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.e application of the existing complex network in fault diagnosis is usually modelled based on the time domain, resulting in the
loss of sign frequency-domain features, and the extracted topology features of network are toomacroscopic and insensitive to local
changes within the network. .is paper proposes a new method of local feature extraction based on frequency complex network
(FCN) decomposition and builds a new complex network structure feature on this basis, namely, subnetwork average degree. .e
variation law of signals in frequency domain is obtained with the aid of the structural features of complex network. .e local
features that are sensitive to local changes of the network are applied to characterize the whole network, with flexible application
and without limitation in mechanism. .e average degree of subnetwork could be regarded as feature parameters for rolling
bearing fault diagnosis and degradation state recognition. Analysis on the experimental data and bearing life cycle data shows that
the method proposed in this paper is effective, revealing that the extracted features have effective separability and high accuracy in
fault recognition and the degradation detection of the life cycle of rolling bearings combined with neural networks. Moreover, the
proposed method has reference value for the processing and recognition of other nonstationary signals.

1. Introduction

Rotating machinery is widely applied in large-scale petro-
leum, chemical, electric power, metallurgy, and other in-
dustries, serving as the core equipment. Its fault will not only
affect the operation of the machine itself but also cause loss
in follow-up production [1]. .erefore, it is of great practical
significance to conduct fault diagnosis for rotary machinery.
.e nonstationary nature of vibration signals of a rotating
machine often leads to difficulty in accurately identifying
faults. Time-frequency analysis and wavelet, both effective
methods to process nonlinear and nonstationary signals [2],
still have different degrees of defects. For example, the se-
lection of wavelet basis in wavelet analysis directly affects the
analysis result, and the basis function, without adaptive
feature, cannot be changed once selected in the analysis [3].

Complex network, a new method to analyze nonlinear
and nonstationary signals, can transform the wave features

of signals into the topological features of the network, which
overcomes the shortcomings of traditional time-frequency
analysis [4, 5]. It is a simple, intuitive, universal, topological,
and strong robust network structure [6, 7]. Visible network
construction method proposed by Lacasa and Toral can
process time series of larger amount of data [8]. Ming et al.
presented a new method to construct directed and weighted
complex network based on time series symbolic pattern with
sliding window method [9]. Recursive complex network was
applied by Sun et al. to extract network features of rolling
bearings and diagnose faults [10]. Although complex net-
work has achieved good results in nonlinear and non-
stationary signal analysis, current diagnostic methods of
complex network is usually based directly on time domain,
ignoring frequency-domain features, and the extracted
features have only global features, without the reflection of
local structures of networks, which is difficult to ensure the
accurate extraction of fault information.
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.erefore, a new extraction method based on frequency
complex network (FCN) model construction and sub-
network average degree is proposed in this paper and is
applied in the bearing fault diagnosis, the monitoring and
early warning of rolling bearings and the recognition of
degradation state. .e variation law of fault signal in fre-
quency domain, obtained with the structural features of
complex network, is transformed into the statistical features
of the complex network structure, without limitation in fault
mechanism. .e verification results of fault signal of rolling
bearings prove that this method is effective in extracting
information that represents different fault features of the
machine and can achieve accurate differentiation, providing
a new effective approach for fault diagnosis of rotary
machinery.

2. Principle

2.1. Recursive Algorithm. Based on its inherent character-
istics, recursion can be used to show the similar properties in
some specific states. .e recursive graph principle proposed
by Eckmann and others is applied in this paper to visualize
recursive graphs using recursive matrixes to characterize the
recursive nature of the system [11].

.e recursive matrix uses phase space reconstruction to
reconstruct a one-dimensional sequence into a high di-
mensional space. .e specific algorithm is as follows:

(1) .e power system reconstructed by one-dimensional
series xi from the time delay τ, and the embedded
vector of them-dimensional phase space is as follows:

xi � ui, ui+τ , . . . , ui+(m−1)τ ,

i � 1, 2, . . . , N−(m− 1)τ.
(1)

(2) .e distance between the reconstructed phase space i
and j is calculated

Sij � xi −xj

�����

�����, i � 1, 2, . . . , N−(m− 1)τ,

j � 1, 2, . . . , N−(m− 1)τ.
(2)

(3) Recursive value is calculated

R(i, j) � H ε− Sij , i � 1, 2, . . . , N−(m− 1)τ,

j � 1, 2, . . . , N−(m− 1)τ,
(3)

where H(g) is Heaviside function, ‖g‖ is Euclidean
norm, and ε is reference threshold value.

2.2. Construction of Subnetwork Average Degree

2.2.1. Subnetwork Average Degree. .e topological features
of networks include the average path length, clustering
coefficient, degree and degree distribution, etc., among

which degree is a simple yet important concept in the at-
tributes of individual nodes.

ki, the degree of a node, is defined as the number of other
nodes connected to the node, which reflects the importance
of this node. .e bigger the degree of a node, the more
important the node is [12]. .e average degree of a complex
network with the number of nodes n is denoted as p which is
the mean of the degree of all nodes in the network ki, i.e.,

p �
1
n



n

i�1
ki, (4)

where n is the total number of nodes in the network.
.e new complex network structure feature (subnetwork

average degree) is extracted based on frequency complex
network (FCN) decomposition, which reflects degree dis-
tribution of different regions in the network. .e value of
node degree in every region, the arrangement of node de-
grees, and the location of important node are all correlated.
.e network decomposition is to evenly divide the estab-
lished complex network model into several subnetworks on
the basis of the order of nodes (the edges of subnetworks are
reserved during decomposing), and then, the average degree
of each subnetwork can be obtained with formula (4) to
generate average degree features of subnetworks, as shown
in formula (5), namely,

p
→

� p1, p2, p3, . . . , pm , (5)

wherein, when determining the number m of subnetworks,
m � 2l is generally selected and should meet the requirement
2≤m≤ n.

2.2.2. Analysis of the Advantages of Subnetwork Average
Degree. Compared with the existing average degree features,
the average degree of subnetworks can reflect the local
features of the network in space with more information,
which is more effective in fault recognition..e networks (a)
and (b) in Figure 1, both six-node network models, have the
same nodes with different connections between nodes. .e
number of connected edges of the nodes indicates that the
important node of the network (a) is 2 and that of network
(b) is 6.

.e degree of each node in the network needs to be
calculated before the analysis on the degree of network node,
with the calculation results shown in Table 1. If the network
is characterized by the average value of degree of all nodes,
the eigenvalues of the two networks are 2.67 with formula
(4), hence no difference between the network (a) and the
network (b).

However, if the average degree of subnetworks is
extracted, the difference between the two networks can be
reflected. .e network is evenly divided into two sub-
networks, with subnetwork 1 as the connection of nodes 1, 2,
and 3 and subnetwork 2 as the connection of nodes 4, 5, and
6..e average degree of subnetworks is generated and a two-
dimensional feature vector is constructed. .erefore, the
feature vector of the network (a) is [2.33, 3] and that of the
network (b) is [3, 2.33]. It is not difficult to find out that the
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average degree of subnetworks can mirror the difference
between two networks in node connection, which can more
accurately reflect the structural features of the networkmodels.

2.3.AnExtractionMethodBased onFCNSubnetworkAverage
Degree. In view of the nonstationary nature of vibration
signals of rotating machinery and the abundant information
contained in frequency domain [13], a new subnetwork
average degree feature is proposed in this paper based on
frequency complex network (FCN) decomposition..e fault
diagnosis process based on subnetwork average degree is
shown in Figure 2.

.e processing steps are as follows:

(1) Rotation frequency is calculated as fr � Vr/60.
Frequency bandwidth m is chosen as an integer
multiple of fr or fr. .e frequency spectrum Y �

yi i�1,2,...,n is obtained from the one-dimensional
time series X using Fourier transform. .e ampli-
tudes are then squared point by point, added in the
frequency band with bandwidth m and arranged in
order to obtain the required band energy spectrum
[14], denoted as E � [E1, E2, . . . , Ek, . . . , En].
Wherein, Ek represents the energy of the Kth fre-
quency band, with the formula

Ek � 

j+m

i�j

y
2
i . (6)

(2) On the basis of the recursive algorithm, the recursive
matrix R reflecting self-similarity of energy spectrum
can be obtained. .e recursive matrix is regarded as
an adjacency matrix to construct a complex network
model. .e average degree of subnetworks p is
extracted as the feature parameters with formula (4)
and (5).

(3) In all samples, half of the data are randomly selected
to form the training set, and the remaining half are
test set. .e radical basis function (RBF) neural

network [15] is trained with the training sample
feature vector set VT to obtain the network model of
the system. .en, the network is tested and verified
with the testing sample feature vector set VC to
identify the types of the testing sample.

2.4. Performance Degradation Assessment Method Based on
Network Structural Features. Targeting the problems of
insensitivity of the traditional performance degradation
index to early weak faults and the low accuracy of degra-
dation state recognition [16], this paper proposes a new
method to assess the bearing performance degradation based
on the structural features of frequency complex network,
with the processing flow shown in Figure 3.

.e basic steps of this method are as follows:

(1) Extraction of performance degradation index: the
bearing vibration signal is transformed into the
frequency band energy spectrum, denoted as
E � [E1, E2, . . . , Ek, . . . , En], where Ek represents the
energy of the kth frequency band, with the formula
being Ek � 

j+m
i�j y2

i (6). .e recursive matrix R is
obtained according to the self-similarity of the en-
ergy spectrum in different frequency bands. .e
recursive matrix is regarded as an adjacency matrix
to construct a complex network, and the network
average degree p is extracted as the bearing per-
formance degradation index with formula (4).

(2) State monitoring: the Layda rule [17] is applied to
determine the threshold on the basis of the average
degree change curve. When the absolute value of the
difference between the mathematical expectation of
the data point and its set is greater than the standard
deviation of the data set of 3 times, namely,
|xi − x|> 3σ, the data point is determined as ab-
normal data. When the number of abnormal data
consecutively exceeds the number of safety times,
a fault alert is automatically generated.

Bearing vibration signal (X)

Band energy spectrum (Y)

Construct recursive complex network

Extract subnetwork average degree

Neural network model

Identification of bearing failure

Network decomposition

VT VC

Figure 2: Flowchart for the bearing fault diagnosis based on
subnetwork average degree.
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Figure 1: Six-node network model. Networks (a) and (b).

Table 1: Network node degree.

Node 1 2 3 4 5 6
Network (a) 1 5 1 3 3 3
Network (b) 3 3 3 1 1 5
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(3) Degradation state division: based on the evolution
law of the performance degradation index p, the key
data mutation points are determined. .e degra-
dation states of the bearing performance are ap-
proximately divided into four operating states:
normal, minor fault, deepening of the fault and
gradual thinning of the sharp part, and serious fault
to failure.

(4) Determination of the training set and testing set: the
samples in each degradation state are divided into
two sample sets according to the parity of the serial
number. One sample set is selected as the training
sample set, and the other sample set is selected as the
testing sample set.

(5) Extraction of multidimensional degradation feature
vector: the complex networkmodel corresponding to
each sample is evenly decomposed. .e number of
subnetworksm decomposed by the complex network
is determined based on the total number of nodes in
the complex network with the principle ofm � 2l and
2≤m≤ n. .en, the average degree vector is
extracted as p

→
� [p1, p2, p3, . . . , pm] as shown in

formula (5). .e degradation feature vector set of the

training set VT and the testing set VC is then
generated.

(6) Recognition of degradation state: the number of state
categories is set as 4, and the RBF neural network is
trained with the training sample feature vector setVT
to obtain the network model of the system..en, the
network is tested and verified with the testing sample
feature vector set VC to identify the degradation state
of the testing sample.

3. Data Validation and Analysis

3.1. Extraction of FCN Subnetwork Average Degree of Bearing
Condition. In this paper, the vibration signals of rolling
bearings of different fault types are applied to verify the
effectiveness of the proposed features. A test rig as shown in
Figure 4 is used to collect fault signals of the rolling bearing.
.e type of rolling bearing used in the experiment is 6308,
with 8 rolling elements. Vibration signals are obtained by an
acceleration transducer installed on the bearing seat, with
a speed of 1050 r/min and a sampling frequency of 10240Hz.
.ere are four types of rolling bearing states, namely, rolling
element fault, inner ring fault, outer ring fault, and normal
state. Twenty samples are collected for each type of state,
hence 80 sets of data in total.

.e experiment data of the rolling bearing are processed
with the FCN subnetwork average degree extraction
method. Firstly, the energy spectrum of the frequency band
is established based on time series. To keep the periodic
information of the data as much as possible, the frequency
bandwidth is chosen as an integral multiple of the bearing
rotation frequency or the rotation frequency. .e frequency
bandwidth m used in this paper is 4 times the rotation
frequency. .e rotation speed of the bearing during the
experiment is 1050 r/min, and the frequency bandwidth is
determined as 70Hz after calculation.

Based on the energy spectrum of frequency band,
a frequency complex network (FCN) model is constructed
with the application of recursive algorithm. .e adjacency
matrix corresponding to the complex network model is the
same as recursive matrix. .en, the network is visualized,
and the model displayed is a complex network model,
unweighted and undirected. .e display layout is set as FR
(Fruchterman-Reingold); the size of the network nodes is
determined by the degree of the nodes. .e larger the value
of the degree, the larger the size of the nodes and the darker
the color. .e frequency complex network (FCN) model
corresponding to different states of the rolling bearing is
shown in Figure 5.

It can be seen from Figure 5 that the complex network
shape corresponding to rolling element fault and inner ring
fault is similar, but there is still a big difference in the at-
tributes of the nodes and edges. Outer ring faults correspond
to complex network with sparse edges and prominent nodes.
.e normal corresponding complex network is close to
a fully connected network. .erefore, different network
models under different states of the rolling bearing have
different network structures, which lays a good foundation
for the extraction of network topological features.

The subnetwork 
average degree

Neural network model

Training 
sample set

network decomposition

Testing 
sample set

Identification of 
degradation state

Degenerate 
feature 

extraction

Set threshold

Monitoring anomaly

Abnormal points 
exceeds the security 

Automatic alarm

Degradation state
identification

State 
monitoring

Bearing vibration signal (X)

Construct recursive complex network

Band energy spectrum (Y)

Extract the average degree

Degradation state division

VT VC

Figure 3: Flowchart for performance degradation assessment
based on structural features from frequency complex network.
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.e FCN model of the rolling bearing in different states
is evenly decomposed into 8 subnetworks, and the average
degree of nodes in each subnetwork is extracted to form an
eight-dimensional feature vector, and the feature distribu-
tion diagram of different faults of the rolling bearing is
obtained as shown in Figure 6. Wherein, Figure 6(a) is
a three-dimensional graph of degree distribution of sub-
network nodes. .ere are in total 80 samples, and 8-di-
mensional features are extracted from each sample.
Figure 6(b) is a platform of feature distribution, with dif-
ferent colors representing the amplitudes of sample features.

.e horizontal axis represents features, and the vertical axis
represents samples, with 1–20 groups being rolling element
faults, 21–40 groups being inner ring faults, 41–60 groups being
outer ring faults, and 61–80 being normal.

One sample is chosen from each feature set of the rolling
element faults, the inner ring faults, the outer ring faults, and
the normal state to draw a bar graph, as shown in Figure 7. It
is not difficult to find out that the features of four states (the
rolling element faults, the inner ring faults, the outer ring
faults, and the normal) differ greatly from each other, es-
pecially the normal state and the outer ring fault state.

(a) (b)

(c) (d)

Figure 5: FCNmodel of rolling bearing’s different states. (a) FCNmodel of rolling element fault. (b) FCNmodel of inner ring fault. (c) FCN
model of outer ring fault. (d) FCN model of normal state.

Figure 4: Test rig for rolling bearing.
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For the rolling element faults and the inner ring faults, the
features of the 1st and the 6th dimension have great
di�erence.

3.2. Comparative Analysis

3.2.1. Feature Separability. �e principal component anal-
ysis (PCA) algorithm [18] is applied in the dimensional
reduction and visualization of average degree features of
subnetworks to obtain the feature dimensional reduction
graph as shown in Figure 8. It is not di�cult to �nd out that
the four samples of the same type of rolling bearing have
higher degree of clustering, and there is a clear degree of
di�erentiation with no overlap between di�erent types of
samples, which proves that the feature categories proposed
in this paper have strong separability. Wherein, the sample
clustering degrees of the outer ring fault and the normal sate
are the highest and farthest from other sample types, which
is consistent with the conclusion drawn from the sub-
network average degree feature diagram above.

�e existing complex network methods are mostly
modelled based on the time domain, such as limited pen-
etrable visibility graph method [19], and a topological

feature parameter of the network is extracted to represent
the entire network. Features such as the average path length,
clustering coe�cient, and degree, calculated on the basis of
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Figure 7: 16D subnetwork average degree. (a) Feature of rolling element fault. (b) Feature of inner ring fault. (c) Feature of outer ring fault.
(d) Feature of normal.
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the entire network, are not sensitive to local changes within
the network and hence cannot reflect the microscopic fea-
ture of the network. Figure 9 shows the average path length,
clustering coefficient, and degree based on limited pene-
trable visibility graph method of the four states of the rolling
bearing, respectively..e horizontal axis represents samples,
and there are 20 samples for each state. .e vertical axis
represents the network topological features corresponding
to the samples. It can be seen that the ability of the three
features of the average path length, the clustering coefficient,
and the degree to distinct different types of samples of rolling
bearing is poor. Only the normal state is significantly dif-
ferent from the three faults states which overlap with each
other, resulting in difficulty to accurately distinguish with
one other. .erefore, compared with the features proposed
in this paper, the existing network topological feature cat-
egories have poor separability and cannot be applied to
subsequent diagnosis and recognition.

.e classification separability measure, a distance-based
feature evaluation function, is defined as the ratio of in-
terclass divergence and interclass divergence in a sample,
which can evaluate the effectiveness of a feature subset. .e
smaller the value, the better the separability. For the same
classifier, the good interclass separability can significantly
improve the identification rate of the classifier; and more
confounding and overlapping feature information makes
pattern recognition very difficult for classifiers. A quanti-
tative comparative analysis is made to network topological
feature vector LCD, the combination of the average path
length L, the clustering coefficient C, the degree D, and
subnetwork average degree feature (reduced to three di-
mensions) proposed in this paper, with the comparison
results shown in Table 2 which indicates that the classifi-
cation separability measure of the proposed features is
smaller than that of commonly used features LCD. .is
proves that the features of this paper are superior to the
common network topological features and are consistent
with the above qualitative analysis results.

3.2.2. Recognition Results. In order to verify the effectiveness
of the subnetwork average degree feature in fault diagnosis of
rolling bearings, a radial basis function (RBF) neural network
classifier [16] is used to conduct the classification test. Ten
training samples and 10 testing samples are selected in each
state, hence 40 training samples and 40 testing samples in
total. For the 40 training samples of the four types, 40 16-
dimensional feature vectors are generated with the above
method. .e 40 subnetwork average degree features are
trained and classified with RBF neural network, and the
different fault classification charts of the rolling bearing are
obtained as shown in Figure 10, wherein the first type is the
rolling element faults, the second type is the inner ring faults,
the third type is the outer ring faults, and the fourth type is the
normal state. It is not difficult to find out that when the
subnetwork average degree feature is input into the RBF
neural network, the recognition accuracy rate can reach 100%.

Time-domain feature parameters, easy to calculate and
clear in physical meanings, have been applied in fault

detection and state analysis for various types of machinery.
In this paper, the following 14 types of time-domain sta-
tistical features are applied, namely, mean, standard de-
viation, variance, skewness, kurtosis, peak-to-peak value,
square root amplitude, average amplitude, rms amplitude,
extreme value, waveform index, peak index, pulse index, and
margin index. .e above parameters constitute the feature
vectors representing the state of the bearing, which are
compared with the features mentioned herein in the RBF
recognition accuracy rate. Similarly, 10 training samples are
selected for each state, and the remaining 10 groups of
samples are identified using the RBF neural network as
a classifier, with the recognition results shown in Figure 11.
It is not difficult to find out that when the time-domain
statistical parameters are input into the RBF neural network,
the recognition accuracy rate can reach 97.5%, which in-
dicates that better separability features are very important
for subsequent accurate recognition.

In order to more objectively compare the recognition
results, 10 groups of samples are randomly selected from
each fault set as training samples, and RBF neural network is
used as the classifier to identify the remaining 10 groups of
samples. .e time-domain feature parameters mentioned
above and the features in this paper are independently used.
.e recognition results in Table 3 are the mean and variance
of the accuracy rate of each algorithm after running 10 times
independently in MATLAB. .e results indicate that the
mean value of the feature recognition accuracy rate in this
paper is high, and the variance is small, which proves that the
features in this paper are not only good in classification
separability, but also relatively stable, with no significant
fluctuation in the recognition accuracy for different training
data in the same data set.

3.2.3. Computing Efficiency. Table 4 lists the average value of
the operation times of the four feature extraction methods.
.e experimental computer is configured as Inter (R) Core
(TM) i5-3470 CPU 3.2GHz. .e test environment is
Windows 7. .e programming software is MATLAB
R2012a. It can be seen from Table 4 that although the
proposed method takes longer than the time-domain sta-
tistical indicators, it is shorter than the existing network
features, and it basically meets the engineering application
requirements.

4. Assessment of Bearing
Performance Degradation

4.1. Degradation Feature Extraction and State Warning

4.1.1. Feature Extraction. .e life cycle data of rolling
bearings published by the University of Cincinnati are ap-
plied to validate the method proposed in this paper. Four
Rexnord ZA-2115 rolling bearings are installed on the
bearing test stand, with a rotational speed of 2000 r/min. A
radial load of 26.6 kN is applied to the shaft and the bearing.
One PCB353B33 accelerometer is installed in the X and Y
directions of each bearing, with a sampling frequency of
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20 kHz. �e vibration data are collected once every 10
minutes, and the data length is 20480 points. In this paper,
the data of bearing 1 in experiment 2 are selected, with a total
of 984 samples during the experiment, and bearing 1 is
seriously damaged [20].

�e method proposed in this paper is applied to extract
the performance degradation index. �e corresponding
band energy spectrum of each sample is obtained. In order to
retain the periodic information of the data as much as
possible, the frequency bandwidthm used in this paper is the
bearing rotation frequency. �e 500th, 533rd, 600th, 702nd,
823rd, and 950th samples are successively selected to draw
their band energy spectrum, as shown in Figure 12. It is clear
that the spectral peaks of the energy spectrum in the fault
frequency band are more and more prominent with the
deepening of the fault degree. Since the intervals between the
spectral peaks are the same, the self-similar features of the
energy spectrum are more and more obvious.

�e frequency band energy spectrum is regarded as
a one-dimensional sequence, and a recursive algorithm is
applied to extract the self-similar features of the sequence. By
setting the delay time as τ � 6 and embedding dimension as
s � 2, a recursive matrix corresponding to the energy
spectrum sequence can be obtained. Donner et al. found that
the recursive matrix can be regarded directly as the adja-
cency matrix of the network, the sequence is described in the
form of a network, and self-similar feature inside the se-
quence is re�ected by the structural features of the network.
A recursive algorithm is applied to transform each sample
into a complex network model represented by points and
edges. �e average degree features of each network model
are then extracted. �e average degree change curve of the
entire experimental sample is shown in Figure 13, and the
�rst half of the curve is comparatively steady, which means
that the bearing is in normal state. �e curve suddenly drops
at the 533rd point, and then it comes into a more stable
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Figure 9: Feature distribution of four bearing states. (a) �e average path length. (b) Degree. (c) Clustering coe�cient.
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decline phase, which means that the bearing is experiencing
early weak faults, and the fault degree gradually deepens.�e
curve drops sharply at the 702nd point and then slowly
increases, indicating that the bearing may have a partial fault
and spall.�e sharp part of the bearing is gradually �attened.
�e curve falls sharply again at the 823rd point and became
more and more unstable, indicating that the bearing is in

a state of serious degradation until it completely fails. It is
not di�cult to �nd out that the average degree feature is
sensitive to the early faults of the rolling bearing. With the
degradation of the bearing, the feature value gradually de-
creases and the �uctuation amplitude gradually increases.

4.1.2. State Monitoring and Warning. �e above analysis
indicates that the average degree feature tends to gradually
decrease with the performance degradation of the rolling
bearing. �erefore, a threshold can be set, and when the
average degree exceeds the threshold, a fault alarm is given.
�e threshold is determined with the Layda rule in this
paper. When the absolute value of the di�erence between the
data point of the average degree and the mathematical
expectation of the set is greater than 3 standard deviations,
that is |xi − x|> 3σ, the data point is identi�ed as abnormal.
In order to avoid accidental errors, the situation that ab-
normality occurs to the average degree in �ve consecutive
times is de�ned as device abnormal, and thereby a fault
alarm is given. As shown in Figure 14, an alarm of abnormal
data is given in the 533rd set of data with the method
proposed in this paper, indicating that the average degree
has exceeded the threshold range �ve times successively,
which proves that this method is sensitive to the early fault of
the bearing and can detect the exact time of the early fault, so
as to succeed in the monitoring and early warning of the
bearing.

4.1.3. Comparative Analysis. Time-domain parameters,
statistically easy to calculate and clear in physical meanings,
have long been applied in state monitoring and fault di-
agnosis of rolling bearings, among which mean square value
C, kurtosis K, etc., are often used as index of bearing per-
formance degradation [21]. �e mean square value and
kurtosis curves of the entire experimental data are shown in
Figures 15 and 16. With the deterioration of bearing faults,
the mean square value and kurtosis tend to increase, but
both begin to show a signi�cant increase at the 702nd sample,
and early faults could not be detected. In addition, the
kurtosis �uctuates in the normal stage and has poor stability.

Table 2: Sort separability criterion of di�erent features.

Feature LCD �e proposed
feature

�e classi�cation separability
measure 0.1029 0.0293
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Figure 10: Classi�cation result of bearing.
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Figure 11: Classi�cation result of bearing.

Table 3: RBF recognition results based on di�erent features.

Feature Time-domain
statistics �e proposed feature

Accuracy a (%) Mean 98.75 100
Variance 0.031 0

Table 4: Average running times of di�erent feature extraction
methods.

Feature extraction methods Time (s)
�e average path length 0.9755
Degree 0.8020
Clustering coe�cient 0.8183
Time-domain statistics 0.0656
�e proposed feature 0.8027
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�erefore, the network average degree index is better in
characterizing bearing performance degradation than the
traditional time-domain statistical parameters, namely,
mean square value and kurtosis, and hence early bearing
faults of bearings can be identi�ed and correct early warning
can be given.

4.2. Degradation State Recognition

4.2.1. Degradation State Recognition Based on Subnetwork
Average Degree. On the basis of the average degree feature of
the bearing life, the complex network model is evenly

decomposed into 16 subnetworks. �e average degree of
nodes in each subnetwork is extracted to form the multidi-
mensional degradation feature vector to identify the degra-
dation state of the bearing, that is, the average degree of the
subnetwork, p→ � [p1, p2, p3, . . . , p16]. �e average degree
change curve of the subnetwork for the entire experimental
samples is shown in Figure 17. Since the feature vector is
composed of the degree of nodes in di�erent areas of the
network, there is no redundant information between the
values. Hence, it is not necessary to perform dimensionality
reduction on the feature vector. As can be seen from Figure 18,
the change of each value in the feature vector is consistent with
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Figure 12: Frequency band energy spectrum of some samples. (a) �e 500th sample. (b) �e 533rd sample. (c) �e 600th sample. (d) �e
702nd sample. (e) �e 823rd sample. (f ) �e 950th sample.
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Figure 13: �e average degree of bearing all life.
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the development trend of the fault, with some values sensitive
to the fault and some value relatively stable, which can ef-
fectively describe the whole life process of the bearing.

In order to further understand the subnetwork average
degree feature vectors, principal component analysis (PCA)
algorithm is applied to reduce the dimension of the sub-
network average degree feature to obtain the feature re-
duction dimension shown in Figure 19. In the four
degradation states of the rolling bearing, the similar samples
have higher degree of aggregation, and there is only partial
overlapping between the di�erent types of samples, which
indicates that the multidimensional degradation feature
vectors mentioned in this paper can meet the requirements
for distinguishability of di�erent states. Wherein, the normal
state has the highest degree of aggregation, and the serious
degradation to the fault state has the lowest degree, which
accords with the basic features of the degradation of the
rolling bearing.

�e radial basis function (RBF) neural network classi�er
is applied to identify the four states of the rolling bearing life
cycle. �e �rst stage of the bearing is the normal state and
contains the �rst to 533rd samples; the second stage is the
minor fault, including the 534th to 702nd samples; the third
stage is deepening of the fault and gradual thinning of the
sharp part, including the 703rd to 823rd samples; the fourth
stage is serious fault to failure, including the 824th to 984th
samples. �e samples in each stage are divided into two
sample sets according to the parity of the sequence, with one
sample set selected as the training sample set, and the other
set is selected as the testing sample set. �e training sample
feature vector set VT is the training data set of RBF neural
network, among which there are 267 training samples in the
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Figure 16: Kurtosis of bearing all life.
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�rst stage, 84 training samples in the second stage, 61
training samples in the third stage, and 80 training samples
in the fourth stage. �en, the network is tested and veri�ed
with the feature vector set VC of the testing sample. �e
degradation state of the testing sample is identi�ed, and the
result of the degradation recognition of the rolling bearing is
obtained as shown in Figure 17, with a recognition accuracy
rate of 93.09%.

It can be seen from Figure 17 that the �rst three states of
the rolling bearing life cycle have high recognition accuracy,
while for the serious fault to failure state, a large number of
samples are identi�ed as other states, and the recognition
accuracy is low. �e reason may lie in the unstable per-
formance during the serious fault state, resulting in the
�uctuation of the extracted features and the low similarity
between samples. However, the entire recognition results
can basically meet the requirements of the state recognition
of bearing degradation.

4.2.2. Comparative Analysis. Statistical parameter diagnosis,
a relatively e�ective diagnostic method, has been applied
since a long time ago, with the time-domain statistical
parameter the most commonly used one. For rolling
bearings, the frequency components of the signal, the energy
of di�erent frequency components, and the peak position of
the main frequency spectrum of the energy spectrum will
also change when a fault occurs. �erefore, the statistical
parameters in the frequency domain are often applied to
identify the degradation stats of the bearing. In this paper, 14
kinds of time-domain feature parameters [20] and 12 kinds

of frequency-domain feature parameters [22] are used to
characterize the bearing state and are compared with the
features proposed in this paper in RBF recognition rate of
bearing degradation. Similarly, the feature vector set VT of
the training sample is used as the training data set of the RBF
neural network, and then the network is tested and veri�ed
with the feature vector set VC of the testing sample to
identify the degradation state of the testing sample, with the
recognition results shown in Table 5. Compared with the
time-domain feature parameters and the frequency-domain
feature parameters, the average degree of the subnetworks
proposed in this paper is more accurate in identifying the
degradation state of the bearings.

5. Conclusion

In order to overcome the de�ciencies of existing complex
network modelling methods and conventional network
topological features, this paper constructs a new complex
network model from the perspective of frequency domain
and makes application of complex network decomposition
to extract the average degree characteristics of subnetworks
sensitive to local changes in the network based on the av-
erage degree of the bearing condition monitoring and early
warning method and the average degree of the subnetwork
bearing degradation state recognition method, which are
applied in the life cycle of the rolling bearing detection. �e
results show that the mean and variance of the recognition
accuracy of the proposed method are better than those of the
time-domain statistics. �e average degree of structural
features of complex network can e�ectively characterize the
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Figure 19: Dimension reduction results of subnetwork average degree.

Table 5: RBF recognition results based on di�erent features.

Feature Time-domain statistics Frequency-domain statistics �e proposed feature
Accuracy (%) 59.55 70.33 93.09
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degradation process of bearings and is more sensitive to
early weaker faults than commonly used time-domain sta-
tistical parameters such as kurtosis and RMS values. .e
degradation recognition method based on average degree of
subnetworks can effectively identify the degradation state of
bearings, with a recognition rate of 93%, which is higher
than the time-domain statistical parameter and the
frequency-domain statistical parameter..emethod and the
degradation features extracted in this paper are sensitive to
the early faults and have high accuracy in degradation
recognition, which can meet the requirements of the deg-
radation assessment of rolling bearing performance.
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