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There are two major types of substructure mode synthesis methods, i.e., the fixed-interface component mode synthesis and free-
interface componentmode synthesis.There are two couplingmethods, the interface degrees of freedombased couplingmethod and
the interface force based couplingmethod, the former one is referred to as the primary assemblymethod, and the latter is referred to
as the dual assemblymethod.However, the dual assemblymethod is theoretically shown to be unstable in this research, such reduced
stiffness matrix is indefinite, this fatal weakness can be conquered by further interface reduction, and the interface compatibility
is therefore rigorously enforced. Unfortunately, Craig’s method leads to another numerical instability when inverting a submatrix
of residual flexibility on the interface degrees of freedom, this problem is neglectable in small dimensional matrix problems, but
it is prominent in large models when the number of interface degrees of freedom is large, this ill-conditioning problem may be
circumvented by truncated singular value decomposition technique; here, a more efficient strategy is proposed, the substructure
reduction is modified, this modification proves to be numerically stable, and it can be even more accurate than the prevailing
Craig-Bampton method; the numerical examples validate the suggestion.

1. Introduction

Modal analysis is very popular in the dynamic community;
the experts use this technique in the vibration analysis,
dynamic optimization, condition monitoring, damage detec-
tion, and many other civil engineering applications. Modal
analysis is performed in modal domain, which is similar to
the time domain or the frequency domain. The mode shape
is simply a description of structural movement, it can be
visually seen by adding the mode shape vector to the space
coordinates, they are ordered from the lowest frequency all
the way to the highest frequency, there are as many orders as
the total number of degrees of freedom in the structure, and
the orderedmodes capture the stiffness andmass distribution
of structural design. From a mathematical viewpoint, mode
shape just stands for a basis in vector space, so the modal
matrix is filled with mode shape vectors, the linear combina-
tion of these vectors can be used to approximate the vibration
response.

With the development of the finite element technique,
and the increase of computer power, many problems can be
resolved; however, the need for greater speed and higher effi-
ciency is still a challenge [1] to finish such task, whenmillions
of degrees of freedom are involved, which motivates new
computational techniques. The component mode synthesis
(CMS)methods [2, 3] are one of themost efficient techniques
applicable to modern large dynamic systems [4–6]. First of
all, these domain decomposition methods can reduce the
overall computational burden and improve the computer
efficiency in parallel computations. Secondly, these methods
change the way people communicate the design information,
engineers can design every component or substructure of a
complex system independently, and they can communicate
the component mass and stiffness matrix instead of the
detailed design information when they are interested in the
assembly properties. Last but not least, these techniques are
applicable to the fast designs and predictions when the local
mesh increases or decreases, the dynamic system can be
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quickly synthesized and reanalyzed, which makes the CMS
methods overwhelm [7] themost efficient structural dynamic
modification algorithms.

The Craig-Bampton method [2] is one of the well-known
mode synthesis methods, it is accurate and robust, it becomes
one of the industrial standards in solving some dynamic
problems, the reduced system matrixes are sparse and this
property allows it to be implemented in multilayer analysis.
However, thismethod canhardly be validated in experiments,
since the fixed-interface condition is difficult to realize. The
Craig-Chang method [8, 9] is another CMS method, it
deals with free normal modes and provides the potential
of experimental validations, and the residual mode effect
ensures the first-order accuracy. This method was further
improved by introducing the second-order residual mode
effect by MacNeal [10]. Later, Rubin [11] advanced MacNeal’s
method and improved the component reduction using a con-
sistent reduction base [12], and second-order accuracy may
be obtained by solving the frequency dependent nonlinear
equations; however, their methods are too complex. Craig
and Chang [13] also reformulated this nonlinear problem in a
report. N. Bouhaddi [14] reformulatedMacNeal’s and Rubin’s
presentations in discrete or matrix form, but the nonlinear
eigenvalue solution finds it hard to adapt to the forced
response analysis. Furthermore, N. Bouhaddi proposed a
method to select the master DOFs by a least square solution;
the proposed method is excessively complex and adds much
more computer time expense. van der Valk [15] simplified
Rubin’s method, and the interface force is extracted to correct
the lower order normal modes by using the residual modes;
however, this simplification encounters the same instability
problem of ill-conditioning in large model applications.

One of the most interesting mode synthesis methods
is Rixen’s method [15–18], and the dual assembly uses
the Lagrange multipliers or interface force as generalized
DOFs. Similar matrix sparsity property is preserved, while
the interface DOFs are replaced with Lagrange multipliers.
Different from MacNeal’s and Rubin’s methods, the range
space spanned by the lower order free modes is not corrected
by residual modes, and such obtained generalized DOFs are
different significantly. Unfortunately, the spurious modes or
negative eigenvalues are reported. As a remedy, Rixen pro-
posed [18] to append the first-order nonrigid body Wilson-
Ritz vector to the reduction base from inverse iteration. van
der Valk [15] discussed the interface forces reduction by
extracting interface force modes, he called this kind of inter-
face reduction the “dynamic interface reduction,” in his study
he thought that the displacement compatibility is weakened,
and he concluded that “the Dual-Craig-Bampton and Dual
Mixed Craig-Bampton methods can result in spurious modes
due to the fact that only a weak interface compatibility is
enforced.” Until now, the mechanism for this spurious mode
issue in this method is still undiscovered.

In this investigation, we will discuss this numerical
instability problem and show how to avoid the lower order
spurious mode. The discussion is organized as follows: In
Section 1, we give a quick and brief summary of Rixen’s dual
assembly; in Section 2, we discuss the possible reason and
solution to the spurious mode issue and how to circumvent

the ill-conditioning problem; numerical examples in Sec-
tion 3 demonstrate the improved accuracy and stability, and
finally we end the discussions in Section 4.

Themajor contribution of this research are as follows: (1)
the theoretical proof is provided for the negative eigenvalue
issue, and the strong interface compatibility can be satisfied
by the projection method or Craig’s method, which shows
that a further interface condensation is necessary; (2) the
numerical instability of ill-conditioning can be addressed
by modifying the substructure reduction, and the residual
modes are replaced with the constraint modes, this modifica-
tion leads to inverting a diagonal matrix with perfect numer-
ical condition, and some numerical examples show that the
accuracy is comparable to the Craig-Bampton method.

2. Theoretical Background
and Numerical Improvement

2.1. The Dual Assembly and Mode Synthesis. D. J. Rixen
showed [16] the mode synthesis method using Lagrange
multipliers or interface force degrees of freedom (DOFs). For
given s-th substructure, the dynamic property is represented
by the reduction

x𝑠 ≈ Φ𝑠q + R𝑠b𝑇𝑠 𝜆 = [Φ𝑠 R𝑠b𝑇𝑠 ] {q
𝜆
} (1)

where x𝑠 is the vector of physical degrees of freedom of the
s-th substructure, the matrix Φ𝑠 is the lower order normal
modes from generalized eigenvalue computations, it includes
the rigid bodymodes if the stiffness matrix is rank deficit, q is
the vector of mode coordinates, the matrix R𝑠 is the residual
flexibility matrix composed of residual modes or residual
attachment modes, 𝜆 is the Lagrange multiplier vector, and
b𝑇𝑠 𝜆 is the interface force. The signed Boolean matrix b𝑠 is
applied to the boundary DOFs, respectively, the compound
matrix [Φ𝑠 R𝑠b𝑇𝑠 ] forms the substructure reduction base,
and the superscript 𝑇 denotes the matrix transpose.

The displacement compatibility equation

BX = 0 (2)

where B = [b1 b2 ⋅ ⋅ ⋅ b𝑛] is a signed Boolean matrix when
conforming mesh is used, b𝑠 (s=1, 2...n) is a submatrix, and
X = [x𝑇1 x𝑇2 ⋅ ⋅ ⋅ x𝑇𝑛 ]𝑇 is a vector for all physical degrees of
freedom of the assembly split into n components.

Introduce the constraints to the dynamic system, to
obtain the modified Lagrange function

ℓ = 12 Ẋ𝑇MẊ − 12X𝑇KX + 𝜆𝑇BX (3)

and apply it to the following Lagrange equation:

𝑑𝑑𝑡 (𝜕ℓ𝜕 ̇𝑞) − 𝜕ℓ𝜕𝑞 = 𝑓 (4)

The system dynamic equations are obtained, and the matrix
form is

MẌ + KX − B𝑇𝜆 = F (5)
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where diag(⋅) is to build a diagonal block matrix, M =
diag(M𝑠) is the diagonal block mass matrix, K = diag(K𝑠)
is the diagonal block stiffness matrix, M𝑠 and K𝑠 are the
mass and stiffness matrix, respectively, and F = ∑ f𝑠 is
the summation of all external force vector. The number of
equations in (5) is less than the number of unknown variables.

Combine (2) and (5) to obtain the augmented system
equations

[M 0
0 0

]{Ẍ
𝜆̈
} + [K -B𝑇

-B 0
]{X
𝜆
} = {F

0
} (6)

The negative symbol can be absorbed into the Lagrange
multipliers; please refer to original equation (7) in [16].
Different from the classical Craig-Bampton method, the
Lagrange multipliers or interface forces are used; hence,
Rixen calls it the dual assembly.

The dual assembly uses the following matrix reduction:

{X
𝜆
} =

{{{{{{{{{{{{{

x1...
xn
𝜆

}}}}}}}}}}}}}
= ΨDCB

{{{{{{{{{{{{{

q1...
q𝑛
𝜆

}}}}}}}}}}}}}
(7)

where the matrixΨDCB is given to be

ΨDCB =
[[[[[[[
[

Φ1 R1b𝑇1

d
...

Φ𝑛 R𝑛b𝑇𝑛
I𝜆×𝜆

]]]]]]]
]

(8)

and I is the identitymatrix, the dimension is of the same order
as the number of Lagrange multipliers.

Substitute (7) and (8) to (6), and we obtain the following
reduced equation:

Mq̈ + Kq = F (9)

where

M = Ψ𝑇DCB [M 0
0 0

]ΨDCB

K = Ψ𝑇DCB [ K −B𝑇
−B 0

]ΨDCB

F = Ψ𝑇DCB {F0}
q = {q𝑇1 q𝑇2 ⋅ ⋅ ⋅ q𝑇𝑛 𝜆𝑇}𝑇

(10)

The condensed matrixes preserve some sparsity, there is
no coupling between the mode coordinates and the Lagrange
multipliers in the condensedmassmatrix, and some coupling
terms occur in the condensed stiffness matrix. Unfortunately,

the Dual-Craig-Bampton method brings spurious modes as
negative eigenvalues, which leads to imaginary frequencies,
and this misleading phenomenon implies some incorrect-
ness.

The Lagrange multipliers are introduced as interface
force, the boundary degrees of freedom doubled in the
process of partitioning the domain into substructures, and
the augmented system equations contain redundant degrees
of freedom. There are many strategies to cope with these
redundant degrees of freedom in different applications.
Before we go further, we review some existing methods to
solve these algebraic-differential equations (ADE).(1)The master-slave degree cancelation method is accu-
rate and robust; only a subset of the generalized DOFs is
condensed and solved. This method is prevailing in com-
mercial FEM analysis with application to linear multipoint
constraints [19, 20]; the latter are introduced by some rigid
elements (e.g., RBE2), but this method partially destroys the
matrix sparsity and profile. The penalty method [21, 22] can
also be used without changing the matrix profile and sparsity
when dealing with constraints. The two methods, however,
are not modal based.(2)The trapezoidal rule using the Newmark method in
the time domain direct integration is preferred in structural
dynamic analysis, but it is unconditionally unstable [23] in
ADE systems, to recover stability some numerical damping
is necessary, the alpha method or the Hibler-Huges-Taylor
method with 𝛼 ̸= 0 can be used, the Lagrange multipliers
are kept in this direct integration method. Besides, [24]
discusses how to discretize the equations and eliminate
the redundant Lagrange multipliers to ensure stability, so
that general Newmark method can be used with quadratic
accuracy.(3) Ritz solution can be obtained as an approximation to
such ADE system, this is the central topic in this research,
the generalized method is proposed by Craig, see [3, 9],
this method tries to pick up the independent generalized
coordinates and condense the dependent generalized coor-
dinates, and we will show that it is equivalent to using a null
space matrix or projection matrix to eliminate the Lagrange
multipliers.(4)There are other direct methods [25–27] that can pro-
vide alternative solutions, Lidström [25] discusses the system
with “n” DOFs and “c” linear homogeneous constraints, and
when the Lagrange multipliers are eliminated, there are “n-
c” modes left to describe the dynamics of the constrained
system. However, this method results in a nonsymmetric
singular stiffness matrix; this weakness limits its application.
There is another method [26] that provides the possibility of
eliminating the Lagrange multipliers directly; however, the
singular impedance matrix problem and twice matrix inverse
operations make this method less attractive in frequency
domain applications. Mark [27] discusses a similar problem
in nonconforming mesh modeling, and his method can be
extended to the dynamic problems by the matrix transform-
ing M̂ = Q𝑇M, where Q is a singular matrix. The reader
should consult the original paper [27] for detailed definition
of the matrix Q. However, the weakness of this directly
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extended version is that this usually generates a nonsymmet-
ric singular mass matrix. Both Lidström’s method andMark’s
generalized version will encounter singular matrixes and
therein the troublesome numerical modes, or the “undefined
modes” according to Lidström.

2.2. The Indefinite Stiffness Matrix Leads to Negative Eigen-
value Problem. The interface displacement compatibility
principle and the interface force balance principle are two
major rules in the development of CMS methods; the two
principles can be verified posteriorly by comparing the
solution with accurate results. The comparison reveals that
the lower frequency results converge faster than the higher
frequency results, which means that the two principles are
frequency dependent.

Rixen thought [16] that the interface displacement com-
patibility is weakened during the assembly process. How-
ever, we think the interface force balance is weakened, and
this weakening mechanism comes from the approximations
applied to substructure reduction, unreasonable Ritz vectors
or not enough Ritz vectors lead to a lower interface force
resolution, and, as a result, the interface force balance is
enforced mathematically but not physically; for example, if
we denote the accurate interface balance as 𝐹𝑎𝑏(𝜔)+𝐹𝑏𝑎(𝜔) =0 at a specific frequency for given DOF, the subscript “ab”
refers to the interface force applied to substructure a by
substructure b and vice versa. Due to approximations, we
have weakened interface balance equation, 𝐹𝑎𝑏(𝜔) + 𝐹𝑏𝑎(𝜔) =0, where 𝐹𝑎𝑏(𝜔) = 𝐹𝑎𝑏(𝜔) +Δ and 𝐹𝑏𝑎(𝜔) = 𝐹𝑏𝑎(𝜔) −Δ are the
weakened interface forces, and the deviation is Δ. Note that
both the accurate interface forces and the weakened interface
forces satisfy the interface force balance equation accurately.

The theoretical explanation of “spurious mode” issue is
that the reduced system stiffness matrix is indefinite. The
indefinite stiffness matrix leads to the negative eigenvalues;
hence, the latter can be alleviated neither by more normal
modes nor by the load dependent vectors or Wilson vectors.

If the normal modes are mass normalized, from (9), we
can rewrite the reduced system as

[I 0

0 M𝑗𝑗
]{q̈
𝜆̈
} + [ Λ K𝑖𝑗

K𝑗𝑖 K𝑗𝑗
]{q
𝜆
} = {F𝑖

F𝑗
} (11)

where the subscript i refers to the mode coordinates and the
subscript j refers to the Lagrange multipliers. The number of
Lagrange multipliers equals the total number of independent
interface DOFs. The coupling terms are

M𝑗𝑗 = ∑b𝑠R𝑠M𝑠R𝑠b
𝑇
𝑠

K𝑖𝑗 = [−b1Φ1 −b2Φ2 ⋅ ⋅ ⋅ −b𝑛Φ𝑛]𝑇 ,
K𝑗𝑖 = K𝑇𝑖𝑗,
K𝑗𝑗 = ∑b𝑠R𝑠K𝑠R𝑠b

𝑇
𝑠 − 2∑b𝑠R𝑠b

𝑇
𝑠 = −∑b𝑠R𝑠b

𝑇
𝑠

= −B diag (R𝑠)B𝑇

F𝑖 = [f𝑇1Φ1 f𝑇2Φ2 ⋅ ⋅ ⋅ f𝑇𝑛Φ𝑛]𝑇
F𝑗 = ∑b𝑠R𝑠f𝑠

(12)

We prove that the reduced stiffness matrix is indefinite
provided that R𝑠b𝑇𝑠 ̸= 0.
Lemma 1. If R𝑠 ≥ 0 and R𝑠b𝑇𝑠 ̸= 0, then, for an arbitrary
nonzero matrix b𝑠, b𝑠R𝑠b𝑇𝑠 > 0.
Proof. Consider the quadratic form,∏(y) = y𝑇(b𝑠R𝑠b𝑇𝑠 )y, for∀y ∈ R𝑚 and y ̸= 0, by the SVD to obtain R𝑠 = U𝑠S𝑠U𝑇𝑠 ,
where U𝑠 is the matrix of singular vectors, and the diagonal
matrix S𝑠 ≥ 0, and we have ∏(y) = yTb𝑠U𝑠S𝑠UT

𝑠 b
T
𝑠 y =

kTS𝑠k = ∑𝑖 𝑆𝑠,𝑖𝑖V2𝑖 ≥ 0, with the definition by k ≜ U𝑇𝑠 b
𝑇
𝑠 𝑦.

Further assume that R𝑠b𝑇𝑠 ̸= 0, and we have ∏(y) > 0;
hence, we can assert that K𝑗𝑗 = −∑ b𝑠R𝑠b𝑇𝑠 < 0.
Lemma 2. Assume matrixΛ𝑚×𝑚 ≥ 0 and C𝑛×𝑛 < 0, and then,
for an arbitrary matrix H, the augmented matrix [ Λ HT

H C ] is
indefinite.

Proof. Again, for ∀y1 ∈ R𝑚, y2 ∈ R𝑛 and subject to y𝑇1 y1 +
y𝑇2 y2 ̸= 0, consider the quadratic form

∏(y1, y2) = {y1y2}
T [Λ HT

H C
]{y1

y2
} (13)

and we just consider the special cases

∏(0, y2 ̸= 0) = {y1
y2
}T [Λ HT

H C
]{y1

y2
} = yT2Cy2

< 0
∏(y1 ̸= 0, 0) = {y1

y2
}T [Λ HT

H C
]{y1

y2
} = yT1Λy1

≥ 0

(14)

Hence, substitute the partitioned block matrixes, and we
can find that the reduced stiffness matrix is indefinite. The
reduced mass matrix is definite; the proof is similar and
omitted here.

Lemma 3. The system composed of indefinite stiffness matrix
and definite mass matrix has both negative eigenvalue and
positive eigenvalue.

Proof. Using the maximum and minimum property of
Rayleigh quotient (Rq), i.e., we have 𝜆1 ≤ 𝑅𝑞 ≤ 𝜆𝑛, where𝜆1 is the smallest eigenvalue and 𝜆𝑛 is the largest eigenvalue,
together with the property of quadratic form of the two
matrixes, we can easily prove that the minimum eigenvalue𝜆1 is negative, and the maximum eigenvalue 𝜆𝑛 is positive.



Shock and Vibration 5

Now, we end the discussion in this section with the con-
clusion that (11) cannot be solved directly by modal solution
strategy, otherwise it leads to negative eigenvalue, and this
negative eigenvalue issue is not caused by nonlinear effects;
therefore, it is unacceptable. In the following discussion,
we will show how to obtain a solution without negative
eigenvalue.

2.3. Enforce the Interface Displacement Compatibility by
Craig’s Method. Nowwe start with (5), instead of (6), to show
that it is possible to construct a null space matrix directly;
the Lagrange multipliers are eliminated directly to obtain
the symmetric system matrixes. This theoretical analysis can
give more insights into the mode synthesis process, and
this derivation can be further generalized to geometrical
nonlinearity.

Consider the following mode synthesis transformation
[9, 28]

X = Sq𝐼 (15)

where 𝑞𝐼 is the independent generalized coordinate, and the
mode synthesis matrix is

S = (I − diag (G𝑠)B𝑇A−1B) diag (Φ𝑠) (16)

and other matrixes are defined by

I = diag (Φ𝑇𝑠M𝑠Φ𝑠) = diag (I𝑠)
A = B diag (G𝑠)B𝑇

(17)

The matrix G𝑠 can be a properly selected matrix so that
the matrix A is invertible; in Craig’s method [9], this matrix
is chosen as the residual flexibility matrix or the inertia
relief attachment mode; the constraint matrix B is assumed
to be in full rank, i.e., the rows are linearly independent,
and usually this property can be guaranteed. We have the
following remarks.

Remark 4. If we define Q = I − P and P = diag(G𝑠)B𝑇A−1B,
then P&Q are projection matrixes, and this can be verified to
be

P2 = diag (G𝑠)B𝑇A−1B diag (G𝑠)B𝑇A−1B
= diag (G𝑠)B𝑇A−1AA−1B = P

(18)

and

Q2 = (I − P)2 = I − 2P + P2 = I − P = Q (19)

If the rank of B is 𝑟(B) = 𝑐, i.e., there are 𝑐 constraints to
describe the displacement compatibility, assume the rank of
diag(G𝑠) is larger than c, we can have 𝑟(Q) = ∑ 𝑛𝑠 − 𝑐, and 𝑛𝑠
is the total number of DOFs of s-th substructure.

Remark 5. MatrixesQ&S lie in the null space ofmatrixB, i.e.,
Q, S ∈ N(B) = {∀u ∈ R,Bu = 0}, and we have

BQ = B (I − diag (G𝑠)B𝑇A−1B) = B − AA−1B = 0 (20)

and similarly

BS = BQ diag (Φ𝑠) = 0 (21)

Substitute (15) to (5), left multiply by S𝑇, and we can have
the reduced matrix equation

S𝑇MSq̈𝐼 + S𝑇KSq𝐼 = S𝑇F (22)

where we have used the property BS = 0. The semidefinite
property of the reduced stiffness ensures that the reduced
system has no negative eigenvalue, and this is a Ritz process,
the projectionmatrix enforces the solution to satisfy the given
linear constraints, i.e., BX = 0, and such obtained matrixes
are symmetric as well.

S𝑇MS = I − diag (Φ𝑇𝑠 )B𝑇A−𝑇B diag (G𝑇𝑠M𝑠Φ𝑠)
− diag (Φ𝑇𝑠M𝑠G𝑠)B𝑇A−1B diag (Φ𝑠) + diag (Φ𝑇𝑠 )
⋅ B𝑇A−𝑇B diag (G𝑇𝑠M𝑠G𝑠)B𝑇A−1B diag (Φ𝑠)

S𝑇KS = Λ − diag (Φ𝑇𝑠 )B𝑇A−𝑇B diag (G𝑇𝑠 K𝑠)
⋅ diag (Φ𝑠) − diag (Φ𝑇𝑠 ) diag (K𝑠G𝑠)B𝑇A−1B
⋅ diag (Φ𝑠) + diag (Φ𝑇𝑠 )B𝑇A−𝑇B diag (G𝑇𝑠 K𝑠G𝑠)
⋅ B𝑇A−1B diag (Φ𝑠)

(23)

with

Λ=diag(Φ𝑇𝑠 K𝑠Φ𝑠),B diag(G𝑇𝑠M𝑠G𝑠)B𝑇=∑ b𝑠G𝑇𝑠M𝑠G𝑠b
𝑇
𝑠

Remark 6. The null space matrix can be decoupled into two
matrixes

S = (I − diag (G𝑠)B𝑇A−1B) diag (Φ𝑠)
= [diag (Φ𝑠) diag (G𝑠)] [ I

−B𝑇A−1B diag (Φ𝑠)]

= [[[[
[

Φ1 G1b𝑇1

d
...

Φ𝑁 G𝑁b𝑇𝑁

]]]]
]
[ I

−A−1B diag (Φ𝑠)]

= Ψ∗𝑐𝑐T∗𝑔

(24)

where

Ψ
∗
𝑐𝑐 = [[[[

[

Φ1 G1b𝑇1

d
...

Φ𝑁 G𝑁b𝑇𝑁

]]]]
]
,

T∗𝑔 = [ I

−A−1B diag (Φ𝑠)]
(25)
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Obviously from this decomposition, using the null space
matrix is equivalent to applying the matrixes Ψ∗𝑐𝑐 and T∗𝑔
to (5) sequentially in reduction, the matrix Ψ∗𝑐𝑐 is closely
related to substructure modal reduction, and further reduc-
tion with the matrix T∗𝑔 can be considered as a general
modal synthesis process; in other words, this modal synthesis
process is achieved by a further interface reduction, and
this further interface reduction enforces the strong interface
displacement compatibility.

Remark 7. The residual modes are selected as a special
case. When the matrix G𝑠 is selected to be the residual
flexibility matrix, i.e., G𝑠 = R𝑠, the matrix T∗𝑔 becomes the
Guyan reduction matrix; due to the orthogonal property, the
condensed system matrixes can be simplified

S𝑇MS = I + diag (Φ𝑇𝑠 )B𝑇A−1B diag (R𝑠M𝑠R𝑠)
⋅ B𝑇A−1B diag (Φ𝑠)

S𝑇KS = Λ + diag (Φ𝑇𝑠 )B𝑇A−1B diag (Φ𝑠)
(26)

Usually, the sparsity is lost in the reduced matrixes.

Remark 8. The above derivation can be generalized to con-
sider the nonhomogeneous multipoint constraints, and the
latter may be introduced by some geometrical nonlinearity

BX = g (27)

Introduce a new state variable

y = x − Pg (28)

and the time derivative gives

ÿ = ẍ (29)

Weobtain the new transformed system equations, and the
governing equations are

By = 0 (30)

Mÿ + Ky − B𝑇𝜆 = F − KPg (31)

Now the power of the new derivations becomes notice-
able, and the above transformed equation can be resolved in
the same fashion. After y is computed, x can be retrieved as

x = Sq + Pg (32)

and the interface forces are

𝜆 = (B𝑇)−1 (F −Mẍ − Kx) + k ∀k ∈ N (B𝑇) (33)

Remark 9. The condition for a unique solution is not dis-
cussed in Craig’s presentation, and now we simply append
this condition without proof

{𝜑 : ∀𝜔, (K − 𝜔2M)𝜑 = 0} ∩ N (B) = 0 (34)

This condition implies that the eigenvectors of original
unconstrained systemdonot lie in the null space of constraint
matrix, and it applies both to (5) and to the nonhomogeneous
case in (31). If this condition is violated, this implies some
erroneous modeling.

2.4. Numerical Instability in Craig’s Method and Final Sug-
gestion by Modifying the Substructure Reduction. Though the
residual modes can simplify the reduced matrixes, extra
computations prior to the condensation for every substruc-
ture are required, this may be the limitation for large scale
application where there are numerous boundary DOFs, and
it is computationally expensive to obtain the matrix G𝑠b𝑇𝑠 ,
especially for the singular stiffness matrix. Another fatal
weakness of using the residual modes is that the matrix
A = B diag(G𝑠)B𝑇 is ill-conditioned sometimes, invert
this matrix is unstable, this problem is inherent in both
Craig-Chang method [8] and the simplified MacNeal-Rubin
method [15], and this ill-conditioning is subtle in small
models, but it becomes prominent in large models according
to our experience.

The projection matrix depends on the constraint matrix
B and the substructure reduction. A series of results can
be obtained if we modify the substructure reduction; for
example, if we choose G𝑠 = M𝑠, the mode synthesis matrix
can also be quickly generated. Different choices of G𝑠 result
in different convergence character. The identity matrix may
be favorable for no extra computation a priori; i.e., if we set
G𝑠 as identity matrix, the mode synthesis matrix becomes

S = (I − B𝑇 (BB𝑇)−1 B) diag (Φ𝑠) (35)

At the same time, the numerical instability of inverting
the matrix A = BB𝑇 is alleviated completely.

There is a good candidate to balance the numerical
stability and convergence, the columns of this matrix on
the boundary DOFs are the constraint modes, and the
substructure reduction is modified to become

x𝑠 = Φ𝑠q + [0𝑖𝑖 −K
−1
𝑖𝑖 K𝑖𝑏𝑆𝑌 I𝑏𝑏

]
𝑠

b𝑇𝑠 𝜆 (36)

where SY designates to keep symmetry, and only the columns
related to the boundary degrees of freedom are utilized. For
clarity, the proposed matrix is rewritten as below

G𝑠 = [0𝑖𝑖 −K
−1
𝑖𝑖 K𝑖𝑏𝑆𝑌 I𝑏𝑏

]
𝑠

(37)

If the conformingmesh is utilized, then thematrixG𝑠|b𝑇𝑠 |
becomes the constraint modes, and such obtained matrix
A is a diagonal matrix, and it is perfectly conditioned with
positive integers on the diagonal. By the way, the ingredients
of (11) are valid only for the residual flexibility matrix R𝑠, the
submatrixes vary with different G𝑠. While (15)∼(24) keep in
universal form, they are valid for residual flexibility matrix
and the proposed G𝑠 in formula (37).

3. Numerical Verification Examples

3.1. A 10-DOF Model. A 10-DOF lumped mass model is
shown in Figure 1, the square box is the lumped mass,
the wave line is the spring, the straight line indicates the
rigid link, and only the horizontal dynamics are considered.
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Figure 1: Undamped lumped parameter mass model, only the
horizontal dynamics are considered, the global DOFs are labeled in
the box, the spring rate K=1E4 N/m, and the unit mass M=1 kg.

The DOFs are numbered from the 1st to 10th. Partition the
assembly into 4 components or substructures, as shown in

Figure 2, the 4th DOF is split into 4 DOFs, and the mass is
equally distributed to the 4 substructures.Themass for every
DOF and spring rate for every connection are labeled in the
nearby blank. Note this cutting operation is only mathemat-
ically, and they are still physically connected to constitute
a whole assembly; therefore, the dynamic properties of the
partitioned system keep the same to the original system. The
system now has ∑𝑛𝑠=13 DOFs together with additional 𝑐 =3
rigid connections.

Before jumping into details, we show how to build the
constraint matrix correctly. There are 4 components sharing
one single boundary DOF, therefore, the constraint matrix
is nonunique. We can build the displacement compatibility
equations as 𝑥41 = 𝑥12, 𝑥12 = 𝑥14, and 𝑥33 = 𝑥14, where
the superscript is the DOF number, and the subscript is the
substructure number. The obtained constraint matrix is

B =

b1

[[[[[[[
[

0 0 0 1
0 0 0 0
0 0 0 0

...

...

...

...

b2

−1 0 0
1 0 0
0 0 0

...

...

...

...

b3

0 0 0
0 0 0
0 0 1

...

...

...

...

b4

0 0 0
−1 0 0
−1 0 0

]]]]]]]
]

(38)

We can also build the displacement compatibility equa-
tions as 𝑥41 = 𝑥12, 𝑥12 = 𝑥14, 𝑥33 = 𝑥14, and 𝑥41 = 𝑥14, and the
following constraint matrix is obtained:

B =

b1

[[[[[[[[[[[
[

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 1

...

...

...

...

...

b2

−1 0 0
1 0 0
0 0 0
0 0 0

...

...

...

...

...

b3

0 0 0
0 0 0
0 0 1
0 0 0

...

...

...

...

...

b4

0 0 0
−1 0 0
−1 0 0
−1 0 0

]]]]]]]]]]]
]

(39)

We have built two constraint matrixes; the first one is
legal while the second one is illegal. The constraint matrix
given by formula (38) is full rank in rows, and it is a complete
description of the system constraints, while formula (39) has a
redundant constraint, or it is rank deficit in rows. If we use the
singular constraint matrix in formula (39), we have to invert
a singularmatrixA = B diag(G𝑠)B𝑇, hence obtaining inferior
results.

Table 1 listed the mode analysis results. A vector was used
to denote the total number of the lower order kept normal
modes (including rigid mode), and the vector [2, 1, 1, 1]

indicates that we kept 2 orders for the first component and
1 order for every other three components, respectively. The
Exact (see Table 1) refers to the reference result computed
from original system using conventional method. The DCB
refers to the Dual-Craig-Bampton method, from (9), and
the DCB+Guyan refers to the results from a further static
condensation, i.e., from the (22), and the imaginary unit is𝑖 = √−1.

We can infer from Table 1 that spurious modes appear in
the DCB method; we marked the spurious modes in bold.
Some spurious modes result from the negative eigenvalue,



8 Shock and Vibration

Table 1: The mode frequency comparison in different methods /Hz.

Order Exact DCB DCB+Guyan[2, 1, 1, 1] [3, 2, 2, 2] [2, 1, 1, 1] [3, 2, 2, 2]
-3 26.4556i 62.1508i
-2 22.8070i 55.1870i
-1 20.6766i 45.5169i
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 6.5712 6.5984 6.5715 6.5740 6.5712
3 7.0001 7.0626 7.0007 7.0331 7.0001
4 7.6090 7.7488 7.6098 7.6828 7.6090
5 12.8444 - 12.8509 - 12.8445
6 18.7891 19.6764 18.8169 18.1328 18.7894
7 27.0282 28.3200 27.0636
8 32.0634 47.2122 32.0652
9 33.1482 - 33.6621
10 35.4645 55.3266

KK2KK 3K

X

4K3K KK

4MMM2MM

2M2M5M3M

0.5M 0.5M

0.5M 0.5M

x

xx

x4
1

1
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3
3

1
4

x3
1

2
1x1

1 x 2
2 x 3

2

x 2
4 x3

4x2
3x1

3

Ｒ

Figure 2: Mathematically partitioned four substructures; the local
DOFs are labeled in the box.

and they are in imaginary frequencies. The 47 Hz and 55 Hz
modes are far beyond the highest frequency of the system,
and obviously they are spurious modes as well. There is no
spurious mode after the proposed static condensation, and
the mode frequency accuracy even increases significantly,
which shows better convergence property.

It is interesting to consider the effects of different G𝑠. We
tried the identity matrix I𝑠, mass matrix M𝑠, and stiffness
matrix K𝑠 in the numerical examples, we listed the corre-
sponding mode frequency results in Table 2, and we can find
that there is no spurious mode at least. Essentially, selecting
different G𝑠 matrix affects the substructure representation,
the interface force balance is weakened physically even
though the displacement compatibility is enforced mathe-
matically, and, consequently, these results are inferior to the
results from the residual modes.

For further validation, the mode shape accuracy was
analyzed. We checked the orthogonality by the MAC matrix
analysis [28], this criterion is preferred inmodal analysis, and
we used [3, 2, 2, 2] kept orders for components in subsequent
discussions. The mode shapes were expanded by a series of
matrixmultiplications.TheMACmatrix between exact result
and theDCB result was shown in Figure 3, obviously there are
three spuriousmodes in the lowest orders, followed by 7 order
modes, and theMACmatrix is diagonally dominated (except
for the lowest 3 orders and the highest 2 orders). There are 12
order modes to describe the 10-DOF-system dynamics since
the system is augmented by 3 Lagrange multipliers, we have

1 2 3 4 5 6 7 8 9 10 11 12
DCB

0
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0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

10

9

8

7

6

5

4

3

2

1
Re

f.

Figure 3: MAC analysis between accurate shapes and shapes from
DCB method.

(3+2+2+2) +3=12, and, of course, it is irrational to describe
the 10-DOF system with 12 order modes in linear analysis.

We present the MACmatrix between exact result and the
DCB+Guyan result in Figure 4, we can find that no spurious
mode exists in the lowest frequency range, 8 orders have good
accuracy, and the last order is acceptable; this comparison
shows that the static condensation successfully improved the
mode shape accuracy.

To our knowledge, the MAC analysis is simply a crude
understanding of mode shape accuracy, it is insufficient to
judge the overall accuracy, therefore, a more rigorous check
was followed by the frequency response function (FRF)
analysis, the acceleration FRFs were computed, and these
FRFs are weighted by 𝜔2 in relative to displacement FRFs;
therefore they are more sensitive in detecting the shape
errors in higher frequency range. For illustrating purpose,
we assigned the assumed modal damping 0.01 to every order,
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Table 2: The mode frequency comparison using different matrix Gs; [3, 2, 2, 2] orders were kept.
Order Exact Gs=Is Gs=Ms Gs=Ks Gs=Rs
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 6.5712 6.5713 6.5713 6.5714 6.5712
3 7.0001 7.0022 7.0022 7.0226 7.0001
4 7.6090 7.6131 7.6131 7.6103 7.6090
5 12.8444 12.8487 12.8487 12.8537 12.8445
6 18.7891 18.7935 18.7935 18.8111 18.7894
7 27.0282 27.1237 27.1237 27.2344 27.0636
8 32.0634 32.0658 32.0658 32.1554 32.0652
9 33.1482 33.7795 33.7795 33.5493 33.6621
10 35.4645
Averaged Relative error (%) 0.30095 0.30095 0.348863 0.211159
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2 3 4 5 6 7 8 91
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Figure 4: MAC analysis between accurate shapes and shapes from
DCB+Guyan.

and we removed the three lowest order spurious modes in
the DCB method; in addition, we removed the identified
rigid body mode. Finally, we selected three FRFs, as shown
in Figures 5–7.

FromFigure 5, we can find that the exactmodes dominate
the frequency range within 6∼36Hz, the frequency response
above the 36Hz is contaminated by the two spuriousmodes in
the DCB method, and they are 47Hz and 55Hz, respectively.
The results for the lower frequency analysis were shown in
Figures 6 and 7, and 10∼20dB improvement was achieved in
some frequencies. The above results validated the improve-
ments of the proposed static condensation.

3.2. A Bolted BeamModel. The beammodel and its mesh are
shown in Figure 8, respectively; the assembly is composed
of 3 components, upper beam, down beam, and the bolt.
One end is fixed ideally, and the other is free. The bolt

20 30 40 50 6010
Frequency (Hz)

DCB+Guyan
DCB
Exact

−150

−140

−130

−120

−110

−100

−90

−80

−70

Ac
c/

(d
B,

g/
N

)

Figure 5: Acceleration FRF comparison, H(2,9).

connects the upper part and the lower part, and all the contact
interfaces are treated as linear constraint using conforming
mesh; i.e., they are glued together. Now we split the assembly
into 4 substructures to performmodal synthesis analysis and
generate the reference result from the full model analysis.

This beam model is used here to show the convergence
property using different G𝑠 and in this example the iden-
tity matrix, substructure mass matrix, substructure stiffness
matrix, and the proposed matrix were compared. The 4
matrixes share the similar numerical stability and only differ
in the convergence, and additional computation effort is
required for the proposed matrix. The residual flexibility
matrix and the inertia relief attachment modes are not
applicable in this example due to ill-conditioning.

Figure 9 shows that when 100 normal modes are kept
in the dual assembly, the proposed matrix keeps the best
convergence among the 4 candidate matrixes.

The results of the Craig-Bampton method are not pre-
sented in Figure 9, it is unfair to compare the two mode
synthesis methods using only 100 normal modes for the
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Figure 7: Acceleration FRF comparison, H(6,4).

dual assembly, and the boundary degrees of freedom are
kept in the final solution set in the Craig-Bampton method;
however, the interface degrees of freedom are condensed
in the dual assembly, so how to compare the two methods
fairly requires special attention. There are 927 independent
degrees of freedom on the boundary, and if p orders fixed-
interface normal mode is kept for every substructure, there
are 4∗p+927 degrees of freedom in the synthesized system;
hence, we must keep p+231 order normal modes in the dual
assembly, and the relative error of mode frequency for p=50
is shown in Figure 10.

It can be inferred from Figure 10 that the proposed
method preserves comparative accuracy to the Craig-
Bampton method. The Craig-Bampton method works well
below the 50th order, and the error enlarges quickly over the

Part3
Fixed end

Part1

Part2

Part4

Figure 8: The suspended beam and its mesh model.
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Figure 9: The relative error of mode frequency using 4 methods,
and 100 modes were kept for every component.

50th order, while, for the dual assembly, the accuracy of the
first 50 orders is inferior to Craig-Bampton method, and it is
superior over 50 orders, as shown in Figure 11.

When 281 modes are kept for both methods in every sub-
structure, for Craig-Bampton method, there were 2051 DOFs
in the final synthesizedmodel, whereas, for the dual assembly,
there were 1124 DOFs in the final synthesized model. It
is unfair to implement such comparison; nevertheless, the
results are still attached in Figure 12. We can find that the
lower order modes from the Craig-Bampton method in this
case have better accuracy than the dual assembly, and the
accuracy is comparable above from the 150th order.
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Figure 10: The relative error of mode frequency; 281 norm modes
were kept for the dual assembly and 50 normmodes for the primary
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Figure 11: The relative error of mode frequency, convergence
comparison between the proposedGs matrix (281 modes each) and
the Craig-Bamptonmethod (50 modes for each component and 927
constraint modes).

4. Conclusions

This research investigates the dual assembly technique; it
is a free-interface mode synthesis technique. The mech-
anism of negative eigenvalue is caused by the indefinite
stiffness matrix, the redundant Lagrange multipliers should
be condensed in the modal domain analysis, or the interface
condensation is necessary. We applied the projectionmethod
to show that a general matrix can be chosen without weaken-
ing the displacement compatibility. The dual assembly with
residual flexibility matrix or inertial relief attachment modes

Proposed
Craig-Bampton

1E−4

1E−3

0.01

Re
la

tiv
e e

rr
or

50 100 150 200 250 300 3500
Order

Figure 12: The convergence comparison between the proposed Gs
matrix and the Craig-Bampton method; 281 normal modes were
kept for both methods for every component.

becomes Craig-Chang’s method, it has an inherent instability
caused by numerical ill-conditioning. Finally, a new substruc-
ture reduction is proposed based on the projection method,
the residual flexibility matrix is replaced by the constraint
modes, this matrix is well conditioned, and the accuracy
is comparable to the classical Craig-Bampton technique.
The bolted beam model had shown that the Craig-Bampton
method is superior to the dual assembly, provided that the
kept normal modes are the same for every component. If we
restrict the final reducedmatrixes are of the same dimension,
then the dual assembly with the proposed matrix can have
better accuracy in the higher order modes, while the Craig-
Bampton method still keeps a better convergence in the
lowest orders. This contribution is important in applications
where the free-interface is necessary and the residual flex-
ibility matrix fails; in this case, the suggested substructure
reduction can be used to ensure the numerical stability and
to keep acceptable accuracy.
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The stiffness and mass matrix data in the first example to
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available on request, together with all the MATLAB files
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