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An analytical method is proposed to calculate the natural frequency of a cantilever beam with a breathing oblique crack. A
double-linear-springs-model is developed in the modal analysis process to describe the breathing oblique crack, and the breathing
behaviour of the oblique crack is objectively simulated. The finite element method (FEM) analysis software ABAQUS is used to
calculate the geometric correction factors when the cracked plate is subjected to a pure bending moment at different oblique crack
angles and relative depths. The Galerkin method is applied to simplify the cracked beam to a single degree of freedom system,
allowing the natural frequency of the beamwith the breathing oblique crack to be calculated. Comparedwith the natural frequencies
of the breathing oblique cracked beam obtained using the ABAQUS FEMmethod, the proposed analytical method exhibits a high
computational accuracy, with a maximum error of only 4.65%.

1. Introduction

Beams are widely used structures and that inevitably experi-
ence damage due to vibrations. Structural damage typically
occurs in the form of cracks, which have been the focus of
numerous studies. Cracks can be divided into open cracks
and breathing cracks based on the different vibrational char-
acteristics. Vibration analysis typically assumes that cracks
remain open. Papadopoulos and Dimarogonas [1] used a2 × 2 local flexibility matrix to model a transverse open
crack using a coupled longitudinal and bending vibration
analysis of a cracked shaft. Chondros et al. [2] developed
a continuous cracked beam vibration theory to analyse the
lateral vibrations of cracked Euler-Bernoulli beams with
single-edge or double-edges open cracks. However, cracks
exhibit a closed state in a compressive nominal stress field.
Therefore, vibration analysis of the cracked structure does not
properly evaluate the actual situation by assuming that the
crack is open.

Compared to open cracks, breathing cracks can describe
the vibrational cracked structure more objectively. Chondros
et al. [3] assumed a beam with a breathing transverse crack
to be a piecewise linear system with two states, either fully

open or fully closed. A continuous cracked beam vibration
theory was used to predict transverse vibration changes of
a simply supported beam with a breathing crack. Abraham
and Brandon [4] assumed that the transverse crack separated
a cantilever beam into two segments and used time varying
connection matrices to connect the two segments; then the
breathing crack was analysed using linear and nonlinear
modelling methodologies. Cheng et al. [5] examined the
dynamic response of a transverse breathing crack in a
single degree of freedom system and analysed the dynamic
vibrating behaviour of a breathing cracked beam. Wu [6]
developed an iteration numerical model to investigate the
forced vibration characteristics of a cantilever beam with a
transverse breathing crack, and the model proposed could
also be applied to predict the fatigue life of the cracked beam
at the crack position. In summary, several breathing crack
models have been proposed to analyse natural vibrations in
the transverse cracked beams. The natural frequency of a
cracked beam can be obtained via the application of different
boundary conditions, but the influence of the oblique crack
angle on the natural frequency of the beam is often neglected.

Several methods have been proposed to calculate the
stress intensity factors 𝐾Ι and 𝐾ΙΙ for an oblique crack at
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the edge of a half-plane [7–12]. Beghini and Santus [13]
developed a Weight Function (WF) to calculate the stress
intensity factors at the tip of a pressurization surface crack
in a plane. Beghini et al. [14] also developed an efficient
and accurate analytical WF to calculate the stress intensity
factors of inclined cracks at sharp V-notches. Leung and Su
[15] used a fractal two-level finite element method (F2LFEM)
to determine the stress intensity factors of a central slant
crack in a square sheet subjected to biaxial tensile stress.
Jweeg et al. [16] assumed an oblique crack in plate as a
horizontal and vertical crack and divided the cracked plate
into four parts. The four parts were then analysed and
the natural frequency was obtained using an orthogonal
method. Based on the assumption that the crack on the beam
was open, Al-Waily [17] used the Fourier series method to
solve the equivalent stiffness of an oblique cracked beam,
and the natural frequencies were easily obtained from the
general motion equation solution of the obliquely cracked
beam; then the natural frequencies obtained were compared
to the results using the ANSYS method, and the results
exhibited significant agreement, with a maximum error of
1.8%.Although these studies above proposed severalmethods
for analysing the natural vibrations of structures with oblique
cracks, they neglected the influence of the crack closure effect.

This paper proposes an analytical method for calculating
the natural frequency of a cantilever beam with a breath-
ing oblique crack. A double-linear-springs-model is used
to simulate the breathing behaviour of the oblique crack,
and the stiffness variation of the cantilever beam can be
obtained by calculating the additional flexibility caused by the
oblique crack. When the oblique crack has different angles
and relative depths, the geometric correction factors are
calculated for a unilateral oblique cracked beam subjected to a
pure bending moment, and the finite element method (FEM)
analysis software ABAQUS is used to calculate these factors.
Geometric correction factors of different relative depths but
equal angles will be fitted to a function curve usingMATLAB
software. The vibration of the cracked beam is simplified to a
single degree of freedom system using the Galerkin method,
which allows the natural frequency of the breathing oblique
cracked beam to be calculated. The analytical method pro-
posed in this paper is validated by comparing the analytical
method results to the results obtained using the ABAQUS
FEM approach. Then the influences of the angle, relative
depth, and position of the breathing oblique crack on the
natural frequency of the cracked beam are analysed.

2. Breathing Oblique Cracked Beam Model

Figure 1 illustrates a cantilever beam with an oblique crack,
where 𝐿 is the length of the beam, ℎ is the height of the beam,𝑏 is the thickness of the beam, 𝑎 is the depth of the oblique
crack, 𝜃 is the inclination angle of the oblique crack, and 𝑥𝑎
is the distance between the crack position and the fixed end.
It is assumed that the cantilever beam is homogeneous and
isotropic.

Cracks do not always remain open during the vibration of
the cracked beam, so the crack closure effect should be con-
sidered. Compared with the open crack, the breathing crack
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Figure 1: Geometric model of a cantilever beam with an oblique
crack.
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Figure 2: Vibration model of a cantilever beam with a breathing
oblique crack.

can better describe the vibrational behaviour of the cracked
structure. This paper proposes a new breathing crack model
that accounts for the crack closure effect. A double-linear-
springs-model is used to simulate the breathing behaviour of
the oblique crack. A simplified vibrationmodel of a cantilever
beamwith a breathing oblique crack is shown in Figure 2, and
this is a single degree of freedom system, which can solve just
one order vibration mode of the beam. Engineering practice
shows that the first-order mode has the biggest influence on
the vibration fatigue of the beam structure, so the first-order
mode of the cracked cantilever beam is mainly studied.

In the process of transverse vibration of the breathing
cracked cantilever beam, the crack is always in the alternating
state of opening and closing. When the crack is in the state
of complete closure, the cracked beam can be replaced by
an intact beam, and the stiffness of the cracked beam is the
biggest; when the crack is in the state of complete opening,
the crack can be replaced by the open mode crack, and the
stiffness of the cracked beam is the least.

So, the stiffness of the breathing cracked beam is a
combination of the stiffness of the open cracked beam and
the stiffness of the closed cracked beam,which is time variant.
Assume that the passage from closed to open crack and vice
versa occurs in a smoothway, and there is no abrupt change in
the bending stiffness of the cracked beamduring the vibration
[5]:

𝑘br (𝑡) = 𝑘𝑜 + 𝑘𝑐 − 𝑘𝑜2 (1 + cos𝜔𝑡) , (1)

where 𝑘br(𝑡) is the stiffness of the breathing cracked beam, 𝑘𝑐
is the stiffness of the closed cracked beam, 𝑘𝑜 is the stiffness
of the open cracked beam, and 𝜔 is the frequency of exterior
excitation.

When 𝜔𝑡 = 2𝑛𝜋 (𝑛 = 1, 2, 3, . . .), the crack is in the fully
closed state and the cracked beam is equivalent to the beam
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without a crack.Thus, the stiffness of the closed cracked beam
can be replaced by the stiffness of the beam without a crack,
where 𝑘br = 𝑘𝑐. When 𝜔𝑡 = (2𝑛 − 1)𝜋 (𝑛 = 1, 2, 3, . . .),
the crack is in the fully open state, where 𝑘br = 𝑘𝑜. The
stiffness of the breathing cracked beam can be obtained via
the solution of the stiffness of the closed cracked beam and
the open cracked beam.

In the vibrational environment, the existence of the crack
will reduce the bending stiffness of the cantilever beam,
and the flexibility of the cantilever beam will increase. The
increased flexibility of the cracked beam caused by the
oblique crack is called the local flexibility. According to the
principles of fracture mechanics, the local flexibility caused
by the oblique crack 𝑆𝑎 can be obtained by the lateral
excitation as follows [18]:

𝑆𝑎 = 𝑏 𝜕2𝜕𝐹2 ∫
𝑎

0

𝐽𝑑𝑎∗, (2)

where 𝑎 is the depth of the crack; 𝑏 is the width of the beam;𝐹 is the external transverse force acting at the free end of the
cantilever beam; 𝐽 is the strain energy density, which is given
by

𝐽 = 1 − ]2𝐸 (𝐾Ι2 + 𝐾ΙΙ2) , (3)

where 𝐸 is the elastic modulus of the material, ] is the
Poisson’s ratio, and 𝐾Ι and 𝐾ΙΙ are the stress intensity factors
at the tip of the oblique crack.

As shown in Figure 1, the oblique crack belongs to theΙ-ΙΙmixed-mode crack, and the stress intensity factor has two
components: 𝐾Ι and 𝐾ΙΙ. For the plate with an oblique crack
subjected to only a pure bendingmoment, the stress intensity
factors𝐾Ι and𝐾ΙΙ can be obtained from [19]:

𝐾Ι = 𝜎𝑏√𝜋𝑎𝐹Ι𝜃 (𝑎ℎ)
𝐾ΙΙ = 𝜎𝑏√𝜋𝑎𝐹ΙΙ𝜃 (𝑎ℎ) ,

(4)

where 𝜎𝑏 = 6𝑀/(𝑏ℎ2) is the bending stress; the bending
moment at the crack tip on the crack surface is𝑀 = 𝐹(𝐿−𝑥𝑎+𝑎 cos 𝜃);𝐹Ι𝜃(𝑎/ℎ) and𝐹ΙΙ𝜃(𝑎/ℎ) are the geometrical correction
factors of the plate with an unilateral oblique crack subjected
to the pure bending moment; and [19] provides the curves
corresponding to the geometrical correction factors 𝐹Ι𝜃(𝑎/ℎ)
of the three angles (𝜃 = 45∘, 67.5∘, and 90∘) and 𝐹ΙΙ𝜃(𝑎/ℎ) of
two angles (𝜃 = 45∘, 67.5∘).The finite element method will be
applied to obtain geometrical correction factor curves from
three additional angles (𝜃 = 30∘, 60∘, 75∘), and these 12 curves
are then fitted to 12 dimensionless functions.

The flexibility 𝑆𝑜 of the cantilever beam with an open
oblique crack can be obtained as follows:

𝑆𝑜 = 𝑆𝑐 + 𝑆𝑎 = 1𝑘𝑐 +
1𝑘𝑎 =

𝑘𝑐 + 𝑘𝑎𝑘𝑐𝑘𝑎 , (5)

where 𝑆𝑐 is the flexibility of the cantilever beam without
cracks; 𝑘𝑐 is the bending stiffness of the cantilever beam

without cracks; 𝑘𝑎 is the bending stiffness caused by the local
flexibility.

Neglecting the shear effect caused by the transverse force,
the bending stiffness of the beam with an open oblique crack
can be obtained from the following equation:

𝑘𝑜 = 1𝑆𝑜 =
𝑘𝑎𝑘𝑐𝑘𝑎 + 𝑘𝑐 . (6)

3. Vibration Analysis

Thebending free vibration differential equation for a uniform
and homogeneous straight beam is given by

𝐸𝐼𝜕4𝑤𝜕𝑥4 + 𝜌𝐴𝜕
2𝑤𝜕𝑡2 = 0, (7)

where 𝐼 is the moment of inertia of the cross-section,𝐴 is the
area of the cross-section, and 𝜌 is the density of the material.

It is assumed that the transverse natural vibration of the
cracked beam is expressed as follows:

𝑤 (𝑥, 𝑡) = 𝑊 (𝑥) 𝑞 (𝑡) , (8)

where 𝑊(𝑥) is the transverse vibration amplitude function
of the neutral axis of the beam cross-section and 𝑞(𝑡) is the
function describing the law of motion.

According to the boundary conditions of the cantilever
beam, the vibration amplitude function can be obtained by

𝑊𝑛 (𝑥) = (cos 𝜆𝑛𝑥 − cosh 𝜆𝑛𝑥)
− 𝜐𝑛 (sin 𝜆𝑛𝑥 − sinh 𝜆𝑛𝑥) , (9)

where 𝑛 = 1, 2, 3, . . .; 𝜐𝑛 = (cos 𝜆𝑛𝐿 + cosh 𝜆𝑛𝐿)/(sin 𝜆𝑛𝐿 +
sinh 𝜆𝑛𝐿); 𝜆𝑛𝐿 is the solution of the following equation:
cos 𝜆𝑛𝐿 cosh 𝜆𝑛𝐿 = −1; if 𝑛 = 1 and 𝜆1𝐿 = 1.8751, the first
mode shape of the cantilever beam can be easily obtained.

Substituting (8) into (7), a single degree of freedom
system can be obtained via the Galerkin method as follows:

𝑚∗ 𝜕2𝑞 (𝑡)𝜕𝑡2 + 𝑘∗𝑞 (𝑡) = 0 (10)

𝑚∗ = 𝜌𝐴∫𝐿
0

𝑊2𝑛 (𝑥) 𝑑𝑥 (11)

𝑘∗ = 𝐸𝐼∫𝐿
0

𝑊2𝑛 (𝑥) 𝑑𝑥, (12)

where 𝑚∗ is the generalized mass and 𝑘∗ is the generalized
stiffness of the structure without a crack.

When the oblique crack is in the fully closed state (𝑘𝑐 =𝑘∗), then (10) is the vibration function of the beam for a fully
closed crack. If the generalized stiffness of the structure is
replaced by the stiffness of the open crack 𝑘𝑜 and the stiffness
of the breathing crack 𝑘br, the vibration functions of the
open cracked beam and the breathing cracked beam can be
obtained.
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According to [20], the natural frequencies of the different
type cracked beams can be approximately expressed as

𝜔𝑜 = √ 𝑘𝑜𝑚∗
𝜔𝑐 = √ 𝑘𝑐𝑚∗ ,

(13)

where 𝜔𝑜 is the natural frequency of the open cracked beam
and 𝜔𝑐 is the natural frequency of the closed cracked beam.

According to [21], the natural frequency of the breathing
cracked beam is not time variant, and the natural frequency
of the breathing oblique cracked beam can be obtained as
follows:

𝜔br = 2𝜔𝑜𝜔𝑐𝜔𝑜 + 𝜔𝑐 . (14)

4. Finite Element Method

4.1. Geometric Correction Factor of aUnilateral Oblique Crack.
The geometric correction factors 𝐹Ι𝜃(𝑎/ℎ) and 𝐹ΙΙ𝜃(𝑎/ℎ) of
a unilateral oblique crack with different angles and relative
depths are given by [19]:

𝐹Ι𝜃 (𝑎ℎ) = 𝐾Ι𝐾0
𝐹ΙΙ𝜃 (𝑎ℎ) = 𝐾ΙΙ𝐾0 ,

(15)

where

𝐾0 = 6𝑀√𝜋𝑎ℎ2 . (16)

This formula can be applied to any similar rectangular
plate with an oblique crack, and the length of the plate is
2.5 times longer than the width, and the distance required
between the crack and each side of the plate is at least equal
to the width of the plate.

The stress intensity factors𝐾Ι and𝐾ΙΙ at the crack tip can
be used to obtain the geometric correction factors 𝐹Ι𝜃(𝑎/ℎ)
and 𝐹ΙΙ𝜃(𝑎/ℎ). In this paper, ABAQUS is used to calculate
the stress intensity factors 𝐾Ι and 𝐾ΙΙ at the crack tip of the
oblique crack by the direct𝐾Ι output method.

The position of the unilateral oblique crack and the
geometric shape of the rectangular cracked plate are shown in
Figure 3, and both sides are subjected to a bending moment𝑀. The width of the plate is given by ℎ = 0.1m. The depth
and angle of the crack are represented by 𝑎 and 𝜃 respectively.
The elastic modulus of the material is 𝐸 = 210GPa, the
Poisson’s ratio is ] = 0.3, and the density of the material is𝜌 = 7860 kg/m3.

Reference points 𝐴 and 𝐵 are defined at the midpoints
of the left and right sides of the plate, respectively, and the
coupling constraints are established between the left and right

MM
a

h

L

h2h

A B

𝜃

Figure 3: Geometric shape of a rectangular cracked plate under a
bending moment.

sides of the plate and the reference points, respectively. The
bendingmoments are loaded on the reference points, and the
bending moments are loaded on the left and right sides of the
plate finally.

ABAQUS is used to conduct the two-dimensional finite
element analysis of the cracked plate, with the angles
of oblique crack 𝜃 = 30∘, 45∘, 60∘, 67.5∘, 75∘, and90∘ and the relative depths of oblique crack 𝑎/ℎ =0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, which is used to calculate
the stress intensity factors𝐾Ι and𝐾ΙΙ at the crack tip. Because
the crack is an ideal sharp crack, the triangular elementsCPS6
are used to eliminate the influence the stress field singularity
around the crack tip, and the quadrilateral elements CPS8
are used in other regions. The meshes near the crack tip
must be refined, and the minimum distance between the
nodes near the crack tip is less than 0.02𝑎, which meets the
requirements of the calculation and improves the accuracy.
In the Interaction Module of ABAQUS, the stress singularity
at the oblique crack is set up. In the Step Module, the output
of the stress intensity factors at the crack tip is created.
After creating the load, the calculation is carried out, and
the stress intensity factors 𝐾Ι and 𝐾ΙΙ can be easily obtained.
Then the geometric correction factors 𝐹Ι𝜃(𝑎/ℎ) and 𝐹ΙΙ𝜃(𝑎/ℎ)
can be obtained by substituting the stress intensity factors
into (15).

When the relative depths and angles of the oblique crack
are 𝑎/ℎ ∈ [0.3, 0.55] and 𝜃 = 45∘, 67.5∘, and 90∘, the three
geometric correction factors curves of 𝐹Ι𝜃(𝑎/ℎ) are listed
in [19]; when the relative depths and angles of the oblique
crack are 𝑎/ℎ ∈ [0.3, 0.55] and 𝜃 = 45∘ and 67.5∘, the two
geometric correction factors curves of𝐹ΙΙ𝜃(𝑎/ℎ) are also listed
in [19]. Geometric correction factors are also calculated for
the oblique crack with a relative depth of 𝑎/ℎ = 0.1, 0.2.
These factors improve the accuracy of the curves that were fit
using MATLAB. Figure 4 compares the geometric correction
factors 𝐹Ι𝜃(𝑎/ℎ) and 𝐹ΙΙ𝜃(𝑎/ℎ) obtained from ABAQUS and
the results from [19] for different angles of the oblique
crack.

As shown in Figure 4, the values obtained by ABAQUS
are similar to the values from [19], suggesting that the two-
dimensional mesh model established by ABAQUS possesses
a high accuracy and can be effectively used to calculate the
geometrical correction factors 𝐹Ι𝜃(𝑎/ℎ) and 𝐹ΙΙ𝜃(𝑎/ℎ).
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Figure 4: Geometric correction factors 𝐹Ι𝜃(𝑎/ℎ) and 𝐹ΙΙ𝜃(𝑎/ℎ).
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Figure 5: 12 function curves fitted from 12 geometric correction factor groups.

12 groups of geometric correction factors 𝐹Ι𝜃(𝑎/ℎ) and𝐹ΙΙ𝜃(𝑎/ℎ) are obtained using ABAQUS for oblique crack
angles of 𝜃 = 30∘, 45∘, 60∘, 67.5∘, 75∘, and 90∘; then these
12 groups are fitted to 12 function curves using MATLAB, as
shown in Figure 5.

The 12 fitted function curve formulas can be expressed as

𝐹Ι90∘ (𝑎ℎ) = 6.318 (𝑎ℎ)
4 − 4.407 (𝑎ℎ)

3

+ 3.683 (𝑎ℎ)
2 − 0.6562 (𝑎ℎ)

+ 1.062
(17)

𝐹Ι75∘ (𝑎ℎ) = −1.368 (𝑎ℎ)
4 + 5.916 (𝑎ℎ)

3

− 1.296 (𝑎ℎ)
2 + 0.2301 (𝑎ℎ)

+ 0.9543
(18)

𝐹Ι67.5∘ (𝑎ℎ) = −4.167 (𝑎ℎ)
4 + 8.464 (𝑎ℎ)

3

− 2.622 (𝑎ℎ)
2 + 0.4994 (𝑎ℎ)

+ 0.8863
(19)
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𝐹Ι60∘ (𝑎ℎ) = 0.5975 (𝑎ℎ)
4 + 0.387 (𝑎ℎ)

3

+ 1.023 (𝑎ℎ)
2 − 0.1228 (𝑎ℎ)

+ 0.8348
(20)

𝐹Ι45∘ (𝑎ℎ) = −3.497 (𝑎ℎ)
4 + 6.955 (𝑎ℎ)

3

− 3.231 (𝑎ℎ)
2 + 0.5804 (𝑎ℎ)

+ 0.6577
(21)

𝐹Ι30∘ (𝑎ℎ) = 6.513 (𝑎ℎ)
4 − 6.949 (𝑎ℎ)

3

+ 2.75 (𝑎ℎ)
2 − 0.4081 (𝑎ℎ)

+ 0.4436
(22)

𝐹ΙΙ90∘ (𝑎ℎ) = 0 (23)

𝐹ΙΙ75∘ (𝑎ℎ) = −1.117 (𝑎ℎ)
4 + 1.696 (𝑎ℎ)

3

− 0.6814 (𝑎ℎ)
2 + 0.06768 (𝑎ℎ)

+ 0.1534
(24)

𝐹ΙΙ67.5∘ (𝑎ℎ) = 2.125 (𝑎ℎ)
4 − 2.148 (𝑎ℎ)

3

+ 0.8833 (𝑎ℎ)
2 − 0.1847 (𝑎ℎ)

+ 0.2365
(25)

𝐹ΙΙ60∘ (𝑎ℎ) = 0.1669 (𝑎ℎ)
4 − 0.06872 (𝑎ℎ)

3

+ 0.1959 (𝑎ℎ)
2 − 0.1093 (𝑎ℎ)

+ 0.2901
(26)

𝐹ΙΙ45∘ (𝑎ℎ) = 0.3453 (𝑎ℎ)
4 − 0.2088 (𝑎ℎ)

3

+ 0.2756 (𝑎ℎ)
2 − 0.1524 (𝑎ℎ)

+ 0.3336
(27)

𝐹ΙΙ30∘ (𝑎ℎ) = −3.581 (𝑎ℎ)
4 + 4.705 (𝑎ℎ)

3

− 1.944 (𝑎ℎ)
2 + 0.2885 (𝑎ℎ)

+ 0.2922,
(28)

where 𝜃 = 30∘, 45∘, 60∘, 67.5∘, 75∘, and 90∘ and 𝑎/ℎ ∈ [0, 0.6].
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Figure 6: Comparison between the fitted function and the empirical
formula.

As shown in Figure 5, when the oblique crack angle𝜃 remains unchanged, the geometric correction factors𝐹Ι𝜃(𝑎/ℎ) and 𝐹ΙΙ𝜃(𝑎/ℎ) gradually increase as the relative crack
depth increases. In addition, the increasing amplitude of the
geometric correction factors also gradually increases as the
relative crack depth increases. When the relative depth of
the crack 𝑎/ℎ remains unchanged, the geometric correction
factor 𝐹Ι𝜃(𝑎/ℎ) gradually increases as the oblique crack angle𝜃 increases; and when the angle of the oblique crack 𝜃 =45∘, the geometric correction factor 𝐹ΙΙ𝜃(𝑎/ℎ) reaches the
maximum.

When the oblique crack angle 𝜃 = 90∘, the oblique crack
is transformed into the transverse crack, and the empirical
formula of the geometric correction factor is given by [22]:

𝐹𝐼 (𝑎ℎ) = 14 (𝑎ℎ)
4 − 13.08 (𝑎ℎ)

3 + 7.33 (𝑎ℎ)
2

− 1.4 (𝑎ℎ) + 1.122,
(29)

where 𝑎/ℎ ∈ [0, 0.6].
A comparison between (17) fitted by MATLAB and (29)

from [22] is shown in Figure 6.
As shown in Figure 6, the two curves are very similar

for a relative oblique crack depth of 𝑎/ℎ ∈ [0.1, 0.6],
and the empirical formula Eq. (29) can be replaced by the
fitted function Eq. (17). Additional errors exist between the
two curves when the relative depth of the oblique crack is𝑎/ℎ ∈ [0, 0.1], with the maximum error reaching 5.35%. The
decreasing amplitude of the geometric correction factor is
relatively large for the empirical formula Eq. (29), while the
fitted function Eq. (17) is more smooth and practical for a
relative oblique crack depth 𝑎/ℎ ∈ [0, 0.1].
4.2. Natural Frequency of the Breathing Oblique Cracked
Beam. ABAQUS is used to build the geometric mesh
model of the beam with a breathing oblique crack. The
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(a) Mesh model of the breathing oblique cracked beam

Y

Z X

(b) Mesh model of the crack region

Figure 7: Mesh model of the breathing oblique crack.

three-dimensional model is then applied to build three-
dimensional geometric model meshes.

The breathing behaviour of the oblique crack is treated as
a full frictional contact problem between the crack surfaces,
and penetration between contacting areas is not allowed. A
transverse harmonic excitation is acting at the free end of the
cantilever beam, and a reasonable frequency range is set up.
Set the displacement/velocity/acceleration as the output, then
the transverse accelerationmagnitude-frequency characteris-
tic curve of the breathing cracked beam can be obtained.

The first-order natural frequency of the breathing cracked
beam can be determined from the first peak of the curve
and compared with the results from the analytical method
proposed in this paper. The cracked beam meshes and
contacts on both crack surfaces are shown in Figure 7, where
the angle of the oblique crack is 𝜃 = 60∘, and the relative depth
of the oblique crack is 𝑎/ℎ = 0.5.
5. Results and Discussion

Using the cantilever beam as an example, the geometric
parameters of the oblique cracked beam in Figure 1 are 𝐿 =0.3m, ℎ = 0.03m, and 𝑏 = 0.03m. The structural material is
the low carbon alloy steel AISI1050, withmaterial parameters:𝐸 = 210GPa, ] = 0.3, and 𝜌 = 7860 kg/m3.

We assume that the position of the oblique crack is 𝑥𝑎 =0.5𝐿, the angle of the oblique crack is 𝜃 = 90∘, and the relative
depth of the oblique crack is 𝑎/ℎ ∈ [0, 0.5]. The natural
frequencies calculated by the fitted function Eq. (17) and the
empirical formula Eq. (29) are shown in Figure 8.

As shown in Figure 8, the natural frequencies calculated
by the two methods are nearly identical. Therefore, the fitted
function Eq. (17) is correct for the oblique crack angle 𝜃 =90∘. The natural frequency of the breathing oblique cracked
beam gradually decreases with increased relative depth of the
oblique crack when the angle of the oblique crack is 𝜃 = 90∘.
In addition, the decreasing amplitude gradually increases as
the relative depth of the oblique crack increases.

We assume that the position of the oblique crack is 𝑥𝑎 =0.5𝐿, the angle of the oblique crack is 𝜃 = 90∘, and the
relative depth of the oblique crack is 𝑎/ℎ = 0.5. When
the 3D mesh sizes of the cracked beam are, respectively,0.015m×0.015m×0.015m, 0.0075m×0.0075m×0.0075m,0.005m × 0.005m × 0.005m, 0.00375m × 0.00375m ×

0.00375m, 0.003m×0.003m×0.003m, 0.0025m×0.0025m×0.0025m, 0.0015m×0.0015m×0.0015m, 0.001m×0.001m×0.0015m, and 0.001m × 0.001m × 0.001m, the total num-
bers of elements of the breathing cracked cantilever beam
are 80, 640, 2160, 5120, 10000, 17280, 80000, 180000, 270000,
and then the natural frequencies of the breathing oblique
cracked beam obtained by ABAQUS are shown in Figure 9.

As shown in Figure 9, the natural frequency of the
breathing oblique cracked beam is gradually converging to an
exact value as the total number of elements increases. It can
be proved that the natural frequency obtained by ABAQUS
is convergent, and it can be used to verify the accuracy of the
theoretical method proposed in this paper.

We assume that the position of the oblique crack is 𝑥𝑎 =0.5𝐿 and the angles of the oblique crack are 𝜃 = 30∘, 45∘, 60∘,67.5∘, 75∘, 90∘, 105∘, 112.5∘, 120∘, 135∘, and 150∘. If the relative
depth of the oblique crack is 𝑎/ℎ ∈ [0.025, 0.5], the natural
frequencies of the cracked beam can be calculated using
the analytical method proposed in this paper for different
oblique crack angles and relative depths. If the relative depth
of the oblique crack is 𝑎/ℎ = 0.1, 0.2, 0.3, 0.4, 0.5, the natural
frequencies of the oblique cracked beam can be obtained
using ABAQUS. The natural frequencies of the oblique
cracked beam that were obtained using the two methods are
shown in Figure 1

As shown in Figure 10, the natural frequencies of the
cracked beam calculated using the two presentedmethods are
very similar for a variety of oblique crack angles and relative
depths, with the maximum computational error reaching
only 2.99%. When the angle of the oblique crack remains
unchanged, the natural frequency of the breathing oblique
cracked beam gradually decreases as the relative depth of the
oblique crack increases. In addition, the decreasing amplitude
gradually increases as the relative depth of the oblique
crack increases. The decreasing natural frequency rate of the
oblique cracked beamgradually increases as the oblique crack
angle approaches 90∘.

We assume that the position of the oblique crack is 𝑥𝑎 =0.5𝐿, the relative depth of the crack is 𝑎/ℎ ∈ [0.05, 0.5],
and the angles of the oblique crack are 𝜃 ∈ {30∘ 150∘},𝜃 ∈ {45∘ 135∘}, 𝜃 ∈ {60∘ 120∘}, 𝜃 ∈ {67.5∘ 112.5∘}, and𝜃 ∈ {75∘ 105∘}. The natural frequencies of the breathing
oblique cracked beam calculated using the proposed analyti-
cal method are shown in Figure 11.



8 Shock and Vibration

0 0.1 0.2 0.3 0.4 0.5
250

255

260

265

270

275

280

Relative depth a/h

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

Empirical formula eq. (23)
Fitted function eq. (17)

Figure 8: Natural frequencies of the fitted function and the empirical formula.
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Figure 9: Natural frequency obtained by ABAQUS with different number of elements.

As shown in Figure 11, when the angle of the oblique
crack is less than 90∘, the natural frequencies of the breathing
oblique cracked beam are less than natural frequencies for
angles greater than 90∘. In addition, the influence of the angle
on the natural frequency of the cracked beam is relatively
large. The decreasing amplitude of the natural frequency
gradually increases as the relative depth of the oblique crack
increases.

We assume that the position of the oblique crack is𝑥𝑎 = 0.5𝐿, the relative depth of the oblique crack is 𝑎/ℎ =0.1, 0.2, 0.3, 0.4, 0.5, and the angles of the oblique crack are𝜃 = 30∘, 45∘, 60∘, 67.5∘, 75∘, 90∘, 105∘, 112.5∘, 120∘, 135∘, and150∘.Thenatural frequencies of the breathing oblique cracked
beam calculated using the analytical method proposed are
shown in Figure 12.

As shown in Figure 12, the natural frequency of the
breathing oblique cracked beam gradually decreases as the

relative depth of the crack increases when the oblique crack
angle remains unchanged. When the relative depth of the
oblique crack remains unchanged and the angle of the crack
is 𝜃 ∈ [30∘, 90∘], the natural frequency of the beam gradually
decreases as the angle increases, and the decreasing amplitude
gradually decreases as the angle increases. If the relative depth
of the oblique crack remains unchanged and the angle of
the crack is 𝜃 ∈ [90∘, 150∘], then the natural frequency
of the beam gradually increases as the angle increases, and
the increasing amplitude gradually increases as the angle
increases. When the relative depth of the oblique crack
remains unchanged and the angle of the oblique crack is𝜃 = 90∘, the natural frequency of the beam is minimal,
and the influence of the crack on the natural frequency is
maximal.

We assume that the position of the oblique crack is𝑥𝑎/𝐿 ∈[0.1, 0.95], the angle of the oblique crack is 𝜃 = 90∘, and the
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Figure 10: Continued.



10 Shock and Vibration

Relative depth a/h

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

0 0.1 0.2 0.3 0.4 0.5
250

255

260

265

270

275

280

Breathing crack 120
∘

Finite element method 120
∘

(i) 𝜃 = 120∘

Relative depth a/h

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

0 0.1 0.2 0.3 0.4 0.5
250

255

260

265

270

275

280

Breathing crack 135
∘

Finite element method 135
∘

(j) 𝜃 = 135∘

Relative depth a/h

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

0 0.1 0.2 0.3 0.4 0.5
250

255

260

265

270

275

280

Breathing crack 150
∘

Finite element method 150
∘

(k) 𝜃 = 150∘

Figure 10: Natural frequencies obtained using the theoretical method and the ABAQUS FEMmethod.

relative depth of the oblique crack is 𝑎/ℎ = 0.5. The natural
frequencies of the breathing oblique cracked beam calculated
using the proposed analytical method and ABAQUS are
shown in Figure 13.

As shown in Figure 13, the natural frequencies of the
cracked beam calculated using the two methods are very
close, for a variety of oblique crack relative positions, with
the maximum computational error reaching only 4.65%.The
position of the oblique crack has a significant influence on
the natural frequency of the breathing oblique cracked beam.
When the angle and relative depth of the oblique crack
remain unchanged, the natural frequency of the cracked
beam gradually increases as the crack moves away from the
fixed end of the cantilever beam. The increasing amplitude
of the natural frequency gradually decreases as the relative
position of the oblique crack from the fixed end of the
cantilever beam increases.

6. Conclusion

An analytical method for evaluating the natural frequency
of the cantilever beam with a breathing oblique crack has
been developed. The method proposes a new model for

simulating the breathing behaviour of the oblique crack,
which is represented by the double-linear-springs-model.
The proposed method also involves the calculation of geo-
metric correction factors for the oblique crack with differ-
ent angles and relative depths. These geometric correction
factors are used to calculate the stress intensity factors
at the crack tip. The Galerkin method is used to sim-
plify the structure to a single degree of freedom system,
allowing the natural frequency of the cracked beam to be
obtained.

The proposed analytical method was validated using the
ABAQUS FEM software, which is used to build geometric
and mesh models of the oblique cracked beam. The natural
frequencies of the oblique cracked beam obtained via the two
methods are extremely similar, with a maximum computa-
tional error of only 4.65%.

The analytical method proposed in this paper provides
a powerful tool for calculating the natural frequency of
the beam with a breathing oblique crack. This method
can be applied to beams with multiple breathing oblique
cracks, and several double-linear-springs-models can be
used to simulate the breathing behaviours of each oblique
crack.
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Figure 11: Comparison between the natural frequencies of the oblique crack with different angles.

The modal analysis of the cantilever beam with a breath-
ing oblique crack is carried out in this paper, and the
possibility is provided for developing the structural health
monitoring system of the beam with an oblique crack.

Finally, six additional function curves have been fitted for
oblique crack angles of 𝜃 = 30∘, 60∘, and 75∘, enriching the
data provided in [19] for a unilateral oblique crack subjected
to a bending moment.
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