝑗 − 𝑏3𝑗 𝑧𝑗 > 𝑏3𝑗0 󵄨󵄨󵄨󵄨󵄨𝑧𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏3𝑗𝑧𝑗 + 𝑏3𝑗 𝑧𝑗 < −𝑏3𝑗,

(4)

where 2𝑏 represents the total backlash; 2𝑏1𝑗 and 2𝑏2𝑗 represent
the bearing clearances in horizontal plane; 2𝑏3𝑗 represents the
bearing clearances in vertical plane.

The dynamic mesh force along the line of action 𝐹𝑛 can
be expressed as 𝐹𝑛 = 𝑘 (𝑡) 𝑓 (𝛿) + 𝑐𝑚𝛿̇. (5)

The dynamic mesh force along the coordinate directions𝐹𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) can be expressed as𝐹𝑥 = −𝑎1𝐹𝑛,𝐹𝑦 = 𝑎2𝐹𝑛,𝐹𝑧 = 𝑎3𝐹𝑛, (6)

where 𝛼1 = sin𝛼𝑛 cos 𝛾1 + cos𝛼𝑛 sin𝛽 sin 𝛾1, 𝛼2 =
sin𝛼𝑛 sin 𝛾1 − cos𝛼𝑛 sin𝛽 cos 𝛾1, 𝛼3 = cos𝛼𝑛 sin𝛽, 𝑐𝑚 is mean
value of the mesh damping, 𝛼𝑛 is pressure angle, 𝛽 is helix
angle, and 𝛾1 is cone angle of the pinion.

𝑐𝑚 = 2𝜁√ 𝑘𝑚(1/𝑚1 + 1/𝑚2) . (7)

Here, 𝜁 is damping ratio.
From the proposed concept, the equations of motion

of the coupled bending-torsional vibration model can be
derived as𝑚1𝑥̈1 + 𝑐𝑥1𝑥̇1 + 𝑘𝑥1𝑓 (𝑥1) = −𝐹𝑥, (8)𝑚1𝑦̈1 + 𝑐𝑦1𝑦̇1 + 𝑘𝑦1𝑓 (𝑦1) = −𝐹𝑦, (9)𝑚1𝑧̈1 + 𝑐𝑧1𝑧̇1 + 𝑘𝑧1𝑓 (𝑧1) = −𝐹𝑧, (10)𝐼1𝜃̈1 = 𝑇1 − 𝐹𝑛𝑟1, (11)𝑚2𝑥̈2 + 𝑐𝑥2𝑥̇2 + 𝑘𝑥2𝑓 (𝑥2) = 𝐹𝑥, (12)𝑚2𝑦̈2 + 𝑐𝑦2𝑦̇2 + 𝑘𝑦2𝑓 (𝑦2) = 𝐹𝑦, (13)𝑚2𝑧̈2 + 𝑐𝑧2𝑧̇2 + 𝑘𝑧2𝑓 (𝑧2) = 𝐹𝑧, (14)𝐼2𝜃̈2 = −𝑇2 + 𝐹𝑛𝑟𝑚, (15)

where 𝑐𝑖𝑗 (𝑖 = 𝑥, 𝑦, 𝑧; 𝑗 = 1, 2) are damping coefficients
of the supported structure for the thrust bearings; 𝑘𝑖𝑗 (𝑖 =𝑥, 𝑦, 𝑧; 𝑗 = 1, 2) are stiffness coefficients of the supported
structure for the thrust bearings; 𝑇𝑗 (𝑗 = 1, 2) are mean load
torques on the pinion and gear, respectively; 𝐹𝑖 (𝑖 = 𝑥, 𝑦, 𝑧)
are dynamic loads along the axes 𝑥, 𝑦, and 𝑧 for the pinion
and gear, respectively; 𝑟1 is base radius of the pinion and 𝑟𝑚
is distance between the acting point of the normal force and
the center of the rotation of the gear.

The motion equations of the spiral bevel gear system in
matrix form can be expressed as

𝑀 {𝑆̈} + 𝐶 {𝑆̇} + 𝐾 {𝑆} = 𝐹, (16)

where 𝑀 is lumped mass matrix; 𝐶 is damping matrix; 𝐾 is
stiffness matrix; 𝐹 is external excitation force vector.

Obviously this system is semidefinite [16]; (11) and (15)
can be merged to an equation by introducing a new variable𝛿 𝛿 = (𝑥1 − 𝑥2) 𝑎4 − (𝑦1 − 𝑦2) 𝑎5− (𝑧1 − 𝑧2 + 𝑟1𝜃1 − 𝑟𝑚𝜃2) 𝑎6 − 𝑒 (𝑡) , (17)

where 𝑎4 = cos 𝛾1 sin𝛼𝑛, 𝑎5 = cos 𝛾1 cos𝛼𝑛 sin𝛽, and 𝑎6 =
cos𝛼𝑛 cos𝛽.

And the equivalent mass and static load of gear transmis-
sion are

𝑚𝑒 = 𝐼1𝐼2𝐼1𝑟𝑚2 + 𝐼2𝑟12 ,
𝐹𝑚 = 𝑇1𝑟1 = 𝑇2𝑟𝑚 . (18)

Next, introducing the characteristic length 𝑏𝑐 and assum-
ing the following set of dimensionless parameters,

𝑋𝑖 = 𝑥𝑖𝑏𝑐 ,𝑌𝑖 = 𝑦𝑖𝑏𝑐 ,𝑍𝑖 = 𝑧𝑖𝑏𝑐 ,
𝛿 = 𝛿𝑏𝑐 ,𝜏 = 𝜔𝑛𝑡,

𝜔𝑛 = √ 𝑘𝑚𝑚𝑒 ,
𝜔𝑖𝑗 = √ 𝑘𝑖𝑗𝑚𝑗 ,
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𝜁𝑖𝑗 = 𝑐𝑖𝑗(2𝑚𝑖𝜔𝑛) ,
𝑘𝑖𝑗 = 𝜔𝑖𝑗2𝜔2𝑛 ,
𝜔ℎ = Ωℎ𝜔𝑛 ,𝜁𝑚𝑖𝑗 = 𝑐𝑚(2𝑚𝑗𝜔𝑛) ,
𝜁𝑚 = 𝑐𝑚(2𝑚𝑒𝜔𝑛) ,

𝑘𝑚𝑖𝑗 = 𝑘 (𝑡)(𝑚𝑗𝜔2𝑛) ,
𝑓𝑚 = 𝐹𝑚𝑚𝑒𝑏𝑐𝜔2𝑛 ,
𝑓V = 𝐹V𝑚𝑒𝑏𝑐𝜔2𝑛 ,
𝑓𝑒 = 𝑁∑
𝑙=1

𝐴𝑒𝑙𝑏𝑐 (𝑙𝜔ℎ)2 cos (𝑙𝜔ℎ𝜏 + Φ𝑒𝑙) ,
𝑘 (𝑡) = 𝑘 (𝑡)𝑘𝑚 = 1 + 𝑁∑

𝑙=1

𝐴𝑘𝑙𝑘𝑚 cos (𝑙𝜔ℎ𝜏 + Φ𝑘𝑙) ,
(𝑖 = 𝑥, 𝑦, 𝑧; 𝑗 = 1, 2) ,

𝑓 (𝛿) =
{{{{{{{{{{{{{{{{{

𝛿 − 𝑏𝑏𝑐 𝛿 > 𝑏𝑏𝑐0 󵄨󵄨󵄨󵄨󵄨𝛿󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏𝑏𝑐𝛿 + 𝑏𝑏𝑐 𝛿 < − 𝑏𝑏𝑐 ,

𝑓 (𝑋𝑗) =
{{{{{{{{{{{{{{{{{{{

𝑋𝑗 − 𝑏1𝑗𝑏𝑐 𝑋𝑗 > 𝑏1𝑗𝑏𝑐0 󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏1𝑗𝑏𝑐𝑋𝑗 + 𝑏1𝑗𝑏𝑐 𝑋𝑗 < −𝑏1𝑗𝑏𝑐 ,

𝑓 (𝑌𝑗) =
{{{{{{{{{{{{{{{{{{{

𝑌𝑗 − 𝑏2𝑗𝑏𝑐 𝑌𝑗 > 𝑏2𝑗𝑏𝑐0 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏2𝑗𝑏𝑐𝑌𝑗 + 𝑏2𝑗𝑏𝑐 𝑌𝑗 < −𝑏2𝑗𝑏𝑐 ,

𝑓 (𝑍𝑗) =
{{{{{{{{{{{{{{{{{{{

𝑍𝑗 − 𝑏3𝑗𝑏𝑐 𝑍𝑗 > 𝑏3𝑗𝑏𝑐0 󵄨󵄨󵄨󵄨󵄨𝑍𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏3𝑗𝑏𝑐𝑍𝑗 + 𝑏3𝑗𝑏𝑐 𝑍𝑗 < −𝑏3𝑗𝑏𝑐 .
(19)

Input torque fluctuation is not considered in the current
study, but only static torque load, which means 𝑓V = 0. In
order to reduce the complexity of the computation, higher
orders of the time-varying stiffness and static transmission
error are truncated, without losing generality. So the dimen-
sionless stiffness and the dimensionless static transmission
error are calculated by the first-order component:

𝑙 = 1,Φ𝑒𝑙 = 0,Φ𝑘𝑙 = 𝜋,
𝑘 (𝑡) = 1 − 𝜀 cos (𝜔ℎ𝜏) ,

𝑓𝑒 = 𝜆𝜔ℎ2 sin (𝜔ℎ𝜏) ,
(20)

where 𝜀 is stiffness coefficient; 𝜆 is amplitude of static
transmission error.

Equations (8)–(15) can be expressed in a matrix form:

[[[[[[[[[[[[[[[[[

1 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 1 0−𝑎4 𝑎5 𝑎6 𝑎4 −𝑎5 −𝑎6 1

]]]]]]]]]]]]]]]]]

((((((((((((
(

𝑋̈1𝑌̈1𝑍̈1𝑋̈2𝑌̈2𝑍̈2𝛿̈

))))))))))))
)

+ 2
[[[[[[[[[[[[[[[[[

𝜁𝑥1 0 0 0 0 0 𝑎1𝜁𝑚𝑥10 𝜁𝑦1 0 0 0 0 −𝑎2𝜁𝑚𝑦10 0 𝜁𝑧1 0 0 0 −𝑎3𝜁𝑚𝑧10 0 0 𝜁𝑥2 0 0 −𝑎1𝜁𝑚𝑥20 0 0 0 𝜁𝑦2 0 𝑎2𝜁𝑚𝑦20 0 0 0 0 𝜁𝑧2 𝑎3𝜁𝑚𝑧20 0 0 0 0 0 2𝜁𝑚𝑎6

]]]]]]]]]]]]]]]]]

((((((((((((
(

𝑋̇1𝑌̇1𝑍̇1𝑋̇2𝑌̇2𝑍̇2𝛿̇

))))))))))))
)
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Table 1: The parameters of the spiral bevel gear system.

Parameters Pinion Gear
Teeth numbers 8 41
Module (mm) 4.161
Mass (kg) 1 5
Inertia moment (kgmm2) 3000 11200
Base circle (mm) 30 130
Pressure angle (∘) 𝛼𝑛 = 21.15
Helix angle (∘) 𝛽 = 35
Cone angle (∘) 𝛾1 = 12.75 𝛾2 = 76.5
Tooth width (mm) 28
Mean mesh stiffness (N/mm) 𝑘𝑚 = 1.19𝐸6
Bearing stiffness (N/mm) 𝑘𝑖𝑗 = 0.35𝐸6
Half of bearing clearance (𝜇m) 𝑏1𝑗 = 𝑏2𝑗 = 𝑏3𝑗 = 10

+
[[[[[[[[[[[[[[[[[[[

𝑘𝑥1 0 0 0 0 0 𝑎1𝑘𝑚𝑥10 𝑘𝑦1 0 0 0 0 −𝑎2𝑘𝑚𝑦10 0 𝑘𝑧1 0 0 0 −𝑎3𝑘𝑚𝑧10 0 0 𝑘𝑥2 0 0 −𝑎1𝑘𝑚𝑥20 0 0 0 𝑘𝑦2 0 𝑎2𝑘𝑚𝑦20 0 0 0 0 𝑘𝑧2 𝑎3𝑘𝑚𝑧20 0 0 0 0 0 𝑎6𝑘 (𝑡)

]]]]]]]]]]]]]]]]]]]

(((((((((((
(

𝑓 (𝑋1)𝑓 (𝑌1)𝑓 (𝑍1)𝑓 (𝑋2)𝑓 (𝑌2)𝑓 (𝑍2)𝑓 (𝛿)

)))))))))))
)

=
(((((((((
(

000000𝑓𝑚 + 𝑓V + 𝑓𝑒

)))))))))
)

.

(21)

3. Numerical Solutions

Due to the complexity of the spiral bevel gear system and
also the difficulty and limitation of the analytical methods,
the numerical method is commonly used to analyze the
gear system. In this paper, the nonlinear dynamic equations
are solved using the fourth order Runge-Kutta method
which is generally applicable to strong nonlinearity [17]. The
algorithm is implemented in MATLAB that is a widely used
matrix and numerical analysis program [18]. Without losing
generality, the characteristic length is set to 𝑏𝑐 = 10 𝜇m,
and the same value can be found in Sun’s thesis [19]. The
other parameters of the gear transmission system are given
in Table 1.

3.1. Effect of Mesh Frequency. A bifurcation diagram sum-
marizes the essential dynamics of the gear system and is
therefore a useful means of observing its nonlinear dynamic
response [20]. For our subsequent numerical study, set half
of the backlash as 𝑏 = 40 𝜇m, damping ratio as 𝜁 = 0.08,
amplitude of static transmission error as 𝜆 = 0.3, and stiffness
coefficient as 𝜀 = 0.2. In this system, the dimensionless
mesh frequency𝜔ℎ is commonly used as an important control
parameter. Figure 2(a) shows the bifurcation diagram for the
spiral bevel gear system displacement against the dimen-
sionless mesh frequency 𝜔ℎ. Figures 2(b) and 2(c) show the
enhanced bifurcation diagrams with bifurcation parameters𝜔ℎ = 0.65∼1.2 and 𝜔ℎ = 1.4∼2.15, respectively. The bifurcation
results show that the system behaves as 1T-periodic motion
at low mesh frequency and the periodic motion persists until𝜔ℎ > 0.425. A jump phenomenon can be observed and
2T-periodic motion appears at the region 𝜔ℎ = 0.425∼0.8.
After a long 1T-periodic motion, the system enters into a
transient chaotic motion after 𝜔ℎ > 1.15; then the dynamic
behavior behaves as nonperiodic motion until 𝜔ℎ = 1.5.
With the increase of mesh frequency, a number of periodic
windows appear. At the region 𝜔ℎ = 1∼2, 1T-periodic motion,
2T-periodic motion, and 𝑛T-periodic motion are shown
in the chaotic area. It can be observed that 𝑛T-periodic
bifurcation enters into chaos and 7T-periodic bifurcation
enters into 𝑛T-periodic bifurcation obviously in Figure 2(c).
Finally, 2T-periodic motion transits to 1T-periodic motion
until 𝜔ℎ = 2.05.

For a better clarity, the other analytical methods for
observing nonlinear dynamic responses are necessary. Fig-
ures 3–5 illustrate the time histories, phase plane portraits,
Poincaré maps, and Fourier spectra for the spiral bevel gear
model at various values of the dimensionless mesh frequency𝜔ℎ = 1,𝜔ℎ = 1.6, and𝜔ℎ = 1.77. At𝜔ℎ = 1, the dynamic behavior
behaves as 1T-periodicmotion.At𝜔ℎ = 1.6, chaotic behavior is
clearly visible. At𝜔ℎ = 1.77, the system enters into 6T-periodic
motion from chaotic motion.

3.2. Effect of Damping Ratio. In the following section, when
the damping ratio 𝜁 is changed and all the other parameters
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Figure 2: Bifurcation diagrams using 𝜔ℎ as control parameter: (a) general view 𝜔ℎ = 0.2∼2.3; (b) enhanced view 𝜔ℎ = 0.65∼1.2; (c) enhanced
view 𝜔ℎ = 1.4∼2.15.
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Figure 3: 𝜔ℎ = 1: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 4: 𝜔ℎ = 1.6: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 6: Bifurcation diagrams using 𝜁 as control parameter: (a) 𝜁 = 0.01; (b) 𝜁 = 0.04; (c) 𝜁 = 0.12.
keep fixed, the bifurcation diagrams are shown in Figure 6.
The chaotic motions are shown through the numerical
simulation for three different values of 𝜁 = 0.01, 𝜁 = 0.04,
and 𝜁 = 0.12 (𝜁 = 0.08 see Figure 2(a)). According to
the comparison of the bifurcation diagrams with different
damping ratio values, it can be observed that chaotic region
becomes narrower as 𝜁 is increased; chaotic region gets
smaller and smaller. Therefore, the increase in 𝜁 tends to
decrease the nonlinearity dynamic responses.

3.3. Effect of Load Coefficient. Different vibration character-
istics will be shown under different loads. For heavy loaded
condition, the value of the load coefficient parameter is fixed
as 𝑓 = 𝑓𝑚/𝜆 = 2 (𝑓𝑚 = 0.1, 𝜆 = 0.05). For light
loaded condition, the value of the load coefficient parameter
is fixed as 𝑓 = 𝑓𝑚/𝜆 = 1/3 (𝑓𝑚 = 0.1, 𝜆 = 0.3). The
time histories, phase plane portraits, Poincaré maps, and
Fourier spectra are shown in Figures 7 and 8. These figures
showdynamic responses for heavy loaded condition and light
loaded condition at the dimensionless mesh frequency 𝜔ℎ
= 1.4, respectively. As illustrated in Figure 7, the system is
linear system; the steady-state response is harmonic response.
There is obviously no tooth impact, and the system behaves
as 1T-periodic motion. It is illustrated that the dynamic

characteristics of the gear are not changedmuchunder loaded
condition when the dynamic behavior behaves as periodic
motion. As illustrated in Figure 8, compared with the heavy
loaded condition, the magnitude of the spectrum becomes
larger. The displacement along the line of action is greater
than 0 and is less than 0, so the case of tooth impact can be
observed in the time history plot.

Figures 9 and 10 show dynamic responses for heavy
loaded condition and light loaded condition at the dimen-
sionless mesh frequency 𝜔ℎ = 1.8, respectively. Nonlinear
vibration characteristics can be seen occurring in these
two situations. However, the intensities are not the same.
As illustrated in Figure 9, the motion state is 1T-periodic
harmonic motion under heavy loaded condition. It can be
seen that the spiral bevel gear system is in chaotic motion
under light loaded condition and the response of the system
is irregular in the chaotic state from Figure 10. Furthermore,
chaotic phenomenon is more likely to occur in light loaded
condition compared with heavy loaded condition without
changing other conditions.

3.4. Effect of Gear Backlash. Gear backlash is another impor-
tant parameter which affects the dynamic responses substan-
tially. Figure 11 presents the bifurcation diagrams for three



Shock and Vibration 9

200 300 400 500 600
0

0.2

0.4

0.6

0.8





(a)

0 0.2 0.4 0.6 0.8

0

0.2

0.4

d




−0.4

−0.2

(b)

0 1 2

0

1

2

d




−1

−1
−2

−2

(c)

0

20

40

60

80

100



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Frequency of spectrum

(d)

Figure 7: 𝜔ℎ = 1.8 and 𝑓 = 2: (a) time history; (b) phase plane;(c) Poincaré map; (d) Fourier spectrum.
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Figure 8: 𝜔ℎ = 1.4 and 𝑓 = 1/3: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 9: 𝜔ℎ = 1.8 and 𝑓 = 2: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 10: 𝜔ℎ = 1.8 and 𝑓 = 1/3: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 11: Bifurcation diagrams using 𝑏 as control parameter: (a) 𝑏 = 10 𝜇m; (b) 𝑏 = 80 𝜇m; (c) 𝑏 = 120 𝜇m.

different values of half of the backlash 𝑏 = 10 𝜇m, 𝑏 = 80 𝜇m,
and 𝑏 = 120𝜇m (𝑏 = 40 𝜇m; see Figure 2(a)). A substantial
region of jump phenomenon, subharmonic, quasi-periodic,
and chaotic responses are contained in Figure 11. With
increasing b, the system becomes more and more unstable,
and consequently chaotic behavior expands.

For the further study on the effect of gear backlash, the
time histories, phase plane portraits, Poincaré maps, and
Fourier spectra of the dynamic responses at 𝜔ℎ = 2.23 for
numerous gear backlash values are compared in Figures
12–15. According to these figures, a transition from quasi-
periodic motion to the chaotic dynamics is seen with the
increase of 𝑏. As observed in Poincaré maps, the various
forms of the system from the quasi-periodic motion are
seen, and with the increase of the bifurcation parameter, the
unstable attractive region is enlarged, eventually leading to
chaos.

4. Conclusion

In the present paper, a spiral bevel gear system supported
on thrust bearings considering the coupled bending-torsional
nonlinear vibration is proposed and an 8DOF lumped
parameter dynamic model of the spiral bevel gear system

combining with time-varying stiffness, static transmission
error, gear backlash, and bearing clearances is investigated.
The dimensionless equations of the system are solved using
the Runge-Kutta numerical method. The dynamics of the
system are analyzed with reference to its bifurcation dia-
grams, time histories, phase plane portraits, Poincaré maps,
and Fourier spectra, and jumpphenomena, periodicmotions,
and chaotic motions are found in this study.

In this study, mesh frequency is first expressed to study
the effects of their variations on dynamic response. With
the change of mesh frequency, the repeated bifurcation
phenomena and the complex chaotic motions are observed,
and the evolution process and rule of the system are revealed.
The effect of damping ratio is secondly analyzed. It is shown
that chaotic region becomes narrower as damping ratio is
increased. Other important parameters like load coefficient
and gear backlash are also considered in the current analysis.
Load coefficient affects light loaded condition more than
heavy loaded condition. The increase of gear backlash will
expand the effect of nonlinearity effect and increase the
chaotic region of the gear system.

The selection of the dynamic parameters plays an impor-
tant role in designing and controlling such gear systems; the
suitable values should be chosen so that chaotic behavior will
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Figure 12: 𝑏 = 10 𝜇m: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 13: 𝑏 = 40 𝜇m: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 14: 𝑏 = 80 𝜇m: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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Figure 15: 𝑏 = 120 𝜇m: (a) time history; (b) phase plane; (c) Poincaré map; (d) Fourier spectrum.
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be decreased. A more precise model to better describe the
spiral bevel gear system will be proposed and deep study will
be analyzed in the future.
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