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Whale sounds may mix several elements including whistle, click, and creak in the same vocalization, which may overlap in time
and frequency, so it leads to conventional signal separation techniques challenging to be applied for the signal extraction. Unlike
conventional signal separation techniques which are based on the frequency bands, such as WT and EMD, tunable-Q wavelet
transform (TQWT) can separate the objected signal into particular components with different structures according to its os-
cillation property and eliminate in-band noise using the basis pursuit method. Considering the characteristics of oscillatory and
transient impulse, we propose a novel signal separation method for whale whistle and click extraction. *e proposed method is
performed by the following two steps: first, TQWT is used to construct the dictionary for sparse representation. Secondly, the
whale click and whistle construction are performed by designing the basis pursuit denoising (BPD) algorithm. *e proposed
method has been compared with one of the popular signal decomposition techniques, i.e., the EMD method. *e experimental
results show that the proposed method has a better performance of click and whistle signal separation in comparison with the
EMD algorithm.

1. Introduction

Whale sounds are combined of several elements (whistle,
regular click, and rapid-click buzzes (creak)) in the same
vocalization [1]. In general, whales utilize frequency-
modulated pure tones (whistles) to communicate with
each other. Meanwhile, they emit transient impulses (clicks)
to echolocate the targets and explore the environment.
Besides, they vocalize creak voice when they are in danger or
emergency. However, most of the existing methods in the
field of whale signal processing have been only analyzed for
the single whistle or click signals, such as in [2–10].

Rather than extracting useful information from the
multicomponent signals for further processing, some
methods directly extract contours from whale whistle using
image processing techniques, as described in [2–5]. Besides,
for the automated analysis of whale click, various methods
have been presented based on the statistical computation of

whale click spectrogram through different transforms in
[6–10] with only presence of click. To further cognition of
whale communication pattern and echolocation pattern, we
need to separately extract whistles and clicks from the
composite signal. Abundant methods have been presented to
decompose multicomponent signals such as blind source
separation [11], dual-tree complex wavelet transform [12],
wavelet denoising, empirical mode decomposition (EMD)
[13], ensemble empirical mode decomposition (EEMD),
multiwavelet packet [14], and independent component
analysis (ICA) [15–18]. *e above methods are managed to
decompose the objected signals in the frequency domain.
However, each component of the whale sounds may occupy
the same frequency band and overlap in the frequency
domain. *us, the above methods cannot exactly extract
each component from the whale sounds.

Unlike frequency-based methods, a sparse signal rep-
resentation method using the tunable Q factor wavelet

Hindawi
Shock and Vibration
Volume 2018, Article ID 2153506, 9 pages
https://doi.org/10.1155/2018/2153506

mailto:hxsun@xmu.edu.cn
http://orcid.org/0000-0001-5215-7825
http://orcid.org/0000-0001-7321-9829
http://orcid.org/0000-0002-1947-5255
http://orcid.org/0000-0001-5376-1514
http://orcid.org/0000-0001-8249-1197
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2153506


transform (TQWT) can be used to decompose multi-
component signal according to the oscillatory behavior,
where the oscillation is defined and reflected by theQ factor.
Sparse signal representation has been applied to signal
separation. An approach using biorthogonal RADWTs for
signal separation was presented in [19]. A method using
a signal sparse representation for signal separation has been
proposed to address the mitigation of wind turbine clutter
(WTC) in weather radar data [20]. Since the whistle and
click signals have oscillatory and transient impulse char-
acteristics, respectively, we proposed a sparse signal rep-
resentation method with TQWT to extract click
components with low Q factor and whistle components
with high Q factor, respectively. *e method is verified by
the oceanic audio recording, and the results show effective
extraction of click and whistle components from whale
vocalization. *e main contribution of this paper lies in (1)
a new method that extracts click and whistle effectively and
efficiently from multicomponents sound, (2) the selection
of appropriate algorithm parameters in the actual appli-
cation, and (3) the proposed method that can also be used
for other mammals to extract interesting component from
the composite signal.

*e rest of the paper is organized as follows: in Section 2,
the TQWTalgorithm and the basis pursuit denoising method
are introduced. Section 3 compares the capabilities of the
proposed approach and the EMD algorithm using click and
whistle components extraction from a recorded whale
composite sound signal. Section 4 discusses the conclusion.

2. Methodology

*e proposed approach consists of two parts: TQWT and
BPD. TQWT offers an excellent flexibility for representing
a signal of different temporal and spectral characteristics,
achieved by tuning the transform parameters. TQWT is
a discrete-time wavelet transform (DWT) [21] which pro-
vides a suitable tool for the analysis of oscillatory and
nonoscillatory components of a signal. Besides, BPD is
applied to obtain a sparse representation of each component
which has different oscillatory behaviors. A brief in-
troduction of the TQWT, its oscillation characteristic, and
the transform operation are discussed in the following
section.

2.1. TQWT. Our aim is to separate click and whistle com-
ponents from the composite signal. From the perspective of
the oscillation nature, the click components are composed of
instantaneous pulses which have low oscillation property, and
the whistle components are constituted of multiharmonics
which have high oscillation property. To deal with such
signals, Selesnick et al. developed the tunable Q factor wavelet
transform (TQWT)which theQ factor is flexibly tunable [22].
TQWT can be used to decompose the objected signal into
high-oscillatory, low-oscillatory, and residual components
according to the values of high Q and low Q factors [23]. *e
Q factor reflects the oscillatory properties of one signal.*e Q

factor is defined as follows [24]:

Q �
fc

BW
, (1)

where fc is the center frequency and BW is the bandwidth.
*e signal oscillatory property can be described with the Q

factor. As shown in Figures 1(a)–1(d), it is evident that a higher
Q signal has a higher oscillatory intensity in the time domain
and a higher degree of frequency aggregation in the frequency
domain at the same time, and vice versa [24]. Hence, the
difference between the low and high Q wavelet functions
highlights the idea of oscillation of a signal, which is exploited
for the component extraction problem discussed in this paper.

*e TQWT algorithm which decomposes an N-point
discrete-time signal into J-level subbands is demonstrated
in Figure 2. *e structure of TQWT employs two channel
analysis and synthesis filter banks. *e implementation of
the analysis filter banks is performed on its low-pass
channel iteratively and then further processed by the
low- and high-pass scaling, and α and β are the corre-
sponding scaling parameters [25].*e synthesis filter bands
execute the same steps. For each level, two-channel filters
are composed of low- and high-pass filter, and the cor-
responding frequency responses are defined in the fol-
lowing equations [23]:

Hl(ω) �

1, |ω|≤ (1− β)π,

θ
ω +(β− 1)π
α + β− 1

􏼠 􏼡, (1− β)π < |ω|< απ,

0, απ ≤ |ω|≤ π,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hh(ω) �

0, |ω|≤ (1− β)π,

θ
απ −ω
α + β− 1

􏼠 􏼡, (1− β)< |ω|< απ,

1, απ ≤ |ω|≤ π,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where the parameters must satisfy 0< α< 1, 0< β≤ 1, α +

β> 1, and θ(ω) � 0.5(1 + cosω)
�������
2− cosω

√
, |ω|≤ π.

*e most significant parameters of the TQWTalgorithm
are Q factor, redundancy factor r, and decomposition level J.
*e Q factor describes the degree of signal oscillation. For
a high Q factor, the wavelets have more intense oscillatory
cycles, which are suitable for the extraction of oscillatory
components. Meanwhile, for a low Q factor, the wavelets
consist of nonoscillatory elements, which are fit for the
extraction of the transient components. *e redundancy
factor r controls the overlapping rate among the frequency
responses of the adjacent wavelets. Increasing the r value in
the case of a fixed Q value enhances the overlapping rate of
frequency responses and the computational cost. Note that r

must be greater than 1, and r≥ 3 is recommended for the
perfect reconstruction and sparsity. *e value of the de-
composition level J affects the frequency coverage of the
wavelets. Greater J value makes the wavelets cover a wider
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frequency range which even reach 0Hz. *e value of J

should be selected as large as possible to include the lower
frequency to the utmost extent. *e maximum number of
decomposing level Jmax is set to

Jmax �
log(βN/8)

log(1/α)
􏼢 􏼣 �

log(N/4(Q + 1))

log((Q + 1)r/(Q + 1)r− 2)
􏼢 􏼣, (3)

where N is the length of the input signal x(n).
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Figure 1: Wavelet waveform and the corresponding frequency response spectrum with different parameters: (a) waveform with
Q � 1 and r � 3, (b) spectrum with Q � 1 and r � 3, (c) waveform with Q � 3 and r � 3, and (d) spectrum with Q � 3 and r � 3.

...

...

x (n)
Hh(ω)

Hh(ω)
Hh(ω)

Hh
∗(ω)

Hh
∗(ω)

Hh
∗(ω)

HPS-β
HPS-β

HPS-β

HPS 1/β

HPS 1/β

HPS 1/β

Hl(ω)
Hl(ω)

Hl(ω)

Hl
∗(ω)

Hl
∗(ω)

Hl
∗(ω)

LPS-α
LPS-α

LPS-α

LPS 1/α
LPS 1/α

LPS 1/α

Level 1

Level 1

Level 2

Level 2

Level J

Level J

ωh
1

ωh
1

ωh
2

ωh
2

ωh
J

ωh
J

ωl
J

ωl
J

ωl
2

ω1
1

x (n)

Figure 2: *e filter banks of TQWT. (a) *e analysis filter banks. (b) *e synthetic filter banks.
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In the practical applications, we calculated the value of Jmax
according to Equation (3). Moreover, the computational cost
of the TQWT algorithm is O(3rN log2(4N/(Q + 1))) [23],
and we discuss the computational complexity with the change
of parameters. We can properly get the conclusion that the
computational complexity increases with the enlargement of Q

and J values, but increasing the Q value reduces the com-
putational cost in the case of J � Jmax. Although sometimes we
must select big enough Q value to match the high oscillatory
intensity of the objected signal and set J � Jmax, but the
computational cost is not huge according to the above
discussion.

In essence, the TQWT algorithm can provide one set of
overcomplete basis to estimate high- and low-resonance
components. We need to select three parameters Q, r,
and J to establish the basis. *e selection guides of the above
parameters are mentioned in Table 1 [26].

2.2. Basis Pursuit Denoising (BPD) with TQWT. Sparsity can
be used in signal processing problems. By considering an
observed signal y(n) which has been corrupted by additive
noise, the received signal can be represented as

y(n) � x(n) + i(n), (4)

where x(n) is the useful signal and i(n) is the additive noise.
*e problem is to estimate x(n) which has a sparse rep-
resentation from the observed signal y(n). *e technique of
BPD [27] provides an excellent platform for the optimiza-
tion of the sparse representation of the signal x(n). To obtain
a sparse representation of the signal x(n) concerning
TQWT, we construct the objection function based on BPD
technique as

argmin
ω

y−TQWT−1(ω)
����

����
2
2 + η‖λ⊙ω‖1􏼚 􏼛,

such that x � TQWT−1(ω).

(5)

where ‖ · ‖1 and ‖ · ‖2 denote l1 and l2 norms, respectively.
*e coefficient ω � [ω(1), . . . ,ω(J+1)] is the wavelet co-
efficient computed by TQWT. ω(j) denotes the wavelet
coefficient of the subband j, η is a “regularization” pa-
rameter, ⊙ denotes the Hadamard (elementwise) multipli-
cation, and λ � (λ1, . . . , λJ+1) is the compensation vector.

Several different algorithms have been developed for
solving basis pursuit (BP) and BPD problems, such as it-
erative shrinkage/threshold algorithm (ISTA) [28, 29], fast
ISTA (FISTA) [30], and split variable augmented Lagrangian
shrinkage algorithm (SALSA) [31, 32]. *e main idea of
SALSA method is summarized in Algorithm 1, where μ
represents the penalty parameter which affects the algorithm
convergence speed and P is the iteration number. Consid-
ering the length of the article, the details of SALSA algorithm
can be referred to [31].

3. Experimental Results and Analysis

In the experiment, we adopted a real oceanic audio re-
cording of a Beluga whale which consists of chick and
whistle components. *is recording was acquired at the

Oceanographic Valencia, using the instruments such as
a computer with a Roland (Edirol) FA-101 sound acquisition
system, a Bruel and Kjaer 8103 hydrophone, and a Bruel and
Kjaer 2692 Nexus amplifier, as described in [1]. *e
waveform, spectrum, and time-frequency signature repre-
sentation of the raw signal are plotted in Figures 3, 4(a), and
5(a), respectively. In Figure 3, there are 8192 samples in total
under the sampling frequency fs � 96 kHz for the test. It is
evident that the wave exists several transient impulses which
denote click components. Meanwhile, we can observe from
the subfigure of Figure 3 at t � 0.0601∼0.0611s that they
have oscillatory components. Both click components and
whistle components are clearly visualized in the spectrum as
demonstrated in Figure 5(a): clicks are broadband com-
ponents in the whole frequency domain. On the contrast,
whistles are impulsive components which are distributed
from 8 kHz to 26 kHz. We can clearly see from Figure 4(a)
that whistles and click components intersect in the time-
frequency signature. Meanwhile, whistles are line spectrum
in the frequency axis, and clicks are also discrete distribution
in the time axis.

Table 1: *e selection guides of the parameters related to the
TQWT algorithm [26].

Parameter

Overlapping
extent of
frequency
responses

Computational
cost

Selection
guide

Q No direct effect ↓if Q ↑, when
J � Jmax

Ql � Qmin � 1;
Qh �

oscillatory level
of the signal

r No direct effect ↑ if r ↑, when
J � Jmax

r � trade-off
between

overlapping
intensity of
frequency

responses and
computational

cost
J ↑ if r ↑ ↑ if J ↑ J � Jmax

(1) Procedure basis pursuit denoising
w � BPD(x,TQWT,TQWT−1, η, λ, μ)

(2) Initialization
T � ηλ/(2μ), u � 0, C � 1/(μ + 1), d � 0, w � TQWT(x)

(3) for iteration k � 1 : P do
(4) u � soft(w + d, T)−d

(5) d � TQWT(Cx−CTQWT−1(u))

(6) w � d + u

(7) end for
(8) end procedure
(9) procedure soft thresholding y � soft(x, T)

(10) y � max(|x|−T, 0)

(11) y � yx/(y + T)

(12) end procedure

ALGORITHM 1: SALSA algorithm.
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3.1. Case Study of Whale Click Extraction. According to the
nonoscillatory characteristic nature of click signal and the
selection criteria of the TQWTapproach, we set Q � 1, r � 3,

and J � 17 for click extraction. After obtaining the wavelet
coefficients by the TQWT method, the BPD algorithm is
performed to reconstruct the click signal. To solve the basis
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Figure 3: *e waveform of the raw signal.
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Figure 4: (a) Time-frequency signature of the raw signal. (b) Time-frequency signature of the whistle components extracted by the proposed
method. (c) Time-frequency signature of the click components extracted by the proposed method.
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Figure 5: Comparison of the effectiveness of whistle and click components separation by the proposed method and the EMD algorithm.
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pursuit problem, we used the SALSA algorithm with pa-
rameters μ � 2, η � 0.06, andP � 100. After implementing
two above-mentioned methods, we obtain the sparse repre-
sentation of extracted click components. *e time-frequency
signature of the extracted click components is shown in
Figure 4(c). Compared with Figure 4(a), it is obvious that all
the click components of Figures 4(a) and 4(c) are spread at the
same position in the time domain, and their shapes are also
identical. In addition, the resolution of Figure 4(c) is much
purer than Figure 4(a), because the BPD algorithm can
eliminate the noise. However, we have marked weak and
strong waveforms of the click signal with ellipse and rectangle,
respectively, as seen in Figure 6. As compared with the two
subfigures in Figure 6, the weak click signal has low energy,
which is almost as harmonics, so, it cannot be extracted ef-
fectively. Further, to verify the effectiveness of the click ex-
traction, the waveform and the spectra of the raw and
extracted signals are drawn in Figures 5(b) and 6, respectively.
We concluded that the performance of extracting the click is
quite remarkable, and the proposed method has a good effect
on noise reduction.

3.2. Case Study of Whale Whistle Extraction. Similarly,
considering the oscillatory nature of whistle signal, we set
Q � 320, r � 3, and J � 891. To obtain whistle component
sparse representation concerning TQWT, the BPD approach
based on the SALSA algorithm is utilized with parameters
μ � 2, η � 0.045, and P � 100.

*e time-frequency signature of the whistle components
extracted by the proposedmethod is drawn in Figure 4(b).We
can find that whistle components of Figures 4(a) and 4(b) are
distributed at the same spot and their shapes are horizontal
lines. We compare the effect of whistle and click signal
separation by the proposed method and the EMD algorithm

in Figures 5(b) and 5(c). It is obvious that the spectra of the
whistle and click components separated by the proposed
method are identical to the spectra of the raw signal. Fur-
thermore, we can draw the conclusions that the proposed
method can separate the whistle and click components from
the raw signal effectively and the proposed method has the
function of noise reduction to some extent.

In this paper, the EMD algorithm was selected as
a comparison due to its advantage of analyzing the non-
linear and nonstationary signals. EMD method can sepa-
rate the objected signal into different intrinsic mode
functions (IMFs). As exhibited in Figure 5(b), the first three
IMFs are drawn to visualize its spectra where most of the
harmonic waves can be extracted by the EMD algorithm,
which represent the whistle components. However, click
components cannot be extorted by EMD method. In ad-
dition, the noise components with the relative higher
amplitude are distributed all over the frequency domain. In
conclusion, the proposed method has the better perfor-
mance of signal separation of the whistle and click com-
ponents from the raw signal and the stronger ability of
noise suppression.

4. Conclusion

In this paper, we have proposed a sparse representation
with TQWT method to extort the click and whistle com-
ponents from the raw whale signal according to the os-
cillatory behavior of these two components. Considering
the disparate oscillatory intensity of click and whistle
signals, the TQWT algorithm with high Q factor was op-
erated to extract whistle component. On the other hand,
click extraction is realized under the condition of low Q

factor when we perform TQWT method. Besides, BPD is
used as an alternative to LTI filters for noise reduction. *e
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Figure 6: *e waveform of the raw signal and the extracted whistle and click components by the proposed method.
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proposed method and the EMD algorithm are applied to
the same real whale vocalization. Our proposed method
appears to be superior to EMD for the extraction of the
precise frequency variation of the whistle. In conclusion,
the proposed method has the prominent performance of
extracting the click and whistle components and removing
noise.
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