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In the framework of disturbance rejection (DR) control, the paper proposes a generalized-disturbance rejection (GDR) control with
proportional-integral (PI) observer for vibration suppression of smart structures under any unknown continuous disturbances.
In the proposed GDR-PI control, a refined state space model is first constructed, and a generalized disturbance including the
disturbance influence matrices, unknown physical disturbances, and state variables is defined. In the closed loop of GDR-PI control,
physical disturbances can be counteracted indirectly by feeding back estimated generalized disturbances. By this means, the GDR-
PI control remedies most of the defects in conventional DR control and has excellent performances especially in the following
situations: (i) the disturbances are completely unknown; (ii) the number of sensor signals is less than the number of disturbances;
(iii) the unknown disturbances vary fast. Finally, the GDR-PI control is validated and compared with H_ state feedback control

and conventional DR control available in the literature for vibration suppression of smart beams.

1. Introduction

Flexible structures are widely used in the field of aerospace
engineering because of light weight, which however are very
sensitive to vibrations because of their low stiffness and
damping ratios. The unwanted vibrations not only degrade
the mechanical performance of structures but sometimes also
cause destructive results, for example, flutter problems of
flight vehicles [1], vibrations of flexible space antenna [2],
and manipulator [3]. To break the contradiction between
light weight and structural stability, smart structures were
proposed and developed increasingly by many researchers for
vibration suppression, in which smart materials, for example,
piezoelectric, magnetostrictive materials and shape memory
alloys, are tightly integrated. As can be seen, most of those
unwanted vibrations are usually caused by unknown external
or internal disturbances, which make the system unstable and
hard to control. Therefore, a proper control strategy plays

a very important role in the case of smart structures under
unknown disturbances.

During the past few decades, many control methods have
been proposed and developed for vibration suppression of
smart structures, including classical control theory, modern
control theory, and intelligent control theory. Among them,
negative velocity feedback control [3-9] and positive position
feedback control [10-14] became the two most popular
classical control strategies for easy implementation. As the
most famous control method in industry, PID control was
applied to vibration suppression in many papers [15-19].
Another classical control strategy is so-called bang-bang
control, which can be found in, for example, [20-23] among
many others. In the field of modern control theory, Linear
Quadratic Regulator (LQR) control and Linear Quadratic
Gaussian (LQG) control are the two most popular choices
for vibration suppression, which can be found in [24-27]
and [25, 28-33], respectively. Furthermore, applications of
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Lyapunov control [24, 34-36] were also conducted by many
researchers. Some advanced control methods for smart struc-
tures came into vogue in recent years. For example, sliding
model control [37-39] and model predictive control [40-
42] were implemented in many researches of vibration sup-
pression of smart structures. In the aspect of artificial intel-
ligence algorithms, controllers for vibration suppression of
smart structures are developed using online self-organizing
fuzzy logic control [43], multiobjective differential evolution
algorithm optimized fuzzy logic control [44], and hybrid
algorithm combining fuzzy logic and proportional-integral
control [45]. Moreover, neural network control was applied
to smart structures numerically [46-48] and experimentally
[49-51].

However, the above-mentioned control strategies did not
take into account the unknown disturbances. Since many
unwanted vibrations are caused by unknown disturbances,
especially the continuous and strong ones, it is not hard to see
that vibrations will be extremely suppressed if the unknown
disturbances are considered during the controller design
process. There are only a few control methods considering the
influence of disturbances or aiming at rejecting disturbances,
for example, H,, control, adaptive control, and disturbance
rejection control. A considerable amount of literatures can
be found on H_, robust control [52-54] and adaptive control
[55-58] for vibration suppression problems. Nevertheless,
the disturbances considered in H,, controllers are normally
measurement noises with low amplitude and zero mean
value. In contrast, the disturbances that cause vibrations
are much stronger than measurement noises, which makes
it difficult to be attenuated efficiently using H,, control.
On the other hand, although disturbance rejection can be
achieved by adaptive regulation in some situations, the
adaptive control is hindered from wide applications by
deficiencies like complexity, narrow band constraint, or water
bed effect. In a more efficient way, disturbance rejection
(DR) control presents a mechanism in which disturbances are
counteracted by feeding the estimated disturbances back to
the system, leading to excellent disturbance rejecting perfor-
mance and great advantage in suppressing vibrations caused
by unknown disturbances.

Because of the excellent disturbance rejecting perfor-
mance and easy implementation, DR control has attracted
the interest of many researchers. In the framework of DR
control, Han [59] and Gao [60] developed an active dis-
turbance rejection control (ADRC) for single-input single-
output systems. Based on acceleration compensation, Li et al.
(61, 62] applied ADRC to piezoelectric multimode vibration
control for stiffened plate with chaos optimization method
and Smith Predictor technology, which were both verified
experimentally. On the other hand, Miiller and Liickel [63]
proposed and developed a DR control with proportional-
integral (PI) observer for multi-input multioutput systems.
Disturbances with low frequencies can be estimated and
counteracted in the DR-PI control. Later, the PI observer
was extended to a generalized proportional-integral (GPI)
observer by Zhang et al. [64, 65] for vibration suppression of
smart structures, which is able to estimate disturbances with
high frequencies. The GPI observer utilizes a combination of
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constant terms and sine (or cosine) functions as the fictitious
disturbance model, which results in precise estimation of
disturbances with frequencies roughly known. Vibrations of
smart structures excited by periodic disturbances with low-
or high-order frequencies can be successfully suppressed by
the DR-GPI control.

However, the performances of DR-PI control and DR-GPI
control may deteriorate when some requirements on sensor
signals and disturbance information cannot be satisfied. For
example, in DR control, it is required that the disturbance
influence matrices must be known and the number of sensor
signals cannot be less than that of disturbances. Moreover,
the DR-PI control is only valid for disturbances varying
very slow. Although the DR-GPI control can be applied
for periodic disturbances with high-order frequencies, the
frequencies must be known or roughly known. In order
to remedy the aforementioned shortcomings, based on the
work of Zhang et al. [64, 65], this paper proposes a refined
disturbance rejection control method, named as generalized-
disturbance rejection (GDR) control, for vibration suppres-
sion of smart structures under any unknown continuous dis-
turbances. In the proposed GDR control, a refined state space
model is first constructed, in which a generalized disturbance
is defined including the disturbance influence matrices,
unknown disturbances, and state variables. In such a way,
using either the PI or GPI observer, the generalized dis-
turbances can be estimated and fed back to the controller.
Unlike the conventional DR control, the proposed method
cannot estimate the real disturbances but rather the general-
ized disturbances with the information of disturbances and
state variables. Therefore, the GDR control remedies most
of the shortcomings in conventional DR control and has
excellent performances in situations as, but not limited to,
the following: (i) the disturbance influence matrices are
unknown; (ii) the number of sensor signals is less than the
number of disturbances; (iii) the disturbances are periodic
ones with unknown high-order frequencies or random ones
varying fast. Finally, the GDR-PI control is validated and
compared numerically with H_ state feedback control and
DR-GPI control for vibration suppression of a piezoelectric
laminated flexible smart beam. Results show that the GDR-PI
control achieves better vibration suppression performance in
the situations mentioned above.

2. System Modeling

2.1. Dynamic Model. To design and validate a controller for
vibration suppression, a mathematical dynamic model of a
piezoelectric laminated smart structure is needed. Using the
finite element (FE) method based on the First-Order Shear
Deformation (FOSD) hypothesis, the dynamic FE model is
obtained as [66-69]

Muuq + Cuuq + Kuuq + Kuqb(pa = ff> (1)
In (1), M,,, C,» Ky Kyg g ¢, and f; denote the

mass matrix, the damping matrix, the stiffness matrix, the
piezoelectric coupled stiffness matrix, the nodal displacement
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vector, the actuation voltage vector, and the external force
vector, respectively. In (2), K, Ky, and ¢ represent the
coupled capacity matrix, the piezoelectric capacity matrix,
and the sensor voltage vector, respectively.

2.2. State Space Model. For controller design convenience,
a state space model is derived from the dynamic FE model
given in (1) and (2) as

X (t) = Ax + Bu + Nf, (3)
y () = Cx (4)

in which the state vector x, the control input vector u, and the
system output vector y are, respectively, defined as

[

uz(l)a’
y = ¢,

Furthermore, vector f denotes the physical disturbance that
can influence the control system of smart structures. Physical
disturbance can be any unknown external forces f, nonlin-
earities f,, system errors f,, and so forth. Hence the physical
disturbance vector f can be expressed as

f
f=4¢ L. 6)
£

e

©)

Assuming N Iz N,,, and N, are the influence matrices of f £ f,
and £, respectively, the physical disturbance influence matrix
N can be obtained as

N=[N; N, N,J. 7)

For simplicity, external force is considered as the only
physical disturbance in this paper, which leads to

f:ff’

(8)
N = Nf

The system matrix A, the control input matrix B, the external
force influence matrix N, and the system output matrix C
are calculated by

0 I
oMk, Moic, ) ®
0
5o | -M. K| "
[0
N, = | (11)
C = [-Ky Ky, 0]. (12)

The state space model given in (3) and (4) is named as the
original state space model in order to distinguish it from the
refined state space model in the later section of GDR control
design.

3. Generalized-Disturbance Rejection Control

3.1 Refined State Space Model. In the conventional DR con-
trol, accurate disturbance influence matrices are needed for
the design of PI or GPI observer so that the disturbances can
be estimated. However, the physical disturbance influence
matrix N is assumed as unknown in this paper, which leads
to failure in observer design. Therefore, the physical dis-
turbances cannot be estimated directly in the original state
space model due to the lack of accurate disturbance influence
matrices. As a solution, the generalized disturbance, which
includes disturbance influence matrices, unknown distur-
bances, and state variables, is utilized in the GDR control
to achieve indirect estimation and counteraction of physical
disturbances with unknown influence matrices. To construct
the generalized disturbance, a refined state space model is
built first, which is transformed from the original state space
model in (3) and (4), by introducing a new state vector as

L e

Here, z is the new state vector composed of z, and z, which
are equal toy and y, respectively. Substituting (4) into (13) and
taking the time derivative of (13) one obtains

¥
C(Ax+Bu + Nf)] ' -

From (10) and (12) it can be easily found out that CB = 0.
Substituting (3) and (13) into (14) yields

Z,

| CA (Ax + Bu + Nf) + CNf

[z, 0 0
= + + , (15)
L0 CABu CA (Ax + Nf) + CNf

[0 I 0 0
= 7+ u+ f 5

10 0 CAB 1|9
where f is defined as the generalized-disturbance vector and
expressed as

f, = C[A (Ax + Nf) + Nf| . (16)

Therefore, the generalized-disturbance vector f, is obtained
in the refined state space model, of which z is the state vector.
It is obvious that all physical disturbances and their influence
matrices are included in the generalized-disturbance vector.
Then the physical disturbances can be indirectly counteracted
by feeding back estimated generalized disturbances through
the GDR controller, if the generalized disturbances can be



estimated. According to (15), the refined state space model is
derived as

z=Az+Bu+ ﬁfg, (17)
y= Cz, (18)

where u and y are the control vector and output vector which
are exactly identical to those of the original state space model
in (3) and (4). Furthermore, A, B, N, and C denote the
system matrix, control input matrix, generalized-disturbance
influence matrix, and output matrix of the refined state space
model, respectively, which are expressed as

K——OI 19
~lo 0]’ (19)
fs—— 0 20
__CAB]’ (20)
N——O 21
—_I], (21)
C=[10]. (22)

Transformed from the original state space model, the refined
state space model describes the smart structure system in a
simpler structure by using state vector z. From the derivation
of the refined state space model, it can be seen that there is
no information lost during the transformation, which means
that the dynamic relations between inputs, physical distur-
bances, and outputs of the smart structure system described
by the refined state space model are exactly the same as those
described by the original state space model.

Compared to the original state space model, the refined
state space model is different mainly in three parts. The first
is integrating all the physical disturbances and their influ-
ence matrices into generalized disturbances, which brings
advantages in observer and controller design and therefore
in estimation and counteraction of physical disturbances. It
is apparent that the generalized-disturbance influence matrix
N is known; thus a PT or GPI observer can be built to estimate
the generalized disturbances. This means that the physical
disturbances can be counteracted indirectly by feeding back
estimated generalized disturbances, no matter whether the
influence matrices of physical disturbances are known or not,
which is impossible in the original state space model. Sec-
ondly, the structure of the refined state space model is much
simpler than the original one since the coupled state variables
are also integrated into the generalized disturbances. As a
result, the refined system can be decoupled easily so that
it is much easier to design high performance observer and
controller, which leads to more accurate estimation and
counteraction of periodic disturbances with unknown high-
order frequencies or random disturbances varying fast. The
third is the utilization of the new state vector z, which
removes the limitation of conventional DR control that the
number of sensor signals can not be less than the number of
disturbances. From (16), it can be found out that the number
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of generalized disturbances is equal to the number of system
outputs, namely, the number of sensor signals. Therefore the
generalized disturbances can be observed in the refined state
space model, whether or not the number of sensor signals is
less than that of physical disturbances. Moreover, it can be
seen from (5) that the model dimension of the original state
space model is twice the dimension of the smart structure’s FE
model, which can be very large when the model is complex.
In contrast, the model dimension of the refined state space
model is only twice the number of system outputs, as seen
in (13). Apparently the model dimension of the refined state
space model is much smaller in most cases, which means the
computational cost is reduced by using the refined state space
model.

3.2. Observer Design

3.2.1. Extended System. Normally observers are designed
for observing system state variables but not disturbances.
However, in the PI and GPI observer, disturbance estimation
is achieved by observing virtual state variables which are
used to approximate disturbances. Therefore, to estimate the
generalized disturbances, firstly, the relation between gener-
alized disturbances and state variables is assumed as [64, 65]

£,()=Hv(t) +A(t), (23)
V() = Vv (t). (24)

Here, the generalized-disturbance vector f_(t) is divided into
a linear part Hv(¢) and a residual error part A(t). The former
Hv(t) functions as the approximation of the generalized
disturbances while the latter A(t) is assumed to be small and
negligible in most cases. In the linear part, H is a coeflicient
matrix and v(t) is the virtual state vector comprised of finite
base functions. Subsequently, an extended system integrating
state vectors z and v is built. Substituting (23) and (24) into
(17) and (18), the extended system is obtained as

IRl
y=|[C 0] {Z} (26)

Obviously, generalized disturbances are approximated by
virtual state variables in the extended system. As a result,
generalized disturbances can be estimated through a state
observer of the extended system, which is built in the next
section.

It is manifest from (23) and (24) that H and V determine
the dynamic behavior of estimated generalized disturbances,
which is fundamental to the disturbance tracking perfor-
mance of the observer. To choose an appropriate set of H and
V, a fictitious disturbance model that has similar dynamic
behavior to the disturbance signal is helpful to obtain better
tracking performance of the observer. For example, cosine
functions with same frequencies as those of disturbances are
utilized in the fictitious disturbance model of GPI observer,

A, (25)
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which leads to improvement in tracking performance of
periodic disturbances with known frequencies. Nonetheless,
the physical disturbances are assumed to be totally unknown
in this paper, which means it is impossible to get any dynamic
information of the physical and generalized disturbances.
Hence, a plain fictitious disturbance model with no extra
dynamic information but just step functions is adopted,
which leads to a PI observer [64, 70]. In the PI observer, the
fictitious model of generalized disturbance and the virtual
state vector are assumed as

(27)

which leads to

(28)

3.2.2. Observer Gain Design. According to the standard
Luenberger observer, a state observer for the extended system
in (25) and (26), namely, the PI observer, is constructed as

{:}z iﬁﬂ {:}* ﬂ“*[ij(v—?), (29)
7=(c ol {i} (30)

where L, and L, denote observer gains. In order to stabilize
the observer system, the estimation error of the PI observer
must converge to zero. Define the estimation error of the state
vectors in (25) as

e,=2-1,
(3D
e,=v-V.
Succeedingly the estimation error model of the GD observer

in (29) can be acquired as

e e

'Z — Ab z +

eV eV
where A, is the system matrix of the estimation error model
and can be expressed as

A, (32)

A-1,C NH

Ab = —
-LC V

(33)

It is evident that the estimation error system given in
(32) will be stable if A is bounded and all eigenvalues of A,
are placed in the left half plane. As a result, the estimation
errors e, and e, will converge to zero, which means the state
variables observed by the PI observer in (29) and (30) will
converge to the real ones given in (25) and (26). Substituting
(19), (21), (22), and (28) into (33), A, is formed as

L, 10
Ay=|-L, 01 (34)
-L, 00
with
L
L = [ ‘”] . (35)
Lzz

Accordingly, the characteristic polynomial of A, can be
expressed as

sI+L, -1 0
[sI-A,|=| L, sI -I|. (36)
L 0 sI

v

Applying elementary row operations, the determinant above
is calculated as

L, L
sST+L,+-2+=2 0 0
N S

|sT— Ay

sI 0
0 sI

L L,
2t o (37)

L

14

3 2
|1+ $°L, +sL,, + L]

For the convenience of pole placement, the observer system
needs to be decoupled by assuming gain matrices L,;, L,,,
and L, to be diagonal matrices expressed as

L, =diag(li 1z o i) »
L, = diag (hy Lo lom) » (38)
L, = diag (I3, Lyps - > lay) »

which leads to

m

|sI—A,| = H (53 + 1,8 + Lys + l3,~) . (39)

i=1

The roots of (39) can be arranged according to the classical
third-order system as

m 3
st-ad=[T(s+5) (40)

i=1 oi

where T, is an observer gain parameter which is proportional
to the settling time of the ith third-order system [71]. Hence
the settling time of the estimation error system composed



of m parallel third-order systems is positively related to
the maximum of T,; (i = 1,2,...,m). Apparently, —1/T;
denotes the ith eigenvalue of A, that is, the value of ith pole of
the estimation error system given in (32). All the poles will be
placed in the left half plane if

T,>0, (i=1,2,...,m). (41)
Consequently, the observer gain matrices are obtained as

3 3 3
L, :diag<T—,T—,...,T—),
ol 02

om

3 3 3
L, =di — e |
(o) @
. 1 1 1
LV:dlag<T—3,’T—3,...,’IT).
ol 02 om

The definition of settling time is the time required for the
response signal to settle to within a certain percent (2% or
5%) of its final value [71]. That is to say, the settling time
determines the response speed or the converging speed of the
estimation error system. Theoretically, the shorter the settling
time is, the faster the PI observer converges, and the quicker
the generalized disturbances can be estimated. Additionally,
the minimum of settling time is commonly limited by
restrictions like sensor noise and sampling rate in practice.
Compared to the conventional DR control [64, 70], the
observer design and tuning processes in GDR control are
simpler and more intuitive. Since the coupled state variables
are integrated in the generalized-disturbance vector, the
refined state space model is much easier to decouple, which
facilitates the closed-loop design of the observer. Using pole
placement method, the PI observer is designed as a critically
damped structure with gain parameters significantly corre-
lated with the response speed of the PI observer, which is
proven in the following simulation of the PI observer. Hence
the PI observer can be tuned more intuitively to obtain the
desired disturbance tracking performance in GDR control.

3.3. Controller Design. With the PI observer properly de-
signed, the estimated generalized disturbances are fed to
the DR controller with state vector z to suppress vibrations.
Unlike DR-PI or DR-GPI control, the state vector z in the
GDR control is composed of y and y, which can be obtained
directly from the output vector of the original plant without
estimation. As a consequence, the GDR control owns an
advantage over the conventional DR control, which is feeding
more accurate state variables back to the system. The control
law is designed as

u=-K,z-KJ, (43)

where K, and K, denote the gain matrices for vectors zand v,
respectively. In order to design the controller gains in a clear
way, the gain matrices are decomposed as

(44)
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with
BB =1,

(45)
B, = CAB.

Here, B, is the nonzero part of B, and B, is the right inverse
of B, which leads to

_ 0 0] -
BB, = [ ]B; = [ ] =N (46)
B I

c

The necessary and sufficient condition for the existence of B_,
is that B, is a row full-rank matrix, which is normally satisfied
in smart structure systems. Substituting (43)-(45) into (17),
the state equation of the closed-loop system of the refined
model is obtained as
2=Az-BB_K,z-BB_Kyv+Nf
(47)

with
(48)

where A_ is the system matrix of the closed-loop state space
model. According to (23), f; can be counteracted by K, v if
R -H, (49)
which leads to
2=Az+N(He, +A). (50)

Owing to the convergent PI observer, the estimation error
e, is bounded, as well as for the residual error A. Hence the
closed-loop system will be asymptotically stable if all its poles
are placed on the left half plane. Assuming K, as

Kz = [ﬁzl KzZ] > (51)

then substituting (19), (21), and (51) into (48), KC can be
acquired as

. 0 1
A = _ —
-K _Kz2

c

(52)

z1

The control gains can be designed in a decoupling way similar
to the observer design. Firstly, applying elementary column
operations, the characteristic polynomial of A, is derived as

'sI - A,

= |521 +sK, + K. (53)

Secondly, the matrices K,; and K,, are assumed to be
diagonal as
Kz1 = diag (ki kizs o ki) »

> k2m) .

_ (54)
K,, = diag (k,;, kyy, . -
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Finally, the determinant above can be expressed as

= ﬁ (52 +kys + kl,») . (55)

According to the classical second-order system, controller
gains can be designed as

2
k2i = _C)
Tci
1 (56)
ki ==
T
(i=12,....,m),

where T; is a controller gain parameter which is proportional
to the settling time of the ith second-order system in (55) and
{ denotes the damping ratio [71]. Therefore, m pairs of poles
can be placed in the left half plane as

sz_Tid (c2i1-). G=12..m (&)

with

(>0,
(58)
T,>0

in which j represents the unit imaginary number. Further-
more, ¢ is usually set as 1 to make the closed-loop system
critically damped. Alternatively, 0.707 is also a good choice
for its shortest settling time and acceptable overshoot within
5% [71]. Analogous to the observer design, the settling time of
the closed-loop system is positively related to the maximum
of T; (i = 1,2,...,m) and determines the response speed of
the closed-loop system. For that reason, the values of T,; need
to be small enough to get a desired control result. Moreover,
it is easy to find out that the GDR controller developed
above will turn into a proportional-derivative (PD) controller
if K, = 0, which is compared with GDR control in later
simulations.

3.4. Closed-Loop System. Substituting (43) into (3), (25), and
(29), the closed-loop GDR control system with PI observer is
obtained as

X
z
z
v

A  -BB K, 0 -BB_K, | (x

NCA> A-NK, 0 -NK, z

| o LC-NK, A-1.C NH-RNK,| |2

0 L,C -L,C \Y% v

7
N
NCAN
+ >
0
0
X
z
y=[c o000
Z
v
(59)
with the control input expressed as
X
L |z
u=[0 -B K, 0 -B_K,| e (60)
v

For the purpose of observer performance analysis, a
closed-loop observer system in which f, and f, are, respec-
tively, taken as input and output vectors is needed. Substitut-
ing (43) into (25) and (29), the closed-loop observer system
is expressed as

z A-NK, 0 -NK, z
zt = |L,C-NK, A-L,C NH-NK, | {1z
v L,C -L,C A% v
N
+|0|f, (61)
0
Z
f,={0 0 H}{z
\4

4. Simulation Results

The GDR control with PI observer is implemented numer-
ically on a cantilevered smart beam which is bonded with
two collocated piezoceramic patches on both surfaces, as
shown in Figure 1. The two patches are polarized in opposite
directions along the 6 axis so that one piezoelectric patch
functions as an actuator while the other one as a sensor.
Disturbance forces are applied in the direction of axis 6° at
one or two points among points P;, P,, and P;, which are
equidistantly located on axis 6" starting from the tip node
of the smart beam. The geometrical dimensions and material
properties of the steel beam and piezoceramic patches are
listed in Tables 1 and 2.

Considering the linear variant of FOSD plate theory
[64], a piezoelectric coupled FE model for the smart beam
in Figure 1 is built with a 5 x 1 mesh and an eight-node
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Steel beam

Disturbance

FIGURE 1: Cantilevered beam bonded with piezoelectric patches.

TaBLE 1: Geometrical dimensions of the steel beam and PZT patches.

Property Steel beam PZT patches
Length (mm) I, =350 a=75
Width (mm) w =25 w =25
Height (mm) h, =0.8 h, =0.25
Location (mm) - c=50
Spacing of P, P,, P, (mm) I,=1,=70 -

Serendipity shell element. The first five eigenfrequencies are
displayed in Table 3, and the first two eigenfrequencies
are used as the frequencies of disturbance forces in later
simulations.

4.1. Observer Performance Analysis. In this section, the dis-
turbance tracking capabilities of the PI observer in GDR
control, as well as those of the PI and GPI observers in DR
control, are compared and analyzed through a step distur-
bance estimation and a Bode diagram. For simplicity, the
names of these three observers are abbreviated to PI (GDR),
PI (DR), and GPI (DR), respectively. In the aspect of GDR
control, the closed-loop system of the PI (GDR) observer
given in (61) is adopted in these two simulations. The gain
parameter of the PI (GDR) observer T, is set with five differ-
ent values from 0.2 x 10~ to 3.2 x 107>, On the other hand,
according to the analysis of PI (DR) and GPI (DR) observers
in the work of Zhang et al. [64], the gain parameter of
these two observers, namely, b, is recommended as b = 100
for a short rise time and small overshoot.

For a start, a step signal with amplitude of 0.1 is given
as the disturbance or generalized disturbance for estimation.
Thereafter, the estimated disturbance signals are compared
in response speed. As shown in Figure 2, overshoots are
found in the signals estimated by PI (DR) and GPI (DR)
observers, while not in any signals estimated by the PI (GDR)
observers due to the critically damped structure of PI (GDR)
observer. As described in pole placement procedure, the
response speed of PI (GDR) observer obviously gets faster
with the decrease of T,, which proved the point that the gain
parameters of PI (GDR) observer is significantly correlated

with the response speed. Apparently, the PI (GDR) observer
can be tuned trivially by decreasing T, and the GD observer
responses much faster than the PI (DR) and GPI (DR) ones
when T, < 0.8 x 107°. On the other hand, although the
gain parameter of PI (DR) and GPI (DR) observers b is
positively correlated with the observer response speed, the
improvement in the response speeds of PI (DR) and GPI
(DR) observers is not that obvious when b increases, and the
Riccati equation may become unsolvable if b is excessively
large, which is referred to in [64]. In the later simulations,
gain parameter b = 100 is applied to the PI (DR) and GPI
(DR) observers if it is not mentioned otherwise.

In the Bode diagram shown in Figure 3, the three
observers with the same parameters as those in the step
estimation simulation are analyzed in frequency domain.
Obviously, the frequency response magnitudes of PI (DR)
and GPI (DR) observers begin to decay seriously after 20 rad/
s, which means undervalued estimation. On the other side,
the frequency response magnitude of the PI (GDR) observer
with parameter T, = 0.2 x 10~ does not show obvious decay
until 1 x 10° rad/s. Additionally, the PI (GDR) observer is
proved to be a minimum phase system according to the phase
plot in Figure 3 while the PI (DR) and GPI (DR) observers
are nonminimum phase systems, which are more difficult
to stabilize than the minimum one. The PI (GDR) observer
also keeps its phase lag small in a frequency range much
wider than those of PI (DR) and GPI (DR) observers, which
means the PI (GDR) observer is able to estimate higher
frequency disturbances with small time delay. To summarize,
the response speed of PI (GDR) observer is significantly
correlated with the gain parameter T, and, according to the
frequency response magnitudes and phase lags of the three
observers, the PI (GDR) observer starts to show better
disturbance tracking capability than the other two observers
when T, < 0.8 x 107,

4.2. Closed-Loop System Performance Analysis. In order to
analyze the influence of observer and controller gain param-
eters on the closed-loop system performance, frequency
responses of uncontrolled and controlled closed-loop systems
with different gain parameters are calculated. Since the GDR
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TABLE 2: Material properties of the steel beam and PZT patches.
Property Symbol Steel beam PZT patches
Young’s Modulus (GPa) Y 210 67
Density (kg/m®) p 7900 7800
Poisson’s ratio v 0.3 0.3
Piezoelectric coefficient (C/N) dy;, dsyy - -2.1x107"°
Permittivity (F/m) €33 - 2.13x10°°
TaBLE 3: First five eigenfrequencies of the cantilevered smart beam (Hz).
Mesh Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
5x1 6.2144 35.0444 110.1355 176.5464 178.0647
T T T T T ’Z" ’\: T T T T
0.1 f S B

T8 = i
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)
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with T, = 0.4 x 107°

— PI(GDR) with T, = 0.2 x 107>

(a)
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FIGURE 2: Estimated step disturbances by PI (DR), GPI (DR), and PI (GDR) observers with different gain parameters.
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FIGURE 3: The Bode diagram for PI (DR), GPI (DR), and PI (GDR) observers with different gain parameters.
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FIGURE 4: The frequency responses of the controlled and uncontrolled smart beam: (a) PD control configured with different T, and (b) PD
control and GDR control with PT observers configured with T, = 0.4 x 10~ and different T,.

control with PI observer will be simplified to a PD control
when there are no estimated disturbances fed back, PD
controllers with different controller gain parameters T, are
firstly analyzed by employing the closed-loop system in (59)
with K, = 0. Afterwards GDR controllers with PI observer
configured by T, = 0.4 x 10~ and different T, are compared
with a PD controller using the same T,.. On one hand, the
influence of controller gain on the closed-loop system perfor-
mance can be analyzed through the comparison of PD con-
trollers with different gain parameters. On the other hand, the
frequency characteristics of closed-loop systems of PD and
GDR control as well as the relation between the closed-loop
system performance and the observer gain parameters can
be analyzed through the comparison between frequency
responses of PD control and GDR control.

As shown in Figure 4(a), the response magnitudes of
all closed-loop systems of PD control are reduced for low
and high frequency disturbances, which means the influence
of disturbance is attenuated by the PD controller, evenly
throughout the frequency range from lrad/s to 2 x 10°
rad/s. Furthermore, the response magnitude of closed-loop
system of PD control keeps reducing with the decrease of T...
Similarly, in Figure 4(b), smaller response magnitude of the
closed-loop system of GDR-PI control, that is, better closed-
loop system performance of GDR-PI control, is achieved by a
smaller T,, which means feeding back accurately estimated
generalized disturbances improves the closed-loop system
performance. Compared to the PD control, the response
magnitudes of GDR-PI control are much smaller in low
frequency range. However, when it comes to high frequency,
the GDR-PI control performs equally or even worse at some
point. This is caused by feeding back incorrect estimations of
high frequency disturbances. According to (42), the value of
T, is negatively correlated with the observer gains and
converging speed of the PI (GDR) observer. Therefore, the
smaller T, is, the higher the frequency of disturbance can
be accurately estimated and counteracted, and the wider the
frequency range in which the GDR-PI control can get better
performance than the PD control with the same T... As shown
in Figure 4(b), the GDR-PI control with T, = 0.2 x 1073
performs much better than the PD one in a frequency range

up to 500 rad/s, which is far more enough to cover the first
two eigenfrequencies of the smart beam. Therefore, T, =
0.4x107 and T, = 0.2x 10> are adopted in later simulations
to, respectively, supply proper damping for disturbances with
frequency over 500 rad/s and excellent disturbance rejection
for those within 500 rad/s. In conclusion, feeding back accu-
rately estimated generalized disturbances evidently improves
the disturbance rejection performance of GDR-PI control in
a limited frequency range, and, with the increase of observer
gains, higher ceiling of the frequency range and greater
improvement of disturbance rejection performance can be
obtained.

4.3. Vibration Suppression with Different Disturbances. To
testify the vibration suppression performance of GDR-PI
control in the specified situations mentioned at the beginning
of this paper, the following vibration suppression simulations
are implemented, respectively, considering four situations
as follows: (i) the disturbance force influence matrix N is
unknown; (ii) the number of disturbance forces is greater
than the number of senor signals; (iii) the disturbance force
is periodic but its frequency is unknown; (iv) the disturbance
force is random and varies fast. For comparison, DR-GPI
control and H, state feedback control are also applied in the
following simulations.

4.3.1. Disturbance with Unknown Influence Matrix. Firstly,
the three control strategies are validated by two simulations in
which the cantilevered smart beam is excited by a harmonic
disturbance force with unknown influence matrix. In these
two simulations, the acting point of disturbance force, which
determines the disturbance influence matrix, is assumed to be
unknown but actually at point P,. However, the DR-GPI con-
trol cannot be implemented without the disturbance influ-
ence matrix N; hence the acting point is inaccurately assumed
to be at point P, in the DR-GPI control. Moreover, the
disturbance frequencies in the two simulations are the first
and second eigenfrequencies of the smart beam, respectively,
which are applied in the fictitious disturbance model of GPI
(DR) observer. Results of the two simulations are displayed
in Figures 5 and 6, which contain the sensor output voltages,
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FIGURE 7: The time domain response of the controlled and uncontrolled smart beam under two harmonic disturbance with the second
eigenfrequency applied at P, and P;: (a) sensor output, (b) control input, and (c) relative error of estimated disturbance.

corresponding control voltages and relative errors of esti-
mated disturbances and generalized disturbances. Since the
tracking signals of GPI (DR) and PI (GDR) observers are dif-
ferent, the estimation errors of these two observers are com-
pared through relative error, which is defined as the ratio of
the difference between the real signal and the estimated signal
to the peak value of the real signal. The relative errors of GPI
(DR) and PI (GDR) observers in the following simulations,
considering only one disturbance force and one generalized
disturbance, are calculated by

f-f
I'f= ?XIOO%,
f
62
f, - Hv ©
I‘ng _—XIOO%,
f
g

where rg, rp, f, f, and fg are the relative error of GPI
(DR) observer, the relative error of PI (GDR) observer, the
estimated disturbance force, the peak value of the disturbance
force, and the peak value of the generalized disturbance,
respectively. It can be seen from Figures 5(a) and 6(a) that
vibrations are suppressed by all controllers and the best result
is achieved by the GDR-PI control in both simulations. Due to
the wrong disturbance influence matrix, the GPI (DR)
observer can not estimate or counteract the disturbance
accurately, which leads to decrease of vibration suppression
performance. Moreover, the smart beam is exited to vibrate in
the first two modals in the second simulation, whereas only
the second-order modal vibration is well suppressed by

the DR-GPI control, as shown in Figure 6(a). The GDR-
PI control, by contrast, suppresses vibrations in two modals
very well because the PI (GDR) observer does not depend
on accurate influence matrix or frequency information of
disturbances.

4.3.2. Multiple Disturbances with Inadequate Sensors. Sec-
ondly, H,, control and GDR-PI control are implemented and
compared through a simulation in which two disturbance
forces with the second eigenfrequency are applied at points
P, and P; of the smart beam. The reason why DR-GPI control
is absent is that the GPI (DR) observer requires the number
of sensor signals to be no less than the number of distur-
bance signals, which is not satisfied in this simulation. As
shown in Figures 7(a) and 7(b), even though there are two
disturbance forces with high-order frequency applied, the
two control methods still suppress the vibration successfully.
However, the H_, control only achieves good suppression
performance for the first-order modal vibration. Compared
to the H,, control, the GDR-PI control achieves better
vibration suppression with similar actuator voltage level for
the first two modals.

4.3.3. Disturbance with Unknown Frequency. Thirdly, the dis-
turbance influence matrices are known but the frequencies of
harmonic disturbance forces are assumed to be unknown in
the next two simulations. Since the GPI (DR) observer cannot
work without setting the frequency of fictitious disturbance
model, a wrong frequency lrad/s is utilized in the GPI
(DR) observer. In each simulation, there is one periodic
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FIGURE 8: The time domain response of the controlled and uncontrolled smart beam under a harmonic disturbance with the first
eigenfrequency (assumed as unknown): (a) sensor output, (b) control input, and (c) relative error of estimated disturbance.

disturbance force applied at point P, of the smart beam. The
disturbance frequencies in the following two simulations are
the first and the second eigenfrequency, respectively. The sim-
ulation results including uncontrolled and controlled vibra-
tions, corresponding control voltages, and relative errors of
estimations are shown in Figures 8 and 9. It is obvious that the
GDR-PI control gives the best vibration suppression results
in both simulations. As shown in Figures 8(c) and 9(c), due
to lack of accurate disturbance frequency information, the
estimated disturbance signal cannot converge to the real one
in the GPI (DR) observer. Therefore the vibration suppression
performance of DR-GPI control declines and gets even worse
than the H,, control. On the other hand, the estimation error
of the PI (GDR) observer is much smaller, which leads to
better disturbance counteraction and vibration suppression,
as shown in Figures 8(a) and 9(a). Interestingly, for the PI
(GDR) observer, the relative estimation error of second eigen-
frequency disturbance is greater than the first one, which
is mainly because the estimation error caused by phase lag
is more serious when the disturbance frequency gets higher.

4.3.4. Disturbance Varying Randomly. Lastly, a harmonic dis-
turbance signal with an angular frequency varying randomly
between 5 rad/s and 50 rad/s is applied at point P; of the smart
beam in the simulation to verify and compare the three con-
trol methods. Since the randomly varying frequency can not
be modeled in the GPI (DR) observer, the frequency of ficti-
tious disturbance model of GPI (DR) observer is wrongly set
as 1rad/s. The results of uncontrolled and controlled vibra-
tions, corresponding control voltages, and relative errors of

estimations are shown in Figure 10, from which it can be
found that the GDR-PI control shows obvious advantage over
the other two control methods on suppressing vibrations
caused by random disturbances with fast varying frequencies.
Obviously, the PI (GDR) observer estimates a signal with
randomly varying frequency more precisely than the GPI
(DR) observer does, as shown in Figure 8(c), which leads to
better vibration suppression performance. It also can be seen
that the DR-GPI control performs even worse than the H_,
control due to feeding back inaccurate estimated disturbance.

5. Conclusion

In this paper, a GDR control with PI observer has been
proposed and developed for vibration suppression of piezo-
electric laminated flexible smart structures under specific
situations such as, but not limited to, the following: (i) known
disturbance influence matrices are not available; (ii) the
number of sensor signals is less than the number of distur-
bances; (iii) periodic disturbances with unknown high-order
frequencies or random disturbances varying fast are consid-
ered. Firstly a refined state space model has been constructed;
meanwhile, a generalized disturbance which includes physi-
cal disturbances and coupled state variables has been defined.
Based on the refined state space model, the PI observer and
GDR controller have been developed to estimate generalized
disturbances and feed them back to the system, by which
the physical disturbances are counteracted indirectly. Fur-
thermore, the relationships between gain parameters and the
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performances of the PI (GDR) observer as well as the closed-
loop system of GDR-PI control have been investigated.

Through the disturbance estimation and Bode diagram of
PI (DR), GPI (DR), and PI (GDR) observers, it is proved that
the observer gain parameter is significantly correlated with
the response speed of PI (GDR) observer, and the PI (GDR)
observer has better disturbance tracking capability than the
other two observers. From the frequency responses of PD
controller and GDR-PI controller, the controller and observer
gain parameters are found out to be evidently correlated with
the closed-loop system performance, especially the observer
gain parameter, which means feeding back accurately esti-
mated generalized disturbances can significantly improve
the system performance. Lastly, the GDR-PI control has
been validated and compared with H_, state feedback control
and DR-GPI control, by simulations in which a piezoelectric
laminated flexible smart beam is excited. The simulation
results illustrate that better vibration suppression perfor-
mance is obtained by the GDR-PI control under the specific
situations mentioned above.
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